
HAL Id: hal-01847561
https://laas.hal.science/hal-01847561

Submitted on 23 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Learning Algorithm for Episodes
Tom Obry, Audine Subias, Louise Travé-Massuyès

To cite this version:
Tom Obry, Audine Subias, Louise Travé-Massuyès. A Learning Algorithm for Episodes. 28th Inter-
national Workshop on Principles of Diagnosis (DX 2017), Sep 2017, Brescia, Italy. 5p. �hal-01847561�

https://laas.hal.science/hal-01847561
https://hal.archives-ouvertes.fr

A Learning Algorithm for Episodes

Tom Obry1,2 and Audine Subias1 and Louise Travé-Massuyès1
1LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

2ACTIA, 5 Rue Jorge Semprun, 31432 Toulouse

Abstract
Sequences of events describing the behavior and
actions of agents or systems can be collected in
several domains. An episode is a collection of
events that occur in a given partial order. By
performing a recognition of recurrent episodes in
several sequences and comparing them, it is pos-
sible to determine a pattern common to all the se-
quences. In this paper, we propose an approach
to recognize episodes that are common in a set of
event sequences. The method described is applied
to the automotive domain for learning diagnosis
procedures.

1 Introduction
In the automotive domain, as vehicles become increasingly
complex, it becomes difficult to efficiently train garage me-
chanics in front of the ever growing technology. Faults
become more and more difficult to diagnose and training
courses multiply to manage new failures. The purpose of
this work is to improve the daily work of garage mechan-
ics by providing them with assistance in the diagnosis and
repair tasks.

A diagnosis session corresponds to a set of tests and
actions performed by the mechanics via a diagnostic tool
performed on a vehicle with a breakdown. Each diagno-
sis session performed is saved in the form of a trace. The
goal is to compare all of these diagnosis traces correspond-
ing to the same symptoms to extract the common actions.
The aim of this work is to determine the most common ac-
tion plan that successfully diagnoses a breakdown or that
carries out a repair. We propose an approach based dis-
covery and learning patterns [1] [2]. It is inspired by [3]
[4] that proposes an algorithm to learn chronicles. Chron-
icles are temporal patterns based on a set of events and
temporal constraints relating their occurence dates. They
are used to represent the dynamic behavior of complex
systems in an event-based fashion and have found several
applications in the supervision and diagnostic field [5; 3;
6]. In our case, the occurence dates are not recorded in the
traces that are given as input sequences for the learning algo-
rithm. The reason is that actions performed by the mechan-
ics are not constrained over time. This is why we turned
to a particular type of chronicles called "episodes" [7] [8].
Episodes just specify the precedence order of events.
This paper is organized as followed. Section 2 introduces
the notion of episode. In the section 3, a new algorithm to

learn episodes (LAE) is described. Section 4 presents the
test and results. Section 5 presents a standard algorithm
for episode learning and a comparison with the new algo-
rithm. Finally, section 6 concludes with the perspectives of
this work. 1

2 Basic concepts
We consider the input as a sequence of events, where each
event has an associated date of occurrence. Given a set E
of event types, an event is a pair (ei, ti), where ei ∈ E is
an event type and t is an integer, the (occurrence) date of
the event.

Definition 1. An event sequence s on E is a triple (s, Ts,
Te)

s =< (e1, t1), (e2, t2), ..., (en, tn) > (1)

is an ordered sequence of events such that ei ∈ E for all
i = 1, ..., n, and ti ≤ ti+1 for all i = 1, ..., n − 1. Further
on, Ts and Te are integers: Ts is called the starting time and
Te the ending time, and Ts ≤ ti ≤ Te for all i = 1, ..., n
[7].

Episodes are defined as a collection of events that occur
frequently in a sequence. An episode is a set of partially or
totally ordered event types [7].

Definition 2. An episode ψ = (V,≤, g) is a set of nodes V ,
an ordered partial≤ on V and a mapping g : V →E which
associates a node with an event type.

The interpretation of an episode means that the events of
g(V) must appear in the order described by ≤.
The difference with chronicles is at the level of the temporal
bounds: the intervals in episodes are not bounded. This
makes it possible to consider only the notion of precedence
between the events: tj − ti ∈ [0,+∞] or tj − ti ∈ [−∞, 0].

Definition 3. An episode β = (V
′
,≤′

, g
′
) is a sub-episode

of α = (V,≤, g), denoted β ≤ α if there exists an injective
mapping f : V

′ → V such that g
′
(v) = g(f(v)) for all v ∈

V
′

and for all v, w ∈ V ′
with v ≤′

w also f(v) ≤ g(w).
An episode α is a super-episode of β if and only if β ≤

α. There are two classes of episodes: serial episodes and
parallel episodes.

1This work has been supported by the company ACTIA, one of
the market leaders for diagnostic tools in the automobile domain.

Definition 4. An episode α is serial if the relation ≤ is a
total order (i.e., x ≤ y or y ≤ x for all x, y ∈ V). If the
partial order ≤ is trivial (i.e., x � y for all x, y ∈ V such
that x 6= y), the episode is parallel [9].

Figure 1: Example of a serial episode and a parallel episode

Figure 1 shows two examples of episodes. The episode on
the left is a serial episode because the order is total between
A, B and C. The other episode is parallel. Indeed, there
is no constraint on the partial order on the event types A,
B or C [7]. Episodes issued from the diagnostic tool traces
are parallel episodes because the order between the event
types is not total. This means that the order of the actions
for diagnose a vehicle is not total.

3 Learning Algorithm for Episodes (LAE)
We present in this section, a new algorithm which can
compute a set of parallel episodes from a set of input
sequences. The solution includes events that are common to
all input sequences. We detail the different steps that make
up the algorithm. For a better comprehension of the steps,
we use 3 sequences, s1 ∈ S, s2 ∈ S and s3 ∈ S (where S
is the set of the input sequences):

s1 =< (A, 1), (B, 2), (C, 3), (D, 4), (A, 5) > (2)

s2 =< (A, 1), (B, 2), (C, 3), (D, 4), (E, 5), (A, 6) > (3)

s3 =< (B, 1), (C, 2), (A, 3), (D, 4), (A, 5), (E, 6) > (4)

The sequences are stored in a table. Each cell contains 2
other cells, where the first contains the event types and the
second, the dates of occurrence.

3.1 Searching for common events
The first step consists in sorting the events that are common
and those that are not. Common events are searched in the
input sequences then, sequences of entries are modified
to keep only the common events. In this context, events
are different screens used during the diagnosis session.
Experienced mechanics receive training on how to diagnose
a vehicle. They know how to use the diagnosis tool and
which screens to navigate. The events that are not in all
input sequences are considered as beginner mechanic’s
actions.

A B C D

Table 1: List Com of common events in s1, s2 et s3
Table 1 represents all the common event types located in S.
Here, the common event types are A, B, C and D. Since
event E is not present in all the sequences, it is not present
in the list Com.

With these common events, events that are not in the ini-
tial sequences are removed. The kth event ek of the ith se-
quence si is compared with the jth event ej of the collection
of common events Com[j]. When the two events compared
are identical, the algorithm indexes the event in the first cell
and the date of occurrence in the second cell on si.

s1 s2 s3
ABCDA 12345 ABCDA 12346 BCADA 12345

Table 2: s1, s2 et s3 with only common events

Table 2 summarizes, for each sequence, the event types that
are common in all sequences and their occurrence positions
in the sequence. All the events located in s1 are in Com[1]
because they are present in all the sequences. The event type
E is not present in the s2 and s3 because E is not present in
all the sequences.

3.2 Computing the number of occurrences of an
event type in n sequences and computing the
pairs of events

In this step, the number of occurrences of each event type
is found in the n input sequences. These information are
stored in a table called Set. It is composed of k columns
and i rows, where k corresponds to the event type and i, the
input sequence number. Each cell is composed of 2 more
cells. The first contains the frequency of ek located in the ith
sequence. The second cell contains a vector of "0" and "1".
"1" indicates the position of the event ek in the sequence i.

A B C D
2 [100010] 1 [010000] 1 [001000] 1 [000100]
2 [100001] 1 [010000] 1 [001000] 1 [000100]
2 [001010] 1 [100000] 1 [010000] 1 [000100]

Table 3: Synthesis of the information in Set

Table 3 shows the event types common in Set, their occur-
rence positions for each sequence and the position of each
event in each sequence.
To determine the maximal frequency of each event, noted
Freq(ek), the minimal number of occurrences of each
event, notedmin(Occ(ek)), for each sequence s is required.

Freq(ek) = min(Occ(ek) ∈ s, s ∈ S, ∀s) (5)

Each frequency is stored in a table Freq, under the format
(ek, Freq(ek)).

A B C D
2 1 1 1

Table 4: Maximal frequencies in the table Freq of each
event types in s1, s2, s3
In the table 4, we can see the maximal frequency of each
common event type. In this example, this information
equals 2 for the event A and 1 for the others event types.
To calculate the pairs available in each sequence, all
combinaisons of Freq[i] with Freq[j] must be performed.

AB AC AD BC BD CD
2 2 2 1 1 1

Table 5: Set of pairs available in sequences s1, s2, s3

All the pairs and their maximal frequencies in S are pre-
sented in the table 5. In this case, the maximal frequency for
pairs (A,B), (A,C) and (A,D) is 2 and for pairs (B,C),
(B,D) and (C,D), the value of the maximal frequency is
1.

3.3 Determination of the direction of the pairs
We are going to explain, for each pair of event types, a re-
lation of unique precedence, that is to say present on the
n input sequences. In other words, it is a matter of deter-
mining the direction of a pair of events. Let’s take our 3
examples:

s1 =< (A, 1), (B, 2), (C, 3), (D, 4), (A, 5) > (6)

s2 =< (A, 1), (B, 2), (C, 3), (D, 4), (E, 5), (A, 6) > (7)

s3 =< (B, 1), (C, 2), (A, 3), (D, 4), (A, 5), (E, 6) > (8)

For the pair (A,B), A is before and after B in s1 and s2.
The label "↔" is allocated to the pair (A,B) to indicate that
the pair (A,B) can occur in any order, i.e. A can precede
B or B can precede A. For example, the pair A↔ B means
it is possible to go to the event B from A and return to the
event A. Pairs (B,C), (B,D) and (C,D) keep always the
same direction in all sequences. The label is given for those
two pairs of events "→" because C always follows B, D is
always afterB andD always occurs afterC. To summarize,
the label "→" can only be assigned if A is followed by B in
all the sequences (conversely, "←" for B is followed by A
in the all the sequences). The label "↔" is assigned to a
pair:

• if there is a label "→" and a label "←" in at least one
sequence. It indicates that both directions are possible.

• if the two directions are possible in the same sequence.

The table Set is organized by events in columns indexed k.
Every event ek gives rise to a macro-column with two sub-
columns indexed k1 and k2. The lines indexed i correspond
to the input sequences. The vectors of "0" and "1", located
in the table Set are studied because they contain the occur-
rence positions of the events. Set(i, k1) provides the num-
ber of occurence of the event of column k in the sequence i
and Set(i, k2) is the vector from which we can retrieve the
event position in the sequence. From this information, we
can obtain the direction of every pair in every sequence. To
save the direction of the pairs, the variable Inter is defined
and can take several values:

• Interi(k, l) =+1 if el follows ek in the ith sequence,

• Interi(k, l) =-1 if ek follows el in the ith sequence,

• Interi(k, l) = 0 if ek precedes and follows el in the ith
sequence.

To find the direction of the pairs in the n sequences, we
proceed as follows:

• if
∑n
i=1 Interi(k, l) = n, the label assigned to the pair

(ek, el) is "→",

• if
∑n
i=1 Interi(k, l) = −n, the label assigned to the

pair (ek, el) is "→",

• otherwise, the label assigned to the pair (ek, el) is "↔".

3.4 Test of consecutivity
We aim to reduce the set of solutions by adding the notion
of consecutiveness. If two events are always consecutive on
the n sequences (i.e there is no other event between them)
then we can say that the pair is consecutive. In this case,
a "No_Event" constraint between the two events is set [4].
The vectors of the occurrence positions Set(i, k2) of the
first pair events ek and el are studied. When the first "1" of
the ek vector is detected, the value of the following column
of the vector of the event el is studied: if it is a "1", then the
pair studied is consecutive at least once in one sequence and
the algorithm continues the test with the other sequences and
with the others pairs. When all pairs are calculated, they are
assembled to be interpreted with a contraints graph. A con-
traints graph represents the result with a graphic way. Each
node represents an event and the index next to the event in-
dicates the maximal frequency of each event. The arc cor-
responds of the no bounded time contraints. A dashed line
represent the specific relation "No_Event" between a pair of
events. Arrows on the arcs model the direction of each pair.

Figure 2: Constraints graph of the 3 test sequences

Figure 2 represents the constraints graph of the 3 tests
sequences. We can remark that we have 2 occurrences of
the event type A and 1 occurence for the event types B,
C and D, 3 pairs with a double direction ((A,B), (A,C),
(A,D)), 3 pairs with an unique direction ((B,C), (B,D),
(C,D)). The pair (B,C) have an dashed arrow to represent
the label "No_Event" because it is consecutive on the 3 input
sequences.

4 Tests and results
We applied the LAE algorithm with the ACTIA’s traces. The
actual traces were not available during the tests, they were
simulated on a diagnostic tool. The diagnostic tool allows
the mechanic to carry out his tests and measurements on the
vehicle in real time. The mechanic selects actions displayed
on the screen. The tool works by changing screens. The
users can interact via the tool to test the various functions of
the vehicle.

Figure 3: Overview of the context

The figure 3 explains the architecture of the context. The
mechanic tests the vehicle using the diagnostic tool. The
tool provides a trace summing all the actions the garage
owner did in the diagnosis session. The LAE algorithm uses
all the diagnosis traces corresponding to common symp-
toms. They are compared to provide the common approach
to all entries in the form of parallel episodes. For a good
precision, we went into 4 different garages to ask owners
the procedures to follow to diagnose a failure with a com-
mon symptom.

Figure 4: Extract of an Actia’s sequence

The extract from figure 4 represents the beginning of a
simulated trace on the diagnostic tool. The first accessible
screen offers a choice on the brand of the vehicle to be di-
agnosed, "Peugeot" or "Citröen". This example was car-
ried out on a vehicle "Citröen" and the model was a "C4
Picasso". The first line corresponds to the selection of the
"Citröen" button of the diagnostic tool. A change of screen
displays a list of vehicles of the mark to be selected. The
second line indicates that the mechanic was on the "Cit-
röen" vehicle selection menu and the third line shows he se-
lected the "C4PB78" button, which corresponds to the "C4
Picasso" model, etc. The simulated sequences have an aver-
age of 65 events and there are 4. The result consists of 78
pairs including 13 elements in common. Note that in this
case of study, two actions (i.e. events) without preference of
order cannot be done sequentially in one or the other order
equivalently. The generated result should be filtered to take
this feature into account. The algorithm is able to consume
traces of ACTIA and generate a satisfactory result from a
temporal and qualitative point of view. The execution time
is 0.7 seconds with ACTIA traces. The tests were carried
out on an ASUS PC, under windows 7 with an Inter Core
i7 processor - 2670QM, 2.2GHz, 6GB of RAM. The work
carried out is considered as a proof of concept. Neverthe-
less, this work need to be continued by a deeper analysis of
the results. Indeed, the constraints graph represents the raw
episode of the n input sequences. As the result was not con-
fronted with the mechanics, the pertinence of the episode
was not evaluated.

5 A standard algorithm for episode learning
5.1 Presentation of the algorithm
In this section, we present an existing algorithm that allows
learning episodes in n sequences [7]. This algorithm allows
to extract the different serial episodes and parallel episodes
that are located in a sequence s. The sequences provided by
the diagnostic tool being parallel, we only present the part
dealing with this type of episodes.
The algorithm recognizes parallel episodes in a sequence s.
This step creates the database that contains all the episodes
of the s sequence. The algorithm uses two windows w =

(w, ts, ts +win) et w
′
= (w

′
, ts + 1, ts +win+ 1) where

w and w
′

are the sequences contained mutually in w and
w

′
, ts is the starting time of the window and win is the di-

mension of a window such that width(w) = win [7]. The
sequences contained in w et w

′
will therefore be similar.

After the recognition of the episode in w, an update of the
data structure is performed to get the window to move to
the w

′
episode in the same sequence s. The recognition

of a candidate parallel episode α is done with a counter
α.event_count. This counter indicates how much events
of α are present in the window. When α.event_count is
equal to the length of α, the totality of α is present in the
window. α.freq_count is incremented by 1. That counter
represents the number of windows where α is contained en-
tirely. Candidates episodes are indexed by the number of
events of each type they contain. All episodes that contain
a type A events will be in the contain(A, a).

An episode α is stored in a table of events sorted alpha-
betically. Each event of α is indexed between brackets. For
example, an episode β with events types B, D, D, E is rep-
resented by a table β with β[1] = B, β[2] = D, β[3] = D,
β[4] = E. Collections of episodes are sorted alphabetically
in a table F , where the ith episode of the collection is rep-
resented by F [i]. All the episodes that share the first event
type are consecutive in the episode collection. A maximum
sequence of consecutive episodes of size l, sharing the l− 1
first events is called a block. Candidate episodes are iden-
tified by creating all possible combinations of two episodes
of the same block [7].

The collection of frequent episodes is a list featuring
episodes that most frequently appear in the n sequences.
The algorithm computes the collection of frequent episodes
that make up the sequence s from the ε class of paral-
lel episodes. The search is done by levels of length l on
episodes α in the episode class following the sub-episode re-
lationship. The search begins with the most general episode
(one containing only one event). At each level, the algo-
rithm calculates the collection of episodes and their frequen-
cies.

The frequency of an episode is defined as the ration be-
tween the number of the window where the episode α ap-
pear entirely and the total window number. With a sequence
of events s, a window of dimension win, the frequency of
an episode α in s is:

fr(α, s, win) =
|{w ∈ W (s, win)|α ∈ w}|

|W (s, win)|
(9)

where s is the number of windows is the α episode is
fully included, W is the set of all windows w on s. For
a defined threshold frequency thres_fr, α is frequent if

fr(α, s, win) ≥ min_fr.
A rule for predicting frequent episodes that respect s, win,
et min_fr is denoted F (s, win,min_fr). A prediction
rule is a β ⇒ γ expression where β and γ are episodes such
as β ≤ γ. The ratio fr(γ,s,win)

fr(β,s,win) is called the confidence
of the episode prediction rule. This confidence can be inter-
preted as a conditional probability that the entire γ is present
in the window, with a given β.

5.2 Comparaison of LAE and the standard
algorithm

In this section, we compare the algorithm LAE presented in
section 3 to the standard algorithm of [7] presented in sec-
tion 5.1. The first step of the standard algorithm is to find all
candidate episodes of the n sequences. Once all the episodes
are found, they are stored and classed alphabetically in order
to start creating all possible combinations of two episodes
of the same block. Once the candidate episodes are gen-
erated, they are stored in the F (s, win,min_fr) episode
collection. The prediction and confidence rules are then de-
duced from the previous result. The LAE algorithm pro-
ceeds quite differently: it begins by looking for events that
are not in common in the n sequences and then it removes
them from the sequences to keep only the common events. It
determines the maximum occurrence number of each event,
which allows us to easily find the maximum frequency of
each pair of events on the n sequences.

The difference with the standard algorithm is that it finds
the episodes in the form of a constraint graph describing all
the possible episodes. The standard algorithm makes it pos-
sible to obtain an episode table directly.
The algorithms have their differences, however: with the
F (s, win,min_fr) event collection, it is possible to pre-
dict or anticipate the behavior of the sequence in its integrity.
The algorithm thus provides a set of episodes as well as their
prediction rules.
On the other hand, the LAE algorithm provides important
information thanks to the consecutive test. It makes it pos-
sible to express the fact that there can be no intermediate
events between the two events of a pair on the n sequences
of inputs. An intermediate event is an event of a different
type than those defined in the pair.
The comparison with the Mannila algorithm will be pursued
when we’ll have a larger set of data. Then, real tests and fur-
ther analysis could be done.

6 Toward the Ph.D work
The thesis is the continuation of the presented work. The
Ph.D is a collaboration with the ACTIA company which de-
veloped a software named ACTI-DIAG destined to mechan-
ics. It allows to dialogue with the set of calculators (airbag,
injectors, ...) of a vehicle and to pick up all the available in-
formation inside the car. These information can then be ex-
ploited in conjunction with information from the manufac-
turer or independent actors to finally allow the mechanic to
locate the component to be replaced. In the field of automo-
tive diagnostics, the number of identical vehicles circulat-
ing makes it possible to capitalize a great amount of knowl-
edge. This capitalization then makes it possible to repair a
vehicle more quickly by taking advantage of the experience
gained on similar vehicles having already encountered the
same problem. Currently, the information collected on the
vehicle are:

• The type of the vehicle.

• The set of calculators et their actual software version.

• The set of default codes (also called Data Trouble
Code) on calculators with the occurrence time.

• The context (values of parameters judged relevant).

• etc...

The objectives of the thesis is to analyze (semi-) automati-
cally this set of data to reduce the updating time of the di-
agnosis and repair methods by the manufacturer, but also to
reduce the time of the diagnosis and repair stages when a
vehicle is in a workshop. This reduction can be addressed
by:

• An update of existant knowledges (the list of possible
causes for a given symptom, the probability of each
fault occurrences about a vehicle, ...).

• A ranking of knowledges proposed to the mechanic
(most probable hypothesis related to a symptom, the
"incident" files having most often completed, ...).

• The creation of a new incident file about the most re-
current fails in the network.

• Optimize existing diagnosis procedures to minimize
their journey time by taking into account the time re-
quired to complete each of their tests and the probabil-
ity of occurrence of each fault.

• The learning of new diagnosis procedures by using col-
lected data (actual DTCs, the context of the raise of
DTCs, ...) in order to distinguish different possible
faults for a or several given symptoms.

ACTIA is setting a network of 50 workshops for collecting
data from different diagnosis with the symptoms and causes
labels. This operation will allow to do real tests and com-
parisons with standard algorithms. The deployment of this
network is planned for the end of November. Until that time,
the study is performed without the label information. In first
step, for a given ECU (Electronic Control Unit), the goal is
to find co-occurrence of DTCs on vehicles. As DTC are
discrete data (for example, P318D is the DTC for a com-
munication error for the Nissan Leaf model), learning al-
gorithms like clustering with non-ordered discrete data [10]
and k-Nearest Neighbor Searching in non-ordered discrete
data space [11] are investigated.

7 Conclusion and perspectives
The work presented in this paper is part of a learning process
for generic automotive diagnostics. The objective is to auto-
matically generate a model of the diagnosis procedures used
by mechanics to diagnose a given fault. This is performed
from a set of action sequences carried out during several
diagnosis sessions referring to the fault. Since the traces
recorded by the diagnostic tool of our case study are time-
less, we have directed ourselves to the development of our
own learning algorithm: Learning Algorithm for Episodes.
This algorithm allows to learn temporal patterns where time
information is captured only through the notion of prece-
dence. The tests carried out made it possible to validate the
first version of the algorithm presented in the paper.

This work has reinforced the interest of automatic learn-
ing to exploit the feedback from the diagnosis sessions. Sev-
eral perspectives have been identified. First, it is necessary

to test the algorithm with a larger volume of input data and
to evaluate its efficiency. Also, the consecutive test need
consolidation. From an application point of view, the idea
is to use the results of LAE to improve the training tools of
garage mechanics. As the complexity of vehicles increases,
paper is not suffisant anymore. Our industrial partner (AC-
TIA) develops a Serious Game to facilitate the learning of
new methods of diagnosis and repair. A Serious Game is
a software that combines a serious intention with playful
springs. Episodes provided by LAE can be turned into train-
ing scenarios for the Serious Game for the diagnosis and re-
pair tasks.
The problem of knowledge capitalization addressed in this
work is a real challenge for ACTIA company. The collab-
oration with ACTIA on this research area is going in the
context of a Ph.D.

Acknowledgements
We would like to thank our contacts in the company ACTIA
for their valuable comments and recommendations.

References
[1] R. Agrawal and R. Srikant. Fast algorithms for min-

ing association rules. Proc. 20th Int. Conf. on Very
Large Data Bases, Santiago, Chile, pages 487–499,
Jan 1994.

[2] Mitsa and Theophano. Temporal data mining. CRC
Press, 2010.

[3] A. Subias, L. Travé-Massuyès, and E. Le Corronc.
Learning chronicles signing multiple scenario in-
stances. In The 19th World Congress - The Interna-
tional Federation of Automatic Control, Cape Town,
South Africa, August, 24-29 2014.

[4] Discovering chronicles with numerical time con-
straints from alarm logs for monitoring dynamic sys-
tems, July 21-26 1999.

[5] C. Dousson, P. Goborit, and M. Ghallab. Situation
recognition : representation and algorithms. In IJ-
CAI : International Joint Conference on Artificial In-
telligence, pages 166–172, Chambéry, France, August
1993.

[6] D. Cram, B. Mathern, and A. Mile. A complete chron-
icles discovery approach : application to activity anal-
ysis. Expert Systems, 29(4):321–346, 2012.

[7] A.Inkeri Verkalo, H. Mannila, and H. Toivonen.
Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1(3):259–
289, September 1997.

[8] K. Amphawan, J. Soulas, and P. Lenca. Mining top-k
regular episodes from sensor streams. In 7th Interna-
tional Conference on Advances in Information Tech-
nology, pages 76–85, 2015.

[9] H. Mannila and H. Toivonen. Discovering generalized
episodes using minimal occurrences. In KDD-96 Pro-
ceedings, 1996.

[10] A. Watve, S. Pramanik, S. Jung, B. Jo, S. Kumar, and
S. Sural. Clustering non-ordered discrete data. Jour-
nal of Information Science And Engineering, 30:1–23,
2014.

[11] D. Kolbe, Q. Zhu, and S. Pramanik. On k-nearest
neighbor searching in non-ordered discret data spaces.
In IEEE 23rd International Conference of Data Engi-
neering, Istanbul, Turkey, April 2007. IEEE.

