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Abstract: Process alarm management can be approached as a pattern recognition problem
in which temporal patterns are used to characterize different typical situations, particularly at
startup and shutdown stages. This paper focuses on learning the temporal patterns, in the form
of chronicles, by extending the previously proposed Heuristic Chronicle Discovery Algorithm
Modified HCDAM . The proposed extension incorporates knowledge, in particular in the form
of so called temporal runs, to focus the learning process and produce less conservative chronicles.
The resulting Chronicle Based Alarm Management (CBAM) approach is hence based on a
diagnosis process which permits situation recognition and provides the operators with relevant
information about the failures inducing alarms flows in the startup and shutdown stages. The
event sequences that represent a process situation are generated by simulation and including
temporal runs, the chronicles are extracted using the extended version of HCDAM . Finally, the
conclusion and future work are presented.
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1. INTRODUCTION

In industrial environments, it is common for the plant op-
erators to perform their duties by silencing process alarms.
This is so because these alarms are too numerous and
become noise rather than helping to detect and diagnose
abnormal situations. Currently, it is very easy to set alarms
on modern electronic control systems, and operators are
inundated with ”alarms” that do not help them to perform
their tasks but, on the contrary, hinder them (Stanley and
Vaidhyanathan (1998)). However, the plant alarms should
be administered according to: a philosophy that includes
the purpose of the alarm system; procedures associated
with the alarm system and other plant procedures; meth-
ods for prioritization; alarm classes; roles and operator
responsibilities with respect to alarms; principles of the
alarms; documentation required for each alarm; training;
rates of key system performance; change management, and
preservation of history of alarms (ISA 18.2).

The nature of alarms and other procedure actions makes
that many of the aspects of industrial processes can be
captured by discrete events. The supervision problem thus
must fit the formal recognition of behaviors in the context
of Complex Event Processing (CEP). This corresponds to
developing reliable tools that support the analysis of event
streams to recognize activities that can generate normal or
abnormal situations in complex flows. The dynamics of a
process can be represented by an approach that depicts the
process behavior using the events that occurs. Then, iden-
tifying the transition from normal operation to abnormal
operation corresponds to detect symptoms. For do this, the

systems must be monitored and the diagnostic algorithms
are therefore based on observations that the system pro-
vides. It must have a sufficient set of strategically placed
sensors, providing useful indicators. This information is
then used to reconstruct the state of the system and this
observations coupled with a diagnostic algorithm allow
to introduce the concept of diagnosability. A system is
diagnosable with a diagnostic algorithm if it detects with
certainty the occurrence of faults in the system, and is able
to discriminate them in finite time. The formal definition
of diagnosability may be different if one is interested in
continuous systems (Basseville (2001)) or discrete events
(Pencolé (2004)). Diagnosability provides an efficient cri-
terion to assess the relevance of the observations in each
situation.

In this context, chronicles (Dousson (1996),Ghallab (1996))
have been applied in many diagnosis applications but one
of the biggest difficulties is to obtain automatically a base
of chronicles that represents each situation. To obtain rel-
evant chronicles from a set of event sequences representing
a given situation, it is often necessary incorporate expert
knowledge. This paper enhances the results of the chronicle
learning algorithm proposed in (Subias et al. (2014)) by
incorporating expert knowledge in the form of temporal
runs, as well as additional information that allows us to
limit the conservatism of chronicles.

The paper is divided into 5 sections. After the intro-
duction, Section 2 presents the chronicles representation
with its formal concepts. Section 3 presents the learning
approach. An extension of the HCDAM is described with



an example. In the section 4, a case study related with an
illustrative application in the petrochemical sector is used
to apply the tree steps of the CBAM. Finally, in Section
5 the conclusion and future work are presented.

2. CHRONICLE REPRESENTATION

A chronicle is a set of events linked by temporal constraints
and the occurrence of which is subject to a certain context.
A chronicle is expressed as a constraint graph in which
events are represented by nodes and time constraints are
the labels of the arcs that connect the nodes. Time is
represented as a linearly ordered discrete set of instants,
whose granularity is fine enough compared to the dynamics
of the environment and the means of observation. The
”Chronicle Recognition System” named CRS was intro-
duced in Dousson (1996) and extended in Dousson (2002).
A system of chronicles is composed of three parts:

(1) A set of predicates
(2) A set of temporal constraints concerning these pred-

icates
(3) A set of actions to apply when chronicle is recognized

(optional).

The latter part is used to react following the recognition
of a chronicle; for example, the reaction may be a main-
tenance operation. This part does not concern the subject
of training and therefore is not addressed in the following.
To recognize chronicles, CRS must detect all subsets of
occurrences of events in the input stream. These subsets
correspond to all the sets of patterns of the chronicle taking
into account the various constraints that compose it. To
achieve this result, CRS creates partial instances. A partial
instance corresponds to a partial subset of the chronicle
event pattern. It is only when this subset is complete that
the chronicle is recognized.

2.1 Concepts and formalization

Before defining a chronicle, it is good to remember that it
is based on the verification of time constraints. The check
is directly inspired by a Simple Temporal Problem (STP)
introduced by Dechter et al. (1991). The occurrence of
different events in time represents the system’s dynamics
in a given situation. The concept of event type expresses
a change in the value of a given domain feature or set of
features. E expresses the set of all event types. Note σ an
event type where σ ∈ E. We can thus define the concept
of event.

Definition 1: An event e is defined as a pair e = (σ, t),
where σ ∈ E is an event type and t is a variable of integer
type called the event date.

Several events can have the same event type, but do not
necessarily have the same date, for instance e1 = (a, 3)
and e2 = (a, 6) are two events carrying the same type of
event a.

A flow of activity generated by a system is represented
by a sequence. A sequence consists of several events in an
orderly manner, which leads us to the following definition:

Definition 2: A sequence is defined as an ordered set of
events denoted S = {ei} where i ∈ N , i = 1, ..., l and

ti < (ti+1), i = 1, ..., l− 1 where l is the length of the time
sequence S.

An example of sequence representing an activity stream
may be given by a sequence S1 = {e1, e2, e3, e4, e5, e6} =
{(a, 2), (b, 4), (c, 5), (a, 8), (b, 9), (a, 10)} with l1 = 6.

Finally, a chronicle is a set of event types associated with
time variables and a set of temporal constraints between
time variables.

Definition 3: A chronicle is defined as a triplet C =
(ξ, T ,G) such that:

• ξ ⊆ E. Where ξ is called the typology of the chronicle.
• T is the set of temporal constraints of the chronicle.
• G = (V,A) is a directed graph where:

· V represent the event types of ξ
· The arcs A represent the different time con-

straints between event types. The edge i → j
is associated to the constraint τij ∈ T

Considering the two events (ei, ti) and (ej , tj), we define
the time interval as the pair τij = [t−, t+], τij ∈ T
corresponding to the lower t− and upper t+ bounds on
the temporal distance between the two event dates ti and
tj . If the event e2 occurs after e1, then it exists a directed
link A from e1 to e2 associated with a time constraint.

A chronicle C = (ξ, T ,G) is recognized in a given sequence
S when ξ ⊆ ξ′ (ξ′ set of event types associated to S ) and
all temporal constraints T are satisfied. Cinst = (ξ, Tv)
where Tv is a valuation of T , is an instance of C.

3. LEARNING CHRONICLES

The chronicle exploration process corresponds in discover-
ing all the chronicles, whose instances occur in a given
sequence. In many cases, the same situation does not
implies perfectly identical sequences. This is the reason
of that HCDAM uses several sequences as input.

3.1 Learning chronicles with HCDAM

The algorithm HCDAM learns the chronicles, whose
instances occur in all event sequences representing the
same situation (Subias et al. (2014)). Given a set of
sequences S and a minimum frequency threshold, it finds
all minimal frequent chronicles present in all sequences.
The chronicle learning algorithm has the following three
phases:

(1) Filtering
(2) Building a constraint database from the input se-

quences.
(3) Generating a set of candidate chronicles.

3.1.1. Phase 1: The filtering operation is a preliminary
process on sequences and it can be summarized as follows:

• Filter the event types that are not present in all input
sequences S: if ∃Sk ∈ S such as ∃σi 6∈ Sk, then remove
σi from all the other sequences in S.

• Filter on a given set of event types Ψ = {σ1, σ2, ..σr}
if we are only interested in those event types for the
learning process.



3.1.2. Phase 2: Phase two builds a constraint data base
D by considering each pair of event types and its temporal
constraints in a constraint graph with tree structure.

In this constraint tree, time constraints are nodes and arcs
represent the relationship is parent of defined as:

Definition 5: A node ei[t
−, t+]ej corresponding to the

time constraint between ei and ej is parent of ei[t
′−, t′+]ej

if and only if [t′−, t′+] ⊂ [t−, t+] and there does not exist
ei[t
′′−, t′′+]ej such that [t′−, t′+] ⊂ [t′′−, t′′+] ⊂ [t−, t+].

3.1.3. Phase 3: The generation of a set of candidate
chronicles initializes with a set of chronicles that were
proved to be frequent and it uses the constraint database
to explore the chronicle space (Cram et al. (2012)).

• The set of candidates initiates with the set of tree
roots
• Use the operator ”add ε”. This operator, checks at

the constraint graphs in order to find the restrictions
of ε with all elements of E.
• Determine the minimal number of occurrences of the

candidate in S

The details of the algorithm HDCAM can be found in
(Subias et al. (2014)).

3.2 Improving restrictivness/conservatism

3.2.1. Integration of process knowledge Expert knowl-
edge can be represented by temporal runs that express
a known time constraint between two event type dates.
These temporal runs are gathered in an expert data base
De. To integrate this knowledge, Phase 2 of HCDAM is
modified. One first checks the existence of a temporal run
TRij for each pair of event types (ei, ej). Temporal run,
which replaces the tree root of this pair of event types. The
effect of the integration of temporal runs corresponds to
focus the learning process and produce less conservative
chronicles; it means that the number of chronicles that
represents a specific scenario could be reduced using the
expertise knowledge.

Definition 6: A temporal run is defined as a partial order
of time points with time restrictions between each pair. For
the pair of event types (ei, ej), a temporal run is defined
as TRij = ei[t

−, t+]ej

Example of the ”charge oven” activity: the results of
learning obtained without the inclusion of temporal runs
and with the inclusion of temporal runs are given in a
simple example of activity consisting in a charging an
oven as represented in Figure. 1. The event types are
given by E = {a, b, c, d}, where a (b) is the event of
detecting product a (b) entering the oven, c is the event
corresponding to putting the heaters on, and d is the
event of setting the heaters to high temperature. The event
sequences that express normal startup of this process are:

S1 = {(a, 2), (b, 4), (a, 5), (c, 7), (d, 11)}
S2 = {(a, 2), (b, 3), (a, 4), (c, 7), (d, 10)}
S3 = {(a, 2), (b, 3), (a, 5), (c, 8), (d, 11)}
The temporal runs that indicate the expertise knowledge
are TRab = a[−2, 2]b and TRcd = c[2, 6]d. Using the

Fig. 1. Example of the ”charge oven” activity

Fig. 2. Unique chronicle of the Charge oven system

algorithm HCDAM , the results obtained without includ-
ing temporal runs provide 8 chronicles for a frequency 1.
Using the extended version of the algorithm HCDAM ,
the results including temporal runs provide 4 chronicles
reducing the number of chronicles by 50%.

3.2.2. Integration of event information Another type of
expert knowledge that is often available is the occurence
frequency f(ei) of a single event ei. This information is not
taken into account in HDCAM . Nevertheless it can be
very useful to reduce the number of learned chronicles.

With the event Φ we can to obtain the occurrence fre-
quency of each event type that occurs in Sk. This occur-
rence frequency permits improved the restrictiveness in the
system of chronicles; for example, in a scenario represented
by 7 chronicles of frequency 1 and 3 chronicles of frequency
2, the use of the event Φ enables to analyze the system with
only one unique chronicle, not 10.

Definition 7: We define the event Φ as the initial event
in all the event sequences S such that the occurrence
frequency f(ei) for each event type ei in the sequence Sk

is determined from this event Φ.

Assuming the above example, we use the integration
of event information for structure an unique chronicle
reducing the number of chronicles in 90% see Figure. 2.
In this chronicle, the concept of frequency is assumed as
the occurrence frequency for each event type in a sequence,
not as the occurrence frequency of a pair of events.

4. CASE STUDY - VACUUM OVEN

This section presents a case study from the Cartagena
Refinery in Colombia. Our proposal aims at helping the
operator to recognize specific operation (i.e normal and/or
faulty operation) during the startup and shutdown stages



Fig. 3. Vacuum oven

of the vacuum oven unit described Figure 3. This section
illustrates then the learning of the chronicle base that will
be considered by a recognition system to recognize these
normal or faulty situations when they occur, and in the
next subsections the CBAM methodology is applied with
its three steps: 1. Event type identification, 2. Learning
event sequences generation and 3. Construction of the
chronicle database, Vasquez et al. (2015), Vasquez et al.
(2016).

4.1 Event type identification

The set of event types E considered in the chronicles is
defined by E = Σ ∪ Σc where:

• Σ is the set of procedural actions performed during
standard operating procedures
• Σc is the set of event types associated to the behavior

of the continuous variables .

Procedural actions concern mainly the valves of the oven
and Σ = {V 1, V 2, V 3, v1, v2, v3,M2A}. where V 1 (resp.
V 2, V 3) denotes the switch of the valve V1 (resp. V2,V3)
from closed to opened. v1 (resp v2, v3) the switch of
the valve V1 (resp. V2,V3) from opened to closed. The
event M2A corresponds to the change from manual to
automatic operating, closing the control loops. In the re-
minder we assume that this event is the only unobservable
event of the system i.e. Σuo = {M2A}.
Continuous variables are associated to the different flows
(F1, F2, F3) and different temperatures (T1, T2, T3 and
T4) (see Figure 3). For each evolution of a continuous
variable (obtained by simulation) upper and lower bounds
are defined from experience feedback. Then the continuous
values of the variable are mapped to ranges defined by
these limits. We propose to define three ranges: High when
the value of the continuous variable is higher than the
upper bound, Medium when the value is between the
upper and lower bounds, and Low when the value is under
the lower limit bound. Form this qualitative abstraction of
the continuous variable evolution we consider that an event
is generated each time a transition between qualitative
domains (i.e ranges) occurs. So, for a continuous variable
noted vi four event types can be considered: Lvi (resp. lvi)
for a transition from the range L to the range M (resp. M
to L). Hvi (resp hvi) for a transition from the range M to

the range H (resp. H to M) (Vasquez et al. (2016)). For
the vacuum oven the set of event types associated to the
behavior of the continuous variables is then defined by:

Σc =


LF1, lF1, HF1, hF1, LF2, lF2, HF2, hF2, LF3,

lF3, HF3, hF3, LT1, lT1, HT1, hT1, LT2, lT2,

HT2, hT2, LT3, lT3, HT3, hT3, LT4, lT4, HT4,

hT4

(1)

4.2 Learning event sequences generation

The learning event sequences are generated according to
the behavior of the system in a given scenario (scenario
of normal operating, faulty scenario with a fault on valve,
etc...). In this section we consider a scenario of normal
behavior during the start up of the oven. By simulation
we have obtained three different event sequences (S1, S2

and S3) all of them associated with the same scenario.
Figure 4 shows one simulation of the scenario leading to
the generation of the sequence S1 given by:

S1 = 〈(V 3, 1), (LT1, 3), (LF3, 5), (V 1, 6), (LT4, 7),
(LF1, 8), (HF1, 12), (v1, 13), (V 2, 14), (HT1, 15),
(hF1, 16), (LF2, 17), (HT4, 19), (HF2, 22), (lF1, 24),
(hT1, 25), (hT4, 26), (hF2, 27), (V 1, 42), (LF1, 45)〉
The two others sequences S2 and S3 are identical to S1 in
term of sequence of event types but differ to S1 in term of
event occurrence dates.

S2 = 〈(V 3, 1), (LT1, 7), (LF3, 13), (V 1, 18), (LT4, 21),
(LF1, 24), (HF1, 32), (v1, 35), (V 2, 37), (HT1, 40),
(hF1, 45), (LF2, 48), (HT4, 54), (HF2, 61), (lF1, 65),
(hT1, 68), (hT4, 72), (hF2, 76), (V 1, 96), (LF1, 101)〉
S3 = 〈(V 3, 2), (LT1, 6), (LF3, 9), (V 1, 12), (LT4, 14),
(LF1, 16), (HF1, 22), (v1, 24), (V 2, 25), (HT1, 27),
(hF1, 30), (LF2, 32), (HT4, 36), (HF2, 41), (lF1, 43),
(hT1, 45), (hT4, 48), (hF2, 50), (V 1, 68), (LF1, 71)〉
This scenario can be interpreted from the standard pro-
cedure. For the startup stage, the initial conditions are
that the oven (Ov) is empty and the valves V1, V2 and
V3 are closed. In this situation, the values for all the
continuous variables are below its low limits (F1, F2,
F3, T1, T2, T3, T4 ). Then the scenario starts with the
opening of the valve V3 that is to say the occurrence of
an event of type V 3. After this event type occurrence, the
system is in a mode of operation where only the valves
V1 and V2 are closed. The variable T1 increases and and
event of type LT1 must occur indicating that the internal
oven temperature has passed the limit of low. Then the
flow of the fuel gas reaches its low limit and an event
of type LF3 occurs. So, the ordered sequence of event
types that has occurred is V 3, LT1, LF3. Passing the low
limit of F3 is the condition for continuing the procedure
by the action Open V1 (V 1). When the operator opens
the valve V1, the system evolves to a mode of operation
where the internal flow in the vacuum oven starts. In
this situation, the flow F1 and the outflow temperature
T4 increase(event of type LT4 followed by an event of
type LF1). The next event that occurs is of type HF1

indicating that the flow F1 has passed its high level. At



Fig. 4. Simulation of a normal startup (normalized values)

this stage, the ordered sequence of event types is given
by: V 3, LT1, LF3, V 1, LT4, LF1, HF1. The next procedural
action is the closing of the valve V1 (v1) followed by
the opening of the valve V2 (V 2). Then, the high limit
of the temperature T1 is reached and an event of type
HT1 occurs. The flow F1 decreases from its high limit
(event type hF1). An event of type LF2 occurs because
the flow in V2 increases. The high limit in the temper-
ature T4 induced and event of type (HT4). Following up
with the procedure, due to the high limit of F2 an event
of type HF2 . At this time point, the ordered sequence
of event types that has occurred is V 3, LT1, LF3, V 1,
LT4, LF1, HF1, v1, V 2, HT1, hF1, LF2,HT4, HF2. In this sit-
uation, an unobservable event of type M2A occurs and the
control loops are closed, carrying the system to a steady
state. Note that in this study,we assume that the control
loops are closed immediately after and event of type HF2.
Then, F1, T1 and T4 decrease (event types lF1, hT1 and
hT4. Finally, the sequence ends by and event of type hF2

and by the opening of the valve V1 so that the last event
that occurs in this normal startup is of type LF1.

4.3 Construction of the chronicle database

A complex process (Pr) such the Cartagena Refinery
is composed of n ∈ N different units or areas Pr =
{Ar1, Ar2, ...Arn} where each area Arm, m = 1, ..., n has
K ∈ N operational modes (e.g startup, shutdown ..) noted
Oi, i = 1, ...,K. The process behavior in each operating
mode can be either normal or faulty. We define the set of
failure labels ∆f = f1, f2, ...., fr and the complete set of
possible labels is ∆ = N ∪∆f , here N means normal.

To monitor the process and to recognize the different
situations (normal or faulty) of the operational modes, we
propose to build a chronicle base for each area. For a given
area, a learned chronicle Cm

ij is associated to each couple
(Oi, lj) where lj ∈ ∆:

CArm =
O1

O2

. . .
Ok

N f1 f2 . . . frC
m
10 C

m
11 Cm

12 . . . Cm
1r

Cm
20 C

m
21 Cm

22 . . . Cm
2r

. . . . . . . . . . . . . . . . . . . . .
Cm

k0 C
m
k1 C

m
k2j . . . C

m
kr

 (2)

When lj = N , the chronicle is a model of the normal
behavior of the considered system, otherwise (lj = fi ) the

chronicle is a model of the behavior of the system under
the occurrence of the fault fi.

For the vacuum oven we have considered a normal startup,
a normal shutdown and several faulty cases. For instance,
a startup stage during which a fault occurs on the control
valve V3. We present in this section only the chronicle C2

10
learned from the input sequences S1, S2 and S3 capturing
a normal startup operating mode of the vacuum oven (area
number 2 of the Cartagena Refinery).

In this case of normal startup stage, expert knowledge is
available and integrated in our proposal by three temporal
runs:

TRV 3,LF3
=V 3[6, 8]LF3, this temporal run expresses that

the lower limit of the flow in F3 arrives between 6 and 8
time units after that the valve V3 is opened.

TRV 1,LF1
=V 1[−76, 82]LF1, this temporal run indicates

that the lower limit of the flow in F1 can occur 76 time
units before that the valve V1 is opened or 82 time units
after that.

TRLF2,V 2=LF2[2, 8]V 2, this temporal run indicates that
the valve V2 is opened between 2 and 8 time units after
that the lower limit of the flow in F2 happen.

The output of the extended HCDAM in this case is a
chronicle that represents the behavior of the system taking
as reference the representative event sequences obtained
by simulation and the temporal runs obtained from the
expertise knowledge. The directed graph associated to
the chronicle C2

10 is given Figure 5. As we can see in
the chronicle resulted C2

10, this chronicle expresses the
temporal pattern for a normal start up of this system.
Although the three representative event sequences in this
scenario are similar, this temporal pattern can represent
other cases where the order of the event types could
be different between the learning event sequences. The
frequency of occurrence of the event types V 1 and LF1

are fV 1=2, fLF1
=2 and for the others event types it is 1.

With this information and the use of temporal runs, the
resulted chronicle is only one for this scenario.

5. CONCLUSION AND FUTURE WORK

A new methodology for an alarm management based on a
diagnosis process has been proposed. The proposal is based
on a hybrid causal model of the system and a chronicle
based approach for diagnosis. An illustrative example of



Fig. 5. Directed graph (G) of the chronicle C2
10

the vacuum oven has been considered to introduce the
main concepts of the approach. The algorithmHCDAM is
a tool for the automatic generation of the chronicles from
the representative event sequences and partial temporal
runs. Transposing this methodology to large-scale systems
would benefit from a decentralized approach in which local
chronicles would be learned and then integrated thanks to
shared events.

Future work

The following work will be related to the testing and
validation of the model of chronicles. A new approach
to carry into account negative examples and forgetting
capabilities in the chronicle learning algorithm will be
proposed.
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Annales Des Télécommunications, volume 51, pages
501508.

Dousson, C. (2002). Extending and unifying chronicle
representation with event counters. In Proc. of the 15
th ECAI, pages 257261. IOS Press.

Ghallab, M. (1996). On chronicles : Representation, on-
line recognition and learning. In Proc. of the 5th
International Conference on Principles of Knowledge
Representation and Reasoning (KR-96), 597?606.
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