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Abstract: In this paper we consider fully-actuated and redundantly-actuated robots, whose
saturated inputs can have high bandwidth or can be slowly varying (with dynamics). The slowly
varying inputs can be considered as configurations for the system. The proposed strategy allows
to find the optimal actuators’ configuration to optimize a cost function as the manipulability
or the energy consumption. The approach allows for both a static design, which can include
actuators’ parameters such as position, orientation, saturations, numbers of actuators, and for
a dynamic design, where the configurations can be controlled by an input of the system. A
generalized solution to the optimal problem is proposed with the use of genetic algorithms. The
results are validated in two simulation scenarios: a reconfiguration of the actuators orientation
of an redundantly-actuated planar robot for trajectory tracking and the design optimization of
the orientation of the motors in a generalized hexa-rotor with arbitrary propeller orientation.

Keywords: input allocation, fully actuated/vectored-thrust aerial vehicles, genetic algorithms.

1. INTRODUCTION

In control theory, an redundantly-actuated system consists
of a system with more inputs than the dimension of the
configuration space or the D.o.F. A common hierarchical
control architecture (Johansen and Fossen (2013)) for such
systems consists in having a high-level control that gen-
erates a virtual input which stabilizes the system. The
control allocation strategy then commands the multiple
actuators to obtain the desired virtual input, trying to
exploit the higher dimension space of the inputs to op-
timize some cost functions (for energy, saturations, fault
tolerance, etc). Very often in physical-mechanical system
we might have actuators with very high bandwidth which
can be considered as almost instantaneous, and others with
low bandwidth evolving with dynamics (Passenbrunner
et al. (2016)). In this paper we consider such systems,
where some slow varying parameters (we call configura-
tions) have dynamics, while some high bandwidth inputs
(we call instantaneous inputs) can be obtained instanta-
neously. Moreover, the inputs are subject to saturation
constraints. We focus on the optimization of the config-
urations, while the instantaneous inputs are found using
standard techniques as the constrained pseudo-inverse. In
particular, we address two problems: the control problem
where the configurations can actually be controlled and
modified by some inputs, and the design problem where
the configurations are static and the goal is to find an
optimal static configuration at design time to optimize
a cost function. Possible applications include, but are
not limited to: ships and vessels (Lindegaard and Fossen
(2003)), aircrafts (Oppenheimer et al. (2006), Boskovic
and Mehra (2002)), wheeled mobile robots and multi-
rotors unmanned aerial vehicles (Ryll et al. (2012, 2016),
Brescianini and D’Andrea (2016), Park et al. (2016)).

Since the resulting problem might be in high dimension,
non-linear, with non-differentiable and non-closed form
cost functions, we propose a generalized solution with the
use of genetic algorithms (Srinivas and Patnaik (1994)).
We propose different cost functions associated to different
tasks for the robot, in particular we describe cost functions
to optimize: the energy consumption of the instantaneous
inputs, the volume of attainable virtual inputs and the
manipulability index, that is the biggest ball of obtainable
virtual input around a desired virtual input.
The contribution of this paper is on the use of Ge-
netic Algorithm to solve complex non-analytic problem. In
Passenbrunner et al. (2016), for example, a gradient based
method is employed which is impossible to apply in our
case. In Lindegaard and Fossen (2003), due to the analytic
solution, the approach has limitations on the number of
saturated actuators. Many approaches try to use Linear
or Quadratic Programming techniques, but those require
very specific cost functions. With the proposed approach
we are able to optimize very complex cost functions as the
manipulability index which to the best of our knowledge
was never optimized for an redundantly-actuated system.
To conclude, we simulated the proposed approach for both
a control and a design problem; the first on a planar robot
with actuators consisting in directable thrusters and the
second on a generalized Multi Directional Thrust (MDT)
hexa-rotor with arbitrary propeller direction.

1.1 Organization

The paper is organized as follows: Section 2 briefly presents
the notation used in the paper. In section 3 the problem is
introduced and some relevant cost functions for different
tasks are outlined. In section 4 a generalized solution with
the use of Genetic Algorithms is proposed and finally
section 5 presents some results on the simulation for both
the control and design problems.



2. NOTATION

A set S ⊂ Rn is called polyhedron if it is the intersection
of a finite set of closed halfspaces:

S = {x ∈ Rn|Cx ≤ b} (1)

with C ∈ Rq×n, b ∈ Rq, with q the number of con-
straints defining the hyper-planes. This is the so called
H-representation of polyhedron.

A bounded polyhedron is called a polytope.

The operator S×(a) indicates the skew symmetric matrix
such that S×(a)b = a×b with × the cross product operator
and a, b two vectors of same dimension.

3. PROBLEM FORMULATION

Consider a dynamical system:

ẋ = f(x,w) (2)

with x ∈ Rm is the state of the system and where w ∈
Rn are some virtual inputs. The virtual inputs depends
linearly from the instantaneous inputs via an allocation
matrix, and in particular:

w(t) = A(θ(t))up(t) (3a)

θ̇(t) = fθ(θ,uθ(t)) (3b)

with A ∈ Rn×p the allocation matrix, up ∈ Rp a saturated
vector of instantaneous inputs, p ≥ n, θ(t) ∈ Rnθ some
time-variant parameters (the configurations), uθ ∈ Rpθ a
vector of saturated inputs for the parameters θ, fθ(·) :
Rpθ → Rnθ a locally Lipschitz function. The input up
is such that si ≤ up,i ≤ si for i = 1, · · · , p, with
si, si ∈ R the saturations limits. The input uθ is such
that si,θ ≤ uθ ≤ si,θ for i = 1, · · · , pθ, with si,θ, si,θ ∈ R
the saturations limits.

In this paper we suppose that a reference virtual command
w∗(t) is generated by a high-level controller and we focus
on the optimal design or control of the allocation matrix
A(θ) to optimize some cost function V (θ). Given an
optimal configuration A∗(θ) and a feasible virtual input
w∗, the instantaneous input up can be found as:{

up(t) = A∗−1w∗(t) p = n
up(t) = A∗†w∗(t) p > n

(4)

where A† is the constrained pseudoinverse operator Sab-
harwal and Potter (1998) to guarantee that the solution
lies in the feasible saturated up.

We define two problems:

Design Problem: we suppose that fθ(θ,uθ) = 0 and
pθ = 0, i.e., the configurations θ are constant and there
are no inputs to steer θ. The goal is to find a static optimal
configuration θ∗ that maximizes/minimizes a cost function
V (θ) ∈ R. The design problem is useful to design some
intrinsic properties of the vehicle such as orientation and
position of actuators, maximum power of the actuators,
etc.. The optimization problem is defined as:

max/min
θ

V (θ)

subject to (3)
si ≤ up,i ≤ si

(5)

Control Problem: the goal is to find an optimal config-
uration and configuration input trajectory {θ∗(t),uθ(t)∗}
that maximize/minimize a cost function V (θ) ∈ R. The
optimization problem is defined as:

max/min
θ(t),uθ(t)

∫ tf

0

V (θ(t))dt

subject to (3)
si ≤ up,i ≤ si
si,θ ≤ uθ ≤ si,θ

(6)

To describe the problem we have to define the sets W ⊆ Rn
and U ⊆ Rp as the virtual input set and the instantaneous
input set respectively, i.e., where the virtual input w and
the instantaneous input up vectors can lie. Due to the
nature of the saturated input up, U is a p-orthotope
(hyper-rectangle of dimension p) polytope defined in H-
representation as:

U = {x ∈ Rp|CUx ≤ bU} (7)

with CU ∈ R2p×p defined as:

CU =
[

Ip
−Ip

]
(8)

with Ip an identity matrix of dimension p, and bU defined
as:

bU =
[
s1 · · · sp − s1 · · · − sp

]T
(9)

Due to (3a) W is the image of U subject to linear
transformation A(θ), which is again a polytope Zhang
(2012) defined in H-representation as:

W = {x ∈Wp|CWx ≤ bW} . (10)

3.1 Cost Function Definition

In the following we define suitable cost functions V to be
optimized, based on different tasks for the robot.

Manipulability task: a desired virtual input trajectory is
given by w∗(t). The goal is to find the optimal config-
uration θ∗(t) and the configuration input uθ such that
the manipulability index around w∗(t) is the maximum,
considering as manipulability index the radius of the
largest sphere inscibed into the polytope W and centered
in w∗(t). This goal can be useful to provide robustness
to the high level control. The higher the manipulability
index, the higher the high level control has margin around
the nominal control input w∗(t) to compensate external
disturbances or disturbances due to non perfect modeling.

If we define as di the distance of w∗(t) to the i-th hyper-
plane that constraints W, we define the cost function as:

VM (θ) = min(di(θ)), i = 1, . . . , t, t ≤ 2p (11)

In the evaluation of the cost functions using W, we
might have different measurements units (for example
[N] and [N/m] for forces and torques, respectively) or
preferred directions in W (for example we want higher
manipulability in the forces of x-axis). In this case we can
simply scale the matrix A by pre-multiplying it with a
scale matrix Aλ ∈ Rn×n defined as:

Aλ =

λ1 0
. . .

0 λn

 (12)

Remark 1. Optimizing for the manipulability task, it is
not guaranteed that the desired w∗, around which we
maximize the radius of the sphere, is feasible w.r.t. the
constraints on up.

Energy task: a desired virtual input trajectory is given by
w∗(t). From (4) we can compute up(t). The cost function
has to be chosen to minimize the norm of the instantaneous
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inputs. The cost function to maximize in case of (p = n)
is defined as:{

VE(θ) =
∥∥A−1(θ)w∗(t)

∥∥−1 w∗(t) ∈W
VE(θ) =

∥∥A−1(θ)w∗(t)
∥∥−1 w∗(t) /∈W

(13)

while in case of (p > n) it is defined as:{
VE(θ) =

∥∥A†(θ)w∗(t)
∥∥−1 w∗(t) ∈W

VE(θ) =
∥∥A†(θ)w∗(t)

∥∥−1 w∗(t) /∈W
(14)

where w∗(t) is the obtainable virtual input, closest to
w∗(t) (can be found with quadratic programming Wolfe
(1976)).

Remark 2. Optimizing for the energy task, it is not guar-
anteed that the desired w∗ is feasible using the configura-
tion obtained.

Wrench maximum volume task: the goal is to find the
optimal θ∗ to maximize the volume of W. The cost
function to maximize is defined as:

VV (θ) = vol(W) (15)

where vol(W) is the volume of W.

The cost function can be defined as weighted sum of
different tasks, i.e., we can define V as V = β1VM+β2VE+
β3VV , with βi some positive scalar.

4. OPTIMIZATION PROBLEM SOLUTION

In the following, we present a solution to the optimal
problems (5) and (6) for the mentioned tasks, and we also
propose a generalized solution to consider other possible
tasks or a cost function mixing the different tasks.

4.1 Manipulability

The solution lies into describing W as function of U and
A(θ). The solution is different in case of fully actuation
(p = n) or in case of redundant actuation (p > n):

• Fully Actuation (p = n): if A(θ) is invertible, we can
compute bW = bU and CW = CUA(θ)−1 (closed form
solution). If A(θ) is non-invertible, the cost function
VM = 0.
• Redundant Actuation (p > n): since A is a projection

on a lower dimension space, the problem is known
in literature for not having a closed form solution.
A numerical solution consists in expressing U in its
V-representation (the vertex representation), trans-
form the verteces of U via A(θ), compute the V-
representation of W as convex hull of the transformed
points using Chazelle (1993). The problem is known
as the facet enumeration problem Fukuda (2004).

Once W is defined, we can compute di as

di =
|Ci

Ww∗ − biW|∥∥Ci
W
∥∥ (16)

where the i index refers to the i-th row or the i-th hyper-
plane defining W.

4.2 Energy

• Fully Actuation (p = n): the cost function requires
the computation of W which can be done in closed
form and the computation of A−1 which again can be
done in closed form from A(θ). Some gradient-based
algorithms can be used to compute the optimal θ∗.

• Redundant Actuation (p > n): both the computation
of W and A† cannot be done in closed form, so the
resulting cost function is non-differentiable and non-
continuous.

4.3 Wrench Maximum Volume

The cost function is directly dependent on the volume of
W which can be computed in a numerical fashion by one
of the algorithms in Bueler et al. (2000).

4.4 Other Tasks

The solution of the generalized problem, as described in
the following, requires only to be able to evaluate the cost
function for a particular configuration θ. Hence complex
cost function can be built to be optimized.

4.5 Optimization Problem Solution

In general, the cost function can be non-linear, non-
differentiable (for the computation of W and/or A†) and
in high dimensions, so standard optimization algorithms
based on differentiation Ruder (2016) or complete solu-
tions cannot be applied. A general solution can instead
be derived using genetic algorithms (GA) Srinivas and
Patnaik (1994). In case of the Design problem a single
GA can be executed to find the optimal configuration
θ∗. In the Control problem, instead, we discretize w∗(t)
with a given time step ∆t, and solve a GA for each step.
Moreover, we need to consider the dynamic equation (3b)
in the solutions of the GA. We have then to introduce
the concept of Initial Genetic Algorithm (IGA) and on
Trajectory Genetic Algorithm (TGA). The IGA is used in
the Design problem and to find the initial configuration
θ∗(0) for the Control problem. The TGA is instead used
along the trajectory to find the θ∗(t > 0). Since the TGA
has to obey (3b) we need to find a suitable mechanism to
find feasible solutions of θ∗(t). For sake of compactness
we call TGA(k∆t) as TGAk and we use the subscript k
to indicate a k∆t. The choice of the initial population,
selection and mutation of each TGAk should guarantee
that θ∗k = θ∗k−1 + fθ(uθ,k). Suitable strategies to pick a
feasible θ∗ can be derived from kino-dynamic planning
LaValle and J. J. Kuffner (2001) and are model specific
and GA specific.

5. SIMULATIONS

In the following, we present the results of two case stud-
ies, one for the control problem and one for the design
problem.

5.1 Control Case: redundantly-actuated planar robot

The platform described in Nainer et al. (2017) and de-
picted in Figure 1, is composed by a rigid rectangu-
lar frame sustained by omnidirectional passive spherical
wheels and n actuating modules. Each module consists of
a turret, which is orientable by means of a servo motor.
Each turret carries a propeller driven by a BLDC motor.
We consider the platform to have 4 actuator modules.

We can define equation (3) for this particular robot by
defining w,θ,A,up, fθ,uθ. In particular w = [Fx, Fy, τ ]T

is the wrench vector, where Fx is the body force along x-
axis, Fy is the body force along y-axis and τ the torque
around the vertical axis; θ = [θ1, · · · , θ4] with θi the
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angle of the i-th turret; up = [kωω
2
1 , kωω

2
2 , kωω

2
3 , kωω

2
4 ]T ,

where kω is an aerodynamic constant and ωi the angu-
lar velocity of the i-th propeller. f(θ, uθ) = uθ, uθ =
[uθ,1, uθ,2, uθ,3, uθ,4]T where uθ,i is the control input for
the turret’s angle. The turret model is a single integrator
system. Finally the allocation matrix is defined as:

A(θ) =

 c(θ1) · · · c(θ4)
s(θ1) · · · s(θ4)

(Πr1)
T

[
c(θ1)
s(θ1)

]
· · · (Πr4)

T

[
c(θ4)
s(θ4)

]
 (17)

where Π =
[

0 1
−1 0

]
, ri ∈ R2 the position of the turret

w.r.t. the center of gravity of the platform and c(·), s(·)
indicating the cos and sin function respectively.

A desired wrench trajectory w∗(t), derived from the model
inversion to track a 8-shaped trajectory, is given by:

w∗(t) =

[
F ∗x
F ∗y
τ∗

]
=

[−Mf21R cos(f1t)
−Mf22R sin(f2t)

0

]
(18)

with R, f1, f2 some parameters to define the size and the
frequency of the trajectory and M the mass of the robot.

The following results are for the manipulability and energy
tasks, whose cost functions are given in (11) and (14).
Because we are in the redundantly-actuated problem, the
Genetic Algorithm solution is employed.

The population is defined as Np individuals pi defined by a
series of chromosomes. In particular the individuals pi are
defined as the sets {θ1, θ2, θ3, θ4}, i.e., the chromosomes
are the parameters θ to be optimized. The fitness function
is defined by the cost function (11) or (14), depending on
the task. The steps of the genetic algorithm are defined as
the following:

• Initial Population (IGA): the initial population is
selected randomizing θi ∈ [−π, π].
• Initial Population (TGA): the initial population

is selected randomizing θi = θoi ± δθ,i, where θoi is
the optimal value of θi from the previous iteration
and δθ,i is the maximum variation of θi in ∆t given a
limitation of the uθ,i. Since (3b) is a single integrator
model δθ,i = uθ,i.
• Selection: the selection mechanism used is the fitness

proportionate selection Blickle and Thiele (1996).
• Crossover: the crossover mechanism consists in tak-

ing 2 chromosomes (two θi) from each parent.
• Mutation (IGA): in the mutation process at the

initial iteration, each chromosome has a probability
PM of being randomized again in [−π, π].
• Mutation (TGA): in the mutation process along

the trajectory, each chromosome has a probability PM
of being increased by ±δθ,i.

The parameters used in the simulations are gathered
in Table 1, where we indicate with NG the number of
generations for each GA solution.

Fig. 1. The ROSPO platform.

0 100 200 300 400 500

2
2.5
3

3.5

F
it
n

e
s
s
 V

M

0 100 200 300 400 500

Generations

0.3

0.4

F
it
n

e
s
s
 V

E

Fig. 2. Fitness functions for the IGA problem in both
manipulability and energy tasks.

(a) Manipulability task. (b) Energy task.

Fig. 3. The obtainable wrench polytope after the solution
of IGA (t = 0). The inscribed ball is the so called
manipulability index, which measure the possibility of
generating virtual inputs around a reference virtual
input for robustness purpose.

In Figure 2 the fitness value for the IGA is depicted.
The fitness converges to a steady value in around 500
generations.

In Figure 3 we can see the obtainable virtual input w
polytope (in light blue) with the optimal configuration
solution given by the IGA (t = 0), for both the manipula-
bility and the energy tasks. Inside the polytope is depicted
the sphere indicating the manipulability index centered
around the initial desired wrench. We can notice that in
the configuration optimized for the manipulability we can
obtain a much wider range of wrenches in all direction,
while in the configuration optimized for the energy we can
obtain a large range in x-axis (the direction of w∗(t = 0))
and very small in the other directions.

In Figure 4 the system is tested with the high level
controller developed in Nainer et al. (2017). We can see
the different behavior of the turrets. In the energy task
the turrets are pointing mainly in the direction of the
requested wrench (the blue line), but the manipulability
index is very low (the mean VM = 0.41), such that the
platform cannot compensate big external disturbances. In
the manipulability task the turrets are more distributed,
the manipulability index much higher (the mean VM =
4), but the energy consumption is almost double (mean
V E = 0.221 against V E = 0.39).

5.2 Design Case: Fully Actuated Hexa-rotor

For the design case we consider a hexa-rotor unmanned
aerial vehicle (UAV). Typical hexa-rotors have 6 equi-
distant motor-propeller actuators which point in the ver-
tical z-axis. Some particular hexa-rotors Ryll et al. (2016)

Table 1. Parameters for GCM weight func-
tions.

R f1 f2 ∆t Np NG PM si si

8 0.3 0.3 0.1(s) 90 500 0.05 5.8 (N) 0(N)
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(a) Manipulability task.

(b) Energy task.

Fig. 4. The trajectory of the platform with the high
level controller with the solution of the TGA in
manipulability and energy task. The direction of the
turrets along the trajectory is indicated by orange
arrows starting from the platform.

instead have tilted actuators to generate forces in 3 axes
and torques in 3 axes. Inspired by those designs, the goal is
to define the optimal orientation of each independent pro-
peller to optimize some cost functions. We define ri ∈ R3

the position vector of the i-th actuator w.r.t. the center of
gravity of the vehicle. We define vi ∈ S2 the orientation
of the i-th actuator in body frame, where the group Sn
defines the unit sphere group Sn =

{
x ∈ Rn+1| ‖x‖ = 1

}
.

The vector vi describes where the propeller is pointing. We
define σi ∈ {−1,+1} the spinning direction of the i-th pro-
peller. We can define equation (3) for this particular robot
by defining w,θ,A,up, fθ,uθ. In particular w = [F, τ ]T is
the wrench vector, where F ∈ R3 is the body force in three
dimensions x, y, z and τ ∈ R3 the torque in three dimen-
sions. θ = [v1, · · · ,v6]. up = [kωω

2
1 , · · · , kωω2

6 ]T , where kω
is an aerodynamic constant and ωi the angular velocity
of the i-th propeller. We consider the design problem, so
θ̇ = 0. Finally the allocation matrix is defined as:

A(θ) =
[

θ
γ1 · · · γ6

]
(19)

with γi = kθiσi + S×(ri)vi, i = 1, · · · , 6 and k an aero-
dynamic constant that relates the thrust of the propeller
with the torque produced around the rotation axis.

In the following, we present the results of the optimization
problem to optimize the manipulability and energy task
for the hovering condition (the typical working point),
that is w∗ = [0, 0,Mg, 0, 0, 0]T , with M the mass of the
vehicle and g the gravitational acceleration. To simplify
the problem, only the directions of the propellers are
optimized, while ri and σi are decided a priori.

Remark 3. The generalized approach with GA is so power-
ful that one can optimize almost any parameter, including
the number of actuators, the position ri, the spinning
direction σi, the saturation levels si, si, etc.
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Fig. 5. The Fitness evolution for the manipulability and
energy tasks.

The steps of the genetic algorithm are defined as the
following:

• Initial Population (IGA): the initial population is
selected randomizing vi ∈ S2.

• Selection: the selection mechanism used is the fitness
proportionate selection Blickle and Thiele (1996).
• Crossover: the crossover mechanism consists in tak-

ing 3 chromosomes (three vi) from each parent.
• Mutation (IGA): in the mutation process each

chromosome has a probability PM of being random-
ized such that vi ∈ S2.

The parameters in Table. 2 were used in the simulations.

We considered 3 optimization problems:

• a) the cost function (11) for manipulability.
• b) the cost function (11) for manipulability but with

a scale matrix As = diag {1, 1, 1, 3, 3, 8} to scale the
torques w.r.t. the forces.

• c) the cost function (13) for energy and w∗ a feasible
wrench (i.e., VM > 0).

In Fig. 5 the fitness function for the problems a) and c),
while in Fig. 6 the visual representation of the optimal
configurations. Finally, in Table 3 the optimized configu-
rations for the problems a), b), c).

It is easy to note how the orientations of the configurations
optimized for the manipulability are much more tilted,
while the ones optimized for the energy are almost vertical.
This corresponds to the capability of resisting an external
wrench coming from any direction (in the first two cases),
or just the one produced by gravity.

Furthermore, it is worth to notice that the configurations
shaped for the manipulability use around twice and four
times the energy of the configuration optimized for the
energy. On the other hand, the configuration optimized
for the energy can generate a very small wrench around
the hovering condition.

Given the consistent computational time required by the
solving of the optimization problem with Genetic Algo-
rithms w.r.t. other state-of-the-art techniques, we limited
its usage to offline optimization, with a feasible w∗ pre-
computed for all the trajectory.

6. CONCLUSION AND FUTURE WORKS

In this paper we considered fully-actuated or redundantly-
actuated system, where a virtual input can be considered

Table 2. Parameters for the hexa-rotor simula-
tion.

Np NG PM si si ‖ri‖ σi

500 10000 0.05 6.5 (N) 0(N) 0.7(m) −1i
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(a) Manipulability task.
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(b) Manipulability task with scaled allocation matrix.
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(c) Energy task.

Fig. 6. The configurations of the hexarotor propellers for
the three optimization problems.

as a linear combination of the instantaneous inputs of the
system via an allocation matrix that depends on some
configuration parameters. An optimization problem was
defined, to optimize the configurations of the system to
maximize or minimize a task-specific cost function, such
as manipulability, energy consumption and volume of the
obtainable virtual input. Due to the non-differentiable
nature of the costs functions, the general problem was ap-
proached with Genetic Algorithms. The proposed solution
allowed to optimize static parameters of the system for a
design problem, as well as to find the optimal trajectory
of the configurations in the control problem, where the
configurations can be controlled by mean of some inputs.
The approach was tested on two scenarios: finding the
reconfiguration of the orientation of some actuators in an
redundantly-actuated mobile robot, and on the design of
the optimal configuration for a generalized hexa-rotor with
arbitrary propeller orientation. The preliminary results
were very promising.

Future works include: the definition of cost functions for
other tasks, the application of the method to other robotic
platforms for the design problem and the implementation
of the allocation strategy on the real robotic platform in
Nainer et al. (2017).

Table 3. Optimal configuration for the different
tasks.

Manipulability Manipulability Scaled Energy

v1 = [0.230,−0.89, 0.393]T v1 = [−0.561, 0.698, 0.443]T v1 = [−0.271,−0.150, 0.950]T

v2 = [−0.967,−0.093, 0.234]T v2 = [0.876, 0.207, 0.434]T v2 = [−0.003,−0.149, 0.988]T

v3 = [0.773, 0.582, 0.247]T v3 = [−0.157,−0.910, 0.382]T v3 = [0.197,−0.022, 0.980]T

v4 = [0.542,−0.771, 0.331]T v4 = [−0.513, 0.599, 0.614]T v4 = [0.115,−0.034, 0.992]T

v5 = [−0.969, 0.150, 0.195]T v5 = [0.727, 0.180, 0.662]T v5 = [0.109, 0.196, 0.974]T

v6 = [0.391, 0.892, 0.223]T v6 = [−0.411,−0.778, 0.474]T v6 = [−0.129, 0.191, 0.972]T
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