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Abstract: The transitions between operational modes (startup/shutdown) in chemical pro-
cesses generate alarm floods and cause critical alarm saturation. We propose in this paper an
approach of alarm management based on a diagnosis process. This diagnosis step relies on
situation recognition to provide to the operators relevant information on the failures inducing
the alarms flows. The situation recognition is based on chronicle recognition where we propose
to use the hybrid causal model of the system and the expertise to generate the pattern event
sequences from which the chronicles will be extracted using the Heuristic Chronicle Discovery
Algorithm Modified HCDAM . An illustrative example in the field of petrochemical plants is
presented in the article.
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1. INTRODUCTION

The petrochemical industries losses have been estimated
at 20 billion dollars only in the U.S. each year, and the
AEM (Abnormal Events Management) has been classified
as a problem that needs to be solved. Hence the alarm
management is one of the aspects of great interest in the
safety planning for the different plants. In the process
state transitions such as startup and shutdown stages, the
alarm flood increases and generates critical conditions in
which the operator does not respond efficiently. A dynamic
alarm management is then required ( Beebe et al. (2013)).
Currently, many fault detection and diagnosis techniques
for multimode processes have been proposed; however,
these techniques cannot indicate fundamental faults in the
basic alarm system, Zhu et al. (2014); in the other hand
the technical report Advance Alarm System Requirements
EPRI (The Electric Power Research Institute) suggests a
cause-consequence and event-based processing. Therefore,
in this paper, a dynamic alarm management strategy is
proposed in order to deal with alarm floods happening
during transitions of chemical processes. This approach
relies on situations recognition (i.e. chronicle recognition).
As, the efficiency of alarm management approaches de-
pends on the operator expertise and process knowledge,
our final objective is to develop a diagnosis approach as
a decision tool for operators. The paper is divided into
5 sections. Section 2 presents the Chronicle based alarm
management proposal. The Section 3 presents the case
study related with an illustrative application in the petro-
chemical sector. Section 4 expresses the formal framework

for this analysis including the hybrid causal model and the
description of the chronicle discovery algorithm. Finally,
the construction of the chronicle database is given in the
section 5.

2. CHRONICLE BASED ALARM MANAGEMENT

The Chronicle Based Alarm Management (CBAM) method-
ology proposed in this paper merges different techniques
to take the hybrid aspect and the standard operational
procedures of the concerned processes into account. These
two features stand out of the literature (Jing et al. (2013),
S. Xu (2014), Srinivasan et al. (2005), Bhagwat et al.
(2003)). Another important aspect is the analysis of the
Dynamic Alarm Management: most of the time the alarm
is assumed to be a static indicator, in our proposal
an alarm is an event with an occurrence date and the
alarm flow is formally modeled by a chronicle (Vasquez
et al. (2015)) as presented in section 4.2. Transposing this
methodology to large-scale systems would benefit from a
decentralized approach in which local chronicles would be
learned and then integrated thanks to shared events. The
main steps of this methodology are:

(1) From the standard operating procedures and from the
evolution of the continuous variables, determine the
set of event types in startup and shutdown stages.

(2) From the expertise and the event abstractions deter-
mine the date of occurrence of each event type to
construct the representative event sequences.



Fig. 1. Hydrostatic Tank Gauging

(3) From the representative event sequences in each sce-
nario, determine the chronicle database using the
algorithm HCDAM (Heuristic Chronicle Discovery
Algorithm Modified).

In a general way, the chronicle learning requires a lot
of representative event sequences of each scenario. In
our case no historical information related to startup or
shutdown stages is available, as these types of scenarios
do not occur frequently. Therefore, it is by simulation that
the representative event sequences of each scenario are
obtained. The different steps of the methodology will be
detailed further in the article and the next section presents
the case study.

3. CASE STUDY - HTG (HYDROSTATIC TANK
GAUGING) SYSTEM

The Cartagena Refinery in Colombia as recently be en-
riched by news units and elements. Our proposal aims
at helping the operator to recognize dangerous conditions
during the startup stage of the refinery with modified
equipments. To start our analyze, we focus on the startup
and shutdown stages in the unit of water injection. This
process is a HTG (Hydrostatic Tank Gauging) system
composed of passive components, active components and
sensors. The passive components are components which
cannot change the operational state, e.g. the tank (TK).
In the other hand, the active components can change
their states of operation by a procedural action, e.g. the
two normally closed valves (V 1 and V 2) and the pump
(Pu). The sensors, correspond to the instrumentation that
measures the continuous variables, e.g. level sensor (LT ),
pressure sensor (PT ), inflow sensor (FT1) and outflow
sensor (FT2), see Fig. 1. The standard operating pro-
cedures give us the standard procedural actions for the
startup and shutdown stages. For the correct execution of
these procedures, the operators must execute the actions
according to the correct evolution of the procedure. The
abnormal situations are detected when the evolution of the
procedural actions and the continuous variables evolution
do not correspond to the standard operating procedure
and wrong event type occurrences, happen. The fluctua-
tions of the inlet flow of the tank, the response time of the
pump that causes the outlet pressure and other conditions
generate uncertain that can be determined by expertise.
because to obtain a complex model which simulate all the

process uncertain requires a lot of time and resources to
build it.

4. FORMAL FRAMEWORK

This section presents the formal framework of the Chroni-
cle Based Alarm Management (CBAM) methodology pro-
posed.

4.1 Hybrid Causal Model

The hybrid system is represented by an extended transi-
tion system, whose discrete states represent the different
modes of operation for which the continuous dynamics are
characterized by a qualitative domain. Formally, a hybrid
causal system is defined as a tuple Pons et al. (2015):

Γ = (ϑ,D, Tr,E,CSD, Init, COMP,DMC) (1)

Where

• ϑ = {vi} is a set of continuous process variables which
are function of time t.

• D is a set of discrete variables. D = Q ∪ K ∪ VQ.
· Q is a set of states qi of the transition system

which represent the system operation modes.
· The set of auxiliary discrete variables K =
{Ki, i = 1, ...nc} represents the system configu-
ration in each mode qi, where Ki indicates the
discrete state of the active components.
· VQ is a set of qualitative variables whose values

are obtained from the behavior of each continuous
variable vi.

• E = Σ ∪ Σc is a finite set of observable (Σo) and
unobservable (Σuo) event types, noted σ, where:
· Σ is the set of event type associated to the

procedural actions in the startup or shutdown
stages.
· Σc is the set of event type associated to the

behavior of the continuous process variables.
• Tr : Q× Σ → Q is the transition function. The

transition from mode qi to mode qj with associated
event σ is noted (qi, σ, qj).

• CSD ⊇
⋃
i CSDi is the Causal System Description

or the causal model used to represent the constraints
underlying the continuous dynamics of the hybrid
system.

Every CSDi associated to a mode qi, is given by
a graph (Gc = ϑ ∪ K, I). I is the set of influences
where there is an edge e(vi, vj) ∈ I from vi ∈ ϑ to
vj ∈ ϑ if the variable vi influences variable vj . A
dynamic continuous model DMCIK is associated to
every influence Ik ∈ I, see Fig. 2. The model of the
active component corresponds to a transfer function
of first order with delay. The set of components is
noted as COMP .

• Init is the initial condition of the hybrid system,

4.2 Chronicle model

Let us consider time as a linearly ordered discrete set
of instants. The occurrence of different events in time
represents the system dynamics and a model can be
determined to diagnose the correct evolution. An event
is defined as a pair (ei, ti), where ei ∈ E is an event



Fig. 2. Dynamic Model of Control DMC

type and ti is a variable of integer type called the event
date. We define E as the set of all event types and a
temporal sequence on E is an ordered set of events denoted
S = 〈(ei, ti)〉j with j ∈ Nl where l is the size of the
temporal sequence S and Nl is a finite set of linearly
ordered time points of cardinal l. l=| S | is the size of
the temporal sequence, i.e. The number of event type
occurrences in S.

Definition 1: A chronicle is defined as a triplet C =
(ξ, T ,G) such that:

• ξ ⊆ E. ξ is called the typology of the chronicle.
• T is the set of temporal constraints of the chronicle.
• G = (V,A) is a directed graph where:

· V represent the event types of ξ
· The arcs A represents the time constraints be-

tween event dates. (Subias et al. (2014))

If the event e1 occurs t time units after e2, then it exists
a directed link A from e1 to e2 associated with a time
constraint. Considering the two events (ei, ti) and (ej , tj),
we define the time interval as the pair τij = [t−, t+],
τij ∈ T corresponding to the lower and upper bounds on
the temporal distance between the two event dates ti and
tj .

The two next sections present what is an event in our
approach and how are defined the events types : we con-
sider two sets of events; those generated by a qualitative
abstraction fo the process continuous behaviour and those
identified form the knowledge of standard operating pro-
cedures.

4.3 Event generation by qualitative abstraction of continuous
behavior

In each mode of operation, variables evolve according to
the corresponding dynamics. This evolution is represented
with qualitative values. The domain D(Vi) of a qualitative
variable Vi ∈ VQ is obtained through the function fqual :
D(vi)→ D(Vi) that maps the continuous values of variable
vi to ranges defined by limit values (High noted Hi and
Low noted Li).

Fig. 3. Automaton GVi

f(vi)qual =


V Hi if vi ≥ Hi

VMi if Li < vi < Hi

V Li if vi ≤ Li
(2)

The behavior of these qualitative variables is represented
in Fig. 3 by the automaton GVi

= (VQ,Σ
c, γ) where

VQ is the set of the possible qualitative states (V Li :
Low, VMi : Medium, V Hi : High) of the continuous
variable vi, Σc is the finite set of events associated to
the transitions and γ : VQ × Σc → VQ is the transition
function. The corresponding event generator is defined by
the abstraction function fVQ→σ

fVQ→σ : VQ × γ(VQ,Σ
c)→ Σc

∀Vi ∈ VQ, (V ni , V mi )→


l+(vi) if V Li → VMi
l−(vi) if VMi → V Li
h+(vi) if VMi → V Hi
h−(vi) if V Hi → VMi

V ni , V
m
i ∈ {V Li , VMi , V Hi }

(3)

Σc =
⋃
vi∈ϑ

{l+(vi), l
−(vi), h

+(vi), h
−(vi)} (4)

4.4 Event identification from procedural action

In the system HTG of the case of study, the set of event
types Σ that represent the procedure actions is:

Σ = {V 1c,o, V 2c,o, Puf−n, V 1o,c, V 2o,c, Pun−f ,M/A}(5)

where V 1c,o (resp. V 2c,o) is for the action that switches the
valve V 1 (resp. V 2) from closed to opened. V 1o,c (V 2o,c)
for the action that switches the valve V 1 (resp. V 2) from
to opened to closed and Puf−n (reap. Pun−f ) for the
action that turns on (reps. off) the pump. The event M/A
corresponds to the transition from manual to automatic
operation, closing the control loops. In the reminder we
assume that this event is the only unobservable event of
the system i.e. M/A ∈ Σuo.

The underlying DES (Discrete event system) of the HTG
system represents the sequence of observable procedure
actions for a startup stage (indicated by the red or green
arrows on Fig. 4) corresponding to the evolution of the
operation modes (i.e q0, q1, q4, q5 and q7). To each oper-
ation mode qi is associated a causal system description
to identify the influences between the variables L,Po and
Qo(V 2) see Fig. 5. These influences allow to determine the
event types Σc occurrence.



Fig. 4. Underlying DES of the HTG system

Fig. 5. CSD in the modes q0, q1, q4, q5, q7

Σc =


l+(L), l

−
(L), h

+
(L), h

−
(L),

l+(Po), l
−
(Po), h

+
(Po), h

−
(Po),

l+(QoV 2)
, l−(QoV 2)

, h+(QoV 2)
, h−(QoV 2)

(6)

4.5 Event sequence generation

The event sequences are generated according to the be-
havior of the system in each scenario. In the remainder, to
simplify the notation, events types are labeled by letters
such as a: V 1c,o, b: V 2c,o, c: Puf−n, d: V 1o,c, f : V 2o,c, g:
Pun−f , h: l+(L), i: h

+
(L), j: l

−
(L), k: h−(L), l: l

+
(Po), m: h+(Po), n:

l−(Po), o: h
−
(Po), p: l

+
(QoV 2)

, q: h+(QoV 2)
, r: l−(QoV 2)

, s: h−(QoV 2)
.

Scenario 1, Normal startup According to the standard
procedural actions, the first event type that must occur is
a: V 1c,o (Open V 1). After this event type occurrence, the
system is in the mode of operation q1 where the variable
L increases and the event type h: l+(L) must occur between

1 and 4 time units after that the valve V 1 is opened,

indicating that the level of the liquid into the tank TK has
passed the limit of low level. Between 1 and 4 time units
after h, the liquid into the tank must arrive to the high
limit of the level and the event type i: h+(L) must occur. At

this time point, the ordered sequence of event types that
has occurred is a, h, i. The high limit of the level into the
tank is the condition for continuing the procedure actions
Open V 2 and Turn ON Pu (b: V 2c,o and c: Puf−n). If
the operator opens the valve V 2 first, the system passes
in the mode of operation q4, but if the pump Pu is turned
ON first, the system passes in q5. The duration between
the occurrences of event types b and c must be of 1
time unit, leaving the system in the mode of operation
q7. At this time point, the ordered sequence of event
types that has occurred must be a, h, i, b, c or a, h, i, c, b.
In the scenario1a: (a, h, i, c, b), the outlet pressure (Po)
of the pump Pu increases first of that the outlet flow
(QoV 2). Then, between 1 and 6 time units after of b, the
pressure Po has passed its limit of low pressure and the
event type l: l+(Po) must occur. The outlet flow after 1

unit time has passed its limit of low flow and the event
type p: l+(QoV 2)

must occur. The high limit of pressure

(m: h+(Po)) occurs between 1 and 6 time units after p and

the high limit of outlet flow occurs 1 time units after m.
In the scenario1b: (a, h, i, b, c), the event type p occurs
between 3 and 4 time units and after c. At 1 time unit
after p, l must occur. After l, the event type q must
occurs between 3 and 4 time units and the event type
m must occur 1 time unit after q. At this time point, the
ordered sequence of event types that has occurred must be
a, h, i, c, b, l, p,m, q or a, h, i, b, c, p, l, q,m. In this situation,
the unobservable event type M/A occurs and the control
loops are closed, carrying the system to a steady state.
We assume that the control loops are closed whereas q
occurs in the scenario1a or m in the scenario1b. Then,
the event type k indicates that the level of liquid in the
tank TK decreases from the high limit of level, between 1
and 4 time units after that the control loops are closed. In
the same way, the outlet pressure and outlet flow decrease
from its high limits (o and s) between 1 and 4 time units
after that k occurs. The time units between s and o must
be 1. When the event types o and s occur, we assume
that the startup stage, finish correctly and the ordered
sequences of event types must be a, h, i, c, b, l, p,m, q, k, o, s
or a, h, i, b, c, p, l, q,m, k, s, o.

For this scenario, we chose the representative event se-
quences (Sp1, Sp2 and Sp3) that represent the extreme
behaviors with all the possible sequence order of event
types.

Sp1 = 〈(a, 6), (h, 7), (i, 8), (c, 9), (b, 10), (l, 11), (p, 12),
(m, 13), (q, 14), (k, 15), (o, 16), (s, 17)〉
Sp2 = 〈(a, 1), (h, 3), (i, 6), (b, 7), (c, 8), (p, 12), (l, 13),
(q, 17), (m, 18), (k, 22), (s, 26), (o, 27)〉
Sp3 = 〈(a, 1), (h, 5), (i, 7), (b, 8), (c, 9), (p, 12), (l, 13),
(q, 16), (m, 17), (k, 21), (s, 24), (o, 25)〉
The simulation of a normal startup is presented in Fig. 6
where we can see the evolution of the variables L in color
blue, Po in color green and Qo(V 2) in color red. This
simulation represents only one possible situation in this
scenario related with the pattern sequence Sp1.



Fig. 6. Simulation of a normal startup

Fig. 7. Simulation of a startup with a failure in V 2

Scenario 2, Abnormal startup This abnormal situation
is related to a failure in the valve V 2. In this scenario
the sequences of event types are the same that the event
sequences of a normal startup, until that is detected that
the outlet flow in the system does not increase. When the
level of liquid in the tank TK arrived to its high limit, the
ordered sequence of event types that has occurred must
be a, h, i, c, b or a, h, i, b, c. In scenario2a : (a, h, i, c, b) the
event type l occurs after 1 time units of b. In scenario2b :
(a, h, i, b, c) the event type l occurs after 2 time units of
c. The event type m occurs between 1 and 2 time units
after l, then the ordered sequences of event types must
be a, h, i, c, b, l,m or a, h, i, b, c, l,m. For this scenario, we
chose the representative event sequences (Sp4, Sp5 and
Sp6) that show the extreme behaviors with all the possible
sequence order of event types.

Sp4 = 〈(a, 6), (h, 7), (i, 8), (c, 9), (b, 10), (l, 11), (m, 12)〉
Sp5 = 〈(a, 1), (h, 3), (i, 6), (b, 7), (c, 8), (l, 10), (m, 12)〉
Sp6 = 〈(a, 1), (h, 3), (i, 7), (b, 8), (c, 9), (l, 11), (m, 13)〉
The simulation of this abnormal startup is presented in
Fig. 7 where we can see the evolution of the variables L in
the color blue and Po in color green. The variable Qo(V 2)
(in red in Fig 6) does not appear because the valve V 2
failed. The limits PAL, PAH and PAHH correspond
to the alarms of low, high and high high pressure. This
simulation represents only one possible situation in this
scenario related with the pattern sequence Sp4.

4.6 Heuristic Chronicle Discovery Algorithm Modified
HCDAM

The chronicle exploration process corresponds in discov-
ering all the chronicles, whose instances occur in a given
temporal sequence of event types. In many cases the same
situation does not implies temporal sequences perfectly
identical. The HCDAM learns the chronicles, whose in-
stances occur in all temporal sequences represented ex-
hibiting the same situation (Subias et al. (2014)). Given
a set of temporal sequences and a minimum frequency
threshold, it finds all minimal frequent chronicles pre-

sented in all temporal sequences. The chronicle learning
algorithm has the following two phases:

(1) It builds a constraint database from a set of the
temporal sequences (S) where it stores for each pair
of event types its temporal constraints in a constraint
graph structure.

(2) It generates a set of candidate chronicles initializing
with a set of chronicles that were proved to be
frequent and it uses the constraint database to explore
the chronicle space.

The base of the chronicles stores for each pair of event
types its temporal constraints in a constraint graph struc-
ture. In this graph, time constraints are nodes of an acyclic
graph whose arcs represent the relationship is parent of .
Which is defined as:

Definition 2: The node ei[t
−, t+]ej is parent of another

ei[t
′−, t′+]ej if, only if [t′−, t′+] ⊂ [t−, t+] and not exist

ei[t
′′−, t′′+]ej such that [t′−, t′+] ⊂ [t′′−, t′′+] ⊂ [t−, t+]

Definition 3: The graph of constraints is defined as the
tuple GC = (ε, τ,Gc) containing time constraints, which
are nodes in an oriented acyclic graph whose arcs represent
the inclusion relations of the constraints. ε ⊆ E with
∀ei ∈ E, ei ≤E ei+1: A finite set of event types is called the
typology of the constraint graph. T = {τ1, τ2, ..., τp} is the
set of time constraints of the chronicle. Gc = (T ,Ac) is a
directed graph whose nodes represent the time constraints
valid for a given frequency and the arcs Ac represent
the relationships is parent of . As this analysis is for
several sequences, only the pairs of event types which are
present in all sequences, are processed. This leads us to
the first stage of the constraint graph construction that it
is the filtering operation. Definition 4: The filtering
operation is a preliminary treatment on sequences and it
can be summarized in two possible actions: 1. Filtering the
event types not present in all sequences S. If ∃Sk ∈ S such
as ∃ei 6∈ Sk, then ei will be removed of all other sequences.
2. Filtering on a given set of event types ε = {ei, ej , ..ek} if
we are interested only those event types during processing.
This option will be useful when we want to learn the
patterns of a subset of event types.

5. CONSTRUCTION OF THE CHRONICLE
DATABASE

An industrial or complex process Pr is composed of
different areas Pr = {Ar1, Ar2, ...Arn} where each area
Ark has different operational modes such as startup,
shutdown, etc. The set of chronicles {Ckij} for each area
Ark is presented in the matrix below, where the rows
represent the operating modes (i.e. O1 : Startup, O2 :
Shutdown, etc) and the columns the normal and abnormal
situations.

CArk =
O1

O2

. . .
Oj

N f1 f2 . . . . . . fn
Ck01 C

k
11 C

k
21 . . . . . . C

k
i1

Ck02 C
k
12 C

k
22 . . . . . . C

k
i2

. . . . . . . . . . . . . . . . . . . . . . . .
Ck0j C

k
1j C

k
2j . . . . . . C

k
ij

 (7)

This chronicle database, is to be submitted to a chronicle
recognition system that identifies in an observable flow of
events all the possible matching with the set of chroni-
cles from which the situation (normal or faulty) can be



Fig. 8. Chronicle C1
01 resulted using the HCDAM in the

normal startup scenario

assessed. In the following subsection are presented two
chronicles (C1

01 and C1
11) of the set of chronicles of the

HTG (Hydrostatic Tank Gauging) system i.e of the area
Ar1 of the whole system. C1

01 is a chronicle describing the
normal star up stage of the HTG and C1

11 is associated to
failure behavior of type f1 during a startup stage.

5.1 Using HCDAM

We present two chronicles (C1
01 and C1

11) of the set of
chronicles of the HTG (Hydrostatic Tank Gauging) system
i.e of the area Ar1 of the whole system. C1

01 is a chronicle
describing the normal start up stage of the HTG and C1

11
is associated to failure behavior of type f1 during a startup
stage.

Scenario 1, Normal startup: The chronicle C1
01 that

resulted using the algorithm HCDAM is presented in
Fig. 8. The pattern event sequences used are the Sp1, Sp2
and Sp3 generated in section IV.

Scenario 2, Abnormal startup: The chronicle C1
11 that

resulted using the algorithm HCDAM is presented in
Fig. 9. The representative event sequences used are the
Sp4, Sp5 and Sp6 generated in section IV. Similar to
the language theory, in the chronicles the alphabet cor-
responds to E. The timed language LT (ξ, T ) of each
chronicle C will be referenced in the strings w that can
be generated according to the typology of the chronicle
and the concatenation of the elements in the strings will
be restricted by the set of temporal constraints T .

6. CONCLUSION

A preliminary method for alarm management based on a
diagnosis process has been proposed. The proposal is based
on a hybrid causal model of the system and a chronicle
based approach for diagnosis. An illustrative example of
an hydrostatic tank gauging has been considered to intro-
duce the main concepts of the approach. The algorithm
HCDAM is a tool for the automatic generation of the
chronicles from representative event sequences. Transpos-
ing this methodology to large-scale systems would benefit
from a decentralized approach in which local chronicles

Fig. 9. Chronicle C1
11 resulted using the HCDAM in the

abnormal startup scenario

would be learned and then integrated thanks to shared
events.
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