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When applying non-supervised clustering, the concepts discovered by the clustering algorithm hardly match business concepts. Hierarchical clustering then proves to be a useful tool to exhibit sets of clusters according to a hierarchy. Data can be analyzed in layers and the user has a full spectrum of clusterings to which he can give meaning. This paper presents a new hierarchical densitybased algorithm that advantageously works from compacted data. The algorithm is applied to the monitoring of a process benchmark, illustrating its value in identifying different types of situations, from normal to highly critical.

Introduction

In data-based diagnosis applications, it is often the case that huge amounts of data are available but the data is not labelled with the corresponding operating mode, normal or faulty. Clustering algorithms, known as non-supervised classification methods, can then be used to form clusters that supposedly gather data corresponding to the same operating mode.

Clustering is a Machine Learning technique used to group data points according to some similarity criterion. Given a set of data points, a clustering algorithm is used to classify each data point into a specific group. Data points that are in the same group have similar features, while data points in different groups have highly dissimilar features. Among well-known clustering algorithms, we can mention K-Means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], PAM [START_REF] Kaufman | Clustering by means of medoids[END_REF], K-Modes [START_REF] Huang | Extensions to the k-means algorithm for clustering large data sets with categorical values[END_REF], DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF].

Numerous validity indexes have been proposed to evaluate clusterings [START_REF] Halkidi | On clustering validation techniques[END_REF]. These are generally based on two fundamental concepts :

• compactness, the members of each cluster should be as close to each other as possible. A common measure of compactness is the variance, which should be minimized.

• separation, the clusters themselves should be widely spaced.

Nevertheless, one must admit that the concepts discovered by even the most scored clusterings hardly match business concepts [START_REF] Arbelaitz | An extensive comparative study of cluster validity indices[END_REF] [START_REF] Liu | Understanding of internal clustering validation measures[END_REF]. One of the reasons is that data bases are often incomplete in the sense that they do not include the data about all the influencial attributes. In particular, business concepts are highly sensitive to environmental parameters that fall outside the scope of the considered business domain and that are not recorded, for instance stock exchange. In addition, the clusters corresponding to business concepts may be quite "close" in the data space and the only way to capture them would be to guess the right number of clusters to initialize correctly the clustering algorithm. This is obviously quite hard. Hierarchical clustering then proves to be a useful tool because it exhibits sets of clusters according to a hierarchy and it modulates the number of clusters. Data can then be analyzed in layers, with a different number of clusters at each level, and the user has a full spectrum of clusterings to which he can give meaning. Hierarchical clustering identifies the clusters present in a dataset according to a hierarchy [START_REF] Stephen | Hierarchical clustering schemes[END_REF][9] [START_REF] Defays | An efficient algorithm for a complete link method[END_REF]. There are two strategies to form clusters, the agglomerative ("bottom up") strategy where each observation starts in its own cluster and pairs of clusters are merged as one moves up the hierarchy. The divise method ("top down") where all observations start in one cluster and splits are performed recursively as one moves down the hierarchy. The results of hierarchical clustering are usually presented in a dendrogram. A dendrogram is a tree diagram frequently used to illustrate the arrangement of the clusters. In order to decide which clusters should be combined or where a cluster should be split, a measure of dissimilarity between sets of observations is required. In most methods of hierarchical clustering, splits or merges of clusters are achieved by use of an appropriate metric like euclidean, manhattan or maximum distance.

Few algorithms propose a density-based hierarchical clustering approach like ↵-unchaining single linkage [START_REF] Martínez-Pérez | A density-sensitive hierarchical clustering method[END_REF] or HDBSCAN [START_REF] Campello | Density-based clustering based on hierarchical density estimates[END_REF]. In this paper, we present a new hierarchical clustering algorithm, named HDyclee, based on density that advantageously works from compacted data in the form hypercubes. This contribution is an extension of the clustering algorithm DyClee [START_REF] Barbosa | A novel algorithm for dynamic clustering: Properties and performance[END_REF], [START_REF] Barbosa | A data-based approach for dynamic classification of functional scenarios oriented to industrial process plants[END_REF], [START_REF] Barbosa | A data-based dynamic classification technique: A two-stage density approach[END_REF]. The purpose of this work is to generate a flat partition of clusters with a hypercube's density level higher or equal to a threshold and to be able to visualize all existant clusters in the dataset with a dendogram by varying the density of the hypercubes present in a group. The value of the algorithm in a diagnosis context is illustrated with the monitoring of a Continuous Stirred Tank Heater benchmark, for which it allows the user to identify different types of situations, from normal to highly critical. This paper is organized as follows. In section 2 the Dy-Clee algorithm is presented. In section 3 the concepts and principles underlying Dyclee, like the definition of micro clusters µC, dynamic clusters and the KD-Tree structure, are explained. In the section 4, the hierarchical clustering based-density algorithm is presented. Tests and results are detailed in section 5. The conclusion and perspective for future work end this paper in section 6. 12 Dyclee: a dynamic clustering algorithm DyClee is a dynamic clustering algorithm which is able to deal with large amounts of data arriving at fast rates by adopting a two stages strategy similar to [START_REF] Charu C Aggarwal | A framework for clustering evolving data streams[END_REF], [START_REF] Kranen | The ClusTree: indexing micro-clusters for any stream mining[END_REF], [START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF]. The first stage is a fast scale distance-based algorithm that collects, pre-processes and compresses data samples to form so-called micro-clusters (µ-clusters). It operates at the rate of the data stream and creates µ-clusters putting together data samples that are close, in the sense of a given distance, to each other. µ-clusters are stored in the form of summarized representations including statistical and temporal information. The second stage is a slower scale density-based algorithm that groups the µ-clusters into actual clusters that can be interpreted semantically as classes. It takes place once each t slow seconds and analyses the distribution of µ-clusters. The density of a µ-cluster is considered as low, medium or high and is used to create the final clusters by a density based approach, i.e. dense µ-clusters that are close enough (connected) are said to belong to the same cluster. Similarly to [START_REF] Chen | Density-based clustering for real-time stream data[END_REF], a cluster is defined as the group of connected µ-clusters where every inside µ-cluster presents high density and every outside µ-cluster exhibits either medium or low density. The above dense µ-cluster structure allows the algorithm to create clusters of non convex shapes even in high dimensional spaces and it has proved outliers rejection capabilities in evolving environments [START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF]. In addition, µclusters of similar densities can form clusters of any shape and any size. In DyClee, both stages work on-line, but operate at different time scales. This multi-density feature allows the detection of novelty behavior in its early stages when only a few objects giving evidence of this evolution are present. Figure 1 gives the global description of DyClee.

Main principles of DyClee

All the principles explained in this section are from the core algorithm.

Notion of micro-clusters µC

Considering a d-dimensional object X = [x 1 , ..., x d ] marked with a timestamp t X and qualified by d features, a µ-cluster gathers a group of data samples close in all dimensions and whose information is summarized in a characteristic feature vector (CF). For a µ-cluster µC k , CF has the following form:

CF k = (n k , LS k , SS k , t lk , t sk , D k , Class k ) . (1)
where n k 2 < is the number of objects in the µ-cluster k, LS k 2 < d is the vector containing the linear sum of each feature over the n k objects, SS k 2 < d is the square sum of features over the n k objects, t lk 2 < is the time when the last object was assigned to that µ-cluster, t sk 2 < is the time when the µ-cluster was created, D k is the µ-cluster density and Class k is the µ-cluster label if known. Using LS k , SS k and n k the variance of the group of objects assigned to the µ-cluster k can be calculated.

The µ-cluster is shaped as a d-dimensional box since the L1-norm is used as distance measure. The distance between an object X = [x 1 , ..., x d ] T and a µ-cluster µC k , named as dis(X, µC k ), is calculated as the sum of the distances between the µC

k vector center c k = [c 1 k , . . . , c d k ]
T and the object value for each feature as shown in equation ( 2):

dis(X, µC k ) = L 1 (X, c k ) = d X i=1 x i c i k . ( 2 
)
The data is normalized according to the data context, i.e. the feature range [min i , max i ] of each feature i, i = 1, ..., d. If no context is available in advance, it may be established online. The size of the hyperboxes S i along each dimension i is set as a fraction of the corresponding feature range. The hyperbox size per feature is hence found according to [START_REF] Huang | Extensions to the k-means algorithm for clustering large data sets with categorical values[END_REF], where i is a user constant parameter in the interval (0, 1), establishing the fraction:

S i = i |max i min i |, 8i = 1, . . . , d. (3) 
Whenever an object X arrives, the algorithm searches for the closest µ-cluster. Once found, a maximal distance criterion is evaluated to decide whether or not the object fits inside the µ-cluster hyper-box. If the fitting is sufficient the µ-cluster feature vector is updated using the object information; if not, a new µ-cluster is created with the object information using its time-stamp as cluster time of creation.

The density of a µ-cluster µC k is calculated using the current number of objects n k and the current hyper-volume of the bounding box

V k = Q d i=1 S i , as shown in (4): D k = n k V k . ( 4 
)
Let µC k↵ and µC k be two µ-clusters, then µC k↵ and µC k are said to be directly connected if their hyper-boxes overlap in all but ' dimensions, where ' is an integer. The parameter ', fixed by the user, establishes the feature selectivity. A µ-cluster µC k1 is said to be connected to µC kn if there exists a chain of µ-clusters {µC k1 , µC

k2 , • • • , µC kn } such that µC ki is directly connected to µC ki+1 for i = 1, 2, • • • , n 1.
A set of connected µ-clusters is said to be a group.

Dynamic clusters

Dyclee is a dynamic clustering algorithm, which means that not only the parameters but the classifier structure changes according to input data in an automatic way. It achieves several cluster operations like creation, elimination, drift, merge, and split. For instance, a cluster is splitted into two or more clusters if, with the arrival of new data, high density regions can be distinguished inside the cluster. In that scenario, dense regions are separated by low density regions, making the cluster no longer homogeneous. Even more, the cluster center could be situated in a low density region, loosing its interpretability as prototype of the elements in the cluster. Splitting the cluster creates smaller homogeneous clusters, completely representative of the belonging samples. An illustrative example of this phenomenon is shown in Figure 2. 

Finding groups of µ-clusters: the KD-Tree structure

To find groups of connected µ-clusters, a KD-Tree [START_REF] Maneewongvatana | It's okay to be skinny, if your friends are fat[END_REF] is used. A KD-Tree is a binary tree, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and splits the set of points based on whether their coordinate along that axis is greater than or less than a particular value. The tree is queried to return only neighbors who are at a maximum distance from a point. A µC j is the neighbor of the µC k if the condition in equation ( 5) is respected :

L 1 = d max i=1 |x i k c i j | r . ( 5 
)
where d is the number of dimension, c i j the center of the µC j at the dimension i and r the maximal distance from the µC k . In this context, r is set to i .

A new hierarchical clustering density-based algorithm

In this section, a new hierarchical clustering density-based algorithm is presented. Inputs are the connections between µ-clusters from the KD-Tree and the output is a flat partition of clusters where all µ-clusters that are in clusters have a minimum density level guaranteed.

Representation of the µ-clusters connections

The representation of the connections between all µ-clusters can be visualized by a weighted Graph. A weighted Graph G = (N , E, W) is a triplet where N is a set of nodes. A node n i corresponds to the µ-cluster µC i . E is the set of edges with e ij the edge between the node n i and n j , which are unordered pairs of elements of G. Finally, W is a set of weights on E with w ij defined in the equation 6.

w i,j = min(D i , D j ). ( 6 
)
where the density of a µ-cluster D i is defined in the equation 4.

An edge e ij between µ-clusters µC i and µC j means those are directly connected in the sense defined in the section 3.1. If two µ-clusters are not directly connected, there is no edge between them which leads to a Graph that is not full. The Graph of µ-cluster's connections is built according to the algorithm 1. Neighbors are searched for each µ-cluster with respect to the equation 5 (lines 3 to 6). The function Search_neighbors() is detailed in the algorithm 2. For each µC k , the distance L 1 defined in equation 5 is applied where r = i , x i k the value of µC k at the i th dimension and c i j the center of the µC j at the dimension i. The variable Neigh-bors_of_k contains all the neighbors of µC

k . An edge e kj is added to the Graph G for each neighbor µC j of the µcluster studied µC k and the weight w kj is calculated with the equation defined above (lines 7 to 11). The weights are calculated for every edge following the equation 6 : (7)

The Figure 5 shows the weighted Graph which represents the connections between all µ-clusters in the dataset. 

Representation of the hierarchy of clusters

The objective of the algorithm proposed in this paper is to represent and visualize all the possible clusters at different levels of density in a dataset. In contrast to most known hierarchical clustering algorithm, links that relies level l n and l n + 1 in our new algorithm's dendogram are not based on the distance between objects but on their densities. Furthermore, our proposal is not based on the objects but on µ-clusters that contains the objects to decrease the complexity of calculation. At the root of the tree, there is one cluster composed by all µ-clusters. Each cut in the tree corresponds to a density threshold, i.e each cluster formed below this cut level is composed by µ-clusters that have a density higher to the density threshold. At the bottom of the tree, there is one cluster for each µ-cluster. So root's density level is 0 and the last cut on the tree is max(w 2 W). Like [START_REF] Campello | Density-based clustering based on hierarchical density estimates[END_REF], a variable " is user parameter evolving in the interval " 2 [0, max(w 2 W)]. For each iteration of ", all the weights w 2 W are checked. if w ij "

, the edge e ij is removed. The vertical axis of the dendogram is 1/D to keep an ascending direction. Figure 6 represents the case when " = 3. We can observe two clusters composed by µ-clusters that have their densities strictly higher to three and one µ-cluster alone. This method allows to detect a split of clusters case and to isolate the least denses µ-clusters as early as possible. Once all values in the interval of " studied and all edges removed, the dendogram can be generated (see Figure 7). 

Extracting a flat partition of clusters

The dendogram generated, a partition of clusters corresponding to a specific density level can be extracted from the Graph of µ-cluster's connections with a density threshold according to the algorithm 2. To find clusters, the edges that have a weight strictly lower than the density threshold are removed (lines 1 to 7). The remaining edges in the Graph have their weights higher or equal to the density threshold hence µ-clusters forming the clusters are guaranteed to have their densities higher or equal to the threshold. Remaining groups are searched in the Graph. If the size of a group is equal to 1, i.e the group have not connection with other µ-clusters, it is considered as noise. Else, the group is recognized as a cluster (lines 10 to 16). In this example, the density threshold is fixed to " = 8. Every group of µ-clusters that is below the density threshold is considered as a cluster. If a µ-cluster does not have connection to the other µ-clusters, then it is considered as noise. The Figure 10 illustrates how to visualize the clusters that have a density strictly above the threshold. Once the density threshold known, all the edges that have their weights strictly lower are removed to left only groups of µ-cluster to form final clusters. Figure 11 shows the final clusters. The first includes µC 1 and µC 2 , the second includes µC 4 , µC 5 and the last contains µC 6 , µC 7 . µC 2 and µC 8 are considered as noise because they do not have any connections with the other µ-clusters. for all w(i, j) in G do if w(i, j) " then

G.removed(e(i,j))

5:
end if

6:
end for 7: end for 8: Groups = Find_Groups() 9: k = 0 10: for all g in Groups do HDyClee is tested on a benchmark similar to the well known Continuous Stirred Tank Heater (CSTH) of [START_REF] Thornhill | A continuous stirred tank heater simulation model with applications[END_REF]. The CSTH is a stirred tank in which hot and cold water are mixed and further heated using steam. The final mix is drained using a long pipe [START_REF] Barbosa | A data-based approach for dynamic classification of functional scenarios oriented to industrial process plants[END_REF]. Figure 12 For this experiment, the radius of research for a µcluster's neighbors r is set to 0.06. The parameter ' that defines the number of dimensions that must overlap so that two µ-clusters are considered directly connected is set to 0. That means two µ-clusters µC k↵ and µC k are directly connected if their hyperboxes overlap in all dimensions. The parameter " is set to 0 for results shown in Figure 16 that correspond to the root of the dendogram. For the following graphs, the x-axis is the flow CW flow normalized and the y-axis is the tank temperature T ank temperature normalized. The tank level T ank level is not plotted. Figure 14 shows the graph of connections between µ-clusters when " = 0. Each red square represents a µ-cluster. Micro-clusters that are not connected to the others are considered as noise. The µcluster µC 293 is connected to µC 222 and µC 232 , meaning there are directly connected. µC 222 is connected to µC 34 and µC 232 is connected with µC 41 and so on. This chain of µ-clusters forms a cluster. Figure 15 shows a generalized dendogram representing the hierarchy of behaviors found in the dataset. It is possible to visualize the most frequent behaviors of the system, in our case the normal behavior and fault l 3 . This is reproted in Figure 17. For this purpose, the density threshold is set to " = 6 by using the dendogram. At this density, the clusters corresponding to other behaviors are considered as noise because their maximal densities are less than 6. To visualize only the nominal behavior, the dendogram must be cut at the density threshold " = 7 because above this value, the other clusters have no µ-clusters that are connected to each other. This is shown on Figure 19. Figure 18 illustrates the graph of µ-cluster connections after deletion of the edges with a weight w ij 7

. Some µ-clusters which were part of the biggest cluster are now considered as noise. Indeed, edges that connected them to other µ-clusters were less than the density threshold. 

Conclusion and perspectives

The work presented in this paper proposes a new hierarchical density-based algorithm named HDyclee. The purpose of this algorithm is to extract a hierarchy of clusters that are guaranteed to have a level of density at each layer. Branches in the dendogram do not represent distance between objects but minimum density difference. This approach allows one to identify clusters with the poorest densities and then walk up the hierarchy for higher densities. The algorithm is detailed and tested on a well known monitoring benchmark. HDyClee is able to detect all the behaviors of the process and the user can explore more or less frequent behaviors by cutting the dendogram at different densities.

Next step is to develop experimentations in order to compare this new algorithm with other density-based algorithms. Then the comparative study will include hierarchical and distance-based clustering methods [START_REF] Rodríguez Ramos | An approach to fault diagnosis using fuzzy clustering techniques[END_REF], [START_REF] Lei | New clustering algorithm-based fault diagnosis using compensation distance evaluation technique[END_REF]. Several perspectives have been identified for HDyClee, which follow from DyClee properties. In particular, DyClee has a forgetting function that allows to forget µ-clusters which do not receive any data or are not significant (not denses µclusters). This function will be included in HDyClee, which will allow us to produce a dynamic dendogram and then to visualize the evolution of the different behaviors of a system.
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 1 Figure 1: Global description DyClee.
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 2 Figure 2: Splitting of cluster A.

Algorithm 1 2 1 :

 121 Build the Graph of µ-cluster's connections Require: KD-Tree 1: G = Graph() 2: Connection = () 3: for k = 1 to Number of µ-clusters do Research of a µ-cluster's neighbors Require: KD-Tree, µ-cluster µC k for j = 1 to Number of µ-clusters do end for 7: return Neighbors_of_k Let us consider five µ-clusters µC 1 , µC 2 , µC 3 , µC 4 and µC 5 with their densities D 1 = 14, D 2 = 12, D 3 = 3, D 4 = 9, D 5 = 13. Figure 3 shows those five µ-clusters.
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 3 Figure 3: Example of five µ-clusters.
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 4 Figure 4: Search of neighbors for the µC 1 .Once neighbors of µC 1 are found, the neighbors of the other µ-clusters are searched. The result is shown in table1:

w

  12 = min(D 1 , D 2 ) = min(14, 12) = 12, w 23 = min(D 2 , D 3 ) = min(12, 3) = 3, w 34 = min(D 3 , D 4 ) = min(3, 9) = 3 w 45 = min(D 4 , D 5 ) = min(9, 13) = 9.
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 5 Figure 5: Example 1: Graph of connections between µclusters.
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 6 Figure 6: Example 1: Graph of connections between µclusters after removed all weight's edges w ij < 3.
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 7 Figure 7: Dendogram of the example 1.
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 8 Figure 8: Example 2 : Graph of connections between eight µ-clusters.
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 9 Figure 9: Dendogram of the figure 8.
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 10 Figure 10: Visualization of clusters in the dendogram that satisfies the " = 8.

Figure 11 :

 11 Figure 11: Clusters formed with a density guaranteed strictly above 8.

  shows the structure of the CSTH. Process inputs are set-points for the cold water, hot water and steam valves. Process outputs are hot and cold water flow, tank level and temperature. Process inputs and outputs represent electronic signals in the range 4-20 mA. The test is done using three output variables: cold water flow CW flow , tank level T ank level , and temperature of the water in the tank T ank temperature , in the operation mode OP 1. In this mode, these variables are regulated at the values provided in

1 1 fixed l 2 Al 1 l 2 3 :

 11223 , and T ank temperature are shown in Figure 13 and their recorded values across time constitute the data set for our hierarchical clustering experiment. Sudden changes in the value of regulated variables are indicative of the occurence of some fault or of some fault being fixed. The dataset was generated by simulation. Event Description l Evolving leak starts. Hole diameter goes from 1 to 3, 5mm in 1500 seconds l Leak second evolving leak starts. The second hole goes from 0 to 1mm in 1500 seconds Leaks Description of faults on the CSTH system for the operation mode OP 1.
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 13 Figure 13: Process measurements for multiple fault scenario.
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 14 Figure 14: Graph of µ-clusters connections for the study case when " = 0.
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 15 Figure 15: The dendogram with the nominal behavior and the occurrence of faults.
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 16 Figure 16: Clusters found by HDyClee algorithm: the nominal behavior (green cluster) and abnormal situations.

Figure 17 :

 17 Figure 17: The nominal behavior (blue) and the most frequent fault (green).

Figure 18 :

 18 Figure 18: Graph of µ-clusters connections for the study case after removing the weight's edges w ij < 7.

Figure 19 :

 19 Figure 19: Visualization of the nominal behavior after having cut the dendogram at level " =7.

table 1 :

 1 

	µ-clusters Neighbors
	µC 1	µC 2
	µC 2	µC 1 , µC 3
	µC 3	µC 2 , µC 4
	µC 4	µC 3 , µC 5
	µC 5	µC 4

Table 1 :

 1 Neighbors for each µ-clusters

table 2 .

 2 The process undergoes several Figure 12: The continuous stirred tank heater.faults and several repairs that are reported in table3.

	Variable	OP 1
	CW flow (mA)	11.89
	T ank	level (mA)	12.00
	T ank		

temperature (mA) 10.50

Table 2 :

 2 Nominal values for the test on CSTH.

	The measurements of CW

flow , T ank level
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