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Abstract
When applying non-supervised clustering, the
concepts discovered by the clustering algorithm
hardly match business concepts. Hierarchical
clustering then proves to be a useful tool to exhibit
sets of clusters according to a hierarchy. Data can
be analyzed in layers and the user has a full spec-
trum of clusterings to which he can give meaning.
This paper presents a new hierarchical density-
based algorithm that advantageously works from
compacted data. The algorithm is applied to the
monitoring of a process benchmark, illustrating
its value in identifying different types of situa-
tions, from normal to highly critical.

1 Introduction
In data-based diagnosis applications, it is often the case that
huge amounts of data are available but the data is not la-
belled with the corresponding operating mode, normal or
faulty. Clustering algorithms, known as non-supervised
classification methods, can then be used to form clusters that
supposedly gather data corresponding to the same operating
mode.

Clustering is a Machine Learning technique used to group
data points according to some similarity criterion. Given
a set of data points, a clustering algorithm is used to clas-
sify each data point into a specific group. Data points that
are in the same group have similar features, while data
points in different groups have highly dissimilar features.
Among well-known clustering algorithms, we can mention
K-Means [1], PAM [2], K-Modes [3], DBSCAN [4].

Numerous validity indexes have been proposed to evalu-
ate clusterings [5]. These are generally based on two funda-
mental concepts :

• compactness, the members of each cluster should be as
close to each other as possible. A common measure
of compactness is the variance, which should be mini-
mized.

• separation, the clusters themselves should be widely
spaced.

Nevertheless, one must admit that the concepts discov-
ered by even the most scored clusterings hardly match busi-
ness concepts [6] [7]. One of the reasons is that data bases
are often incomplete in the sense that they do not include the

data about all the influencial attributes. In particular, busi-
ness concepts are highly sensitive to environmental parame-
ters that fall outside the scope of the considered business do-
main and that are not recorded, for instance stock exchange.
In addition, the clusters corresponding to business concepts
may be quite "close" in the data space and the only way to
capture them would be to guess the right number of clusters
to initialize correctly the clustering algorithm. This is obvi-
ously quite hard. Hierarchical clustering then proves to be
a useful tool because it exhibits sets of clusters according to
a hierarchy and it modulates the number of clusters. Data
can then be analyzed in layers, with a different number of
clusters at each level, and the user has a full spectrum of
clusterings to which he can give meaning.
Hierarchical clustering identifies the clusters present in a
dataset according to a hierarchy [8][9][10]. There are two
strategies to form clusters, the agglomerative ("bottom up")
strategy where each observation starts in its own cluster and
pairs of clusters are merged as one moves up the hierar-
chy. The divise method ("top down") where all observations
start in one cluster and splits are performed recursively as
one moves down the hierarchy. The results of hierarchical
clustering are usually presented in a dendrogram. A den-
drogram is a tree diagram frequently used to illustrate the
arrangement of the clusters. In order to decide which clus-
ters should be combined or where a cluster should be split,
a measure of dissimilarity between sets of observations is
required. In most methods of hierarchical clustering, splits
or merges of clusters are achieved by use of an appropriate
metric like euclidean, manhattan or maximum distance.

Few algorithms propose a density-based hierarchical
clustering approach like ↵-unchaining single linkage [11]
or HDBSCAN [12]. In this paper, we present a new hi-
erarchical clustering algorithm, named HDyclee, based on
density that advantageously works from compacted data in
the form hypercubes. This contribution is an extension of
the clustering algorithm DyClee [13], [14], [15]. The pur-
pose of this work is to generate a flat partition of clusters
with a hypercube’s density level higher or equal to a thresh-
old and to be able to visualize all existant clusters in the
dataset with a dendogram by varying the density of the hy-
percubes present in a group. The value of the algorithm in
a diagnosis context is illustrated with the monitoring of a
Continuous Stirred Tank Heater benchmark, for which it al-
lows the user to identify different types of situations, from
normal to highly critical.

This paper is organized as follows. In section 2 the Dy-
Clee algorithm is presented. In section 3 the concepts and



Figure 1: Global description DyClee.

principles underlying Dyclee, like the definition of micro
clusters µC, dynamic clusters and the KD-Tree structure,
are explained. In the section 4, the hierarchical clustering
based-density algorithm is presented. Tests and results are
detailed in section 5. The conclusion and perspective for
future work end this paper in section 6.1

2 Dyclee: a dynamic clustering algorithm
DyClee is a dynamic clustering algorithm which is able to
deal with large amounts of data arriving at fast rates by
adopting a two stages strategy similar to [16], [17], [18].
The first stage is a fast scale distance-based algorithm that
collects, pre-processes and compresses data samples to form
so-called micro-clusters (µ-clusters). It operates at the rate
of the data stream and creates µ-clusters putting together
data samples that are close, in the sense of a given distance,
to each other. µ-clusters are stored in the form of summa-
rized representations including statistical and temporal in-
formation.
The second stage is a slower scale density-based algorithm
that groups the µ-clusters into actual clusters that can be in-
terpreted semantically as classes. It takes place once each
t
slow

seconds and analyses the distribution of µ-clusters.
The density of a µ-cluster is considered as low, medium
or high and is used to create the final clusters by a density
based approach, i.e. dense µ-clusters that are close enough
(connected) are said to belong to the same cluster. Simi-
larly to [19], a cluster is defined as the group of connected
µ-clusters where every inside µ-cluster presents high den-
sity and every outside µ-cluster exhibits either medium or
low density. The above dense µ-cluster structure allows the
algorithm to create clusters of non convex shapes even in
high dimensional spaces and it has proved outliers rejection
capabilities in evolving environments [18]. In addition, µ-
clusters of similar densities can form clusters of any shape
and any size.
In DyClee, both stages work on-line, but operate at different
time scales. This multi-density feature allows the detection
of novelty behavior in its early stages when only a few ob-
jects giving evidence of this evolution are present. Figure 1
gives the global description of DyClee.

3 Main principles of DyClee
All the principles explained in this section are from the core
algorithm.

3.1 Notion of micro-clusters µC
Considering a d-dimensional object X = [x1, ..., xd] marked
with a timestamp t

X

and qualified by d features, a µ-cluster
1This work is performed in the framework of a CIFRE Project

supported by ACTIA.

gathers a group of data samples close in all dimensions and
whose information is summarized in a characteristic fea-
ture vector (CF). For a µ-cluster µC

k

, CF has the following
form:

CF
k

= (n
k
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k
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k

, t
lk

, t
sk

, D
k

, Class
k

) . (1)

where n
k

2 < is the number of objects in the µ-cluster k,
LS

k

2 <d is the vector containing the linear sum of each
feature over the n

k

objects, SS
k

2 <d is the square sum of
features over the n

k

objects, t
lk

2 < is the time when the
last object was assigned to that µ-cluster, t

sk

2 < is the time
when the µ-cluster was created, D

k

is the µ-cluster density
and Class

k

is the µ-cluster label if known. Using LS
k

, SS
k

and n
k

the variance of the group of objects assigned to the
µ-cluster k can be calculated.

The µ-cluster is shaped as a d-dimensional box since the
L1-norm is used as distance measure. The distance between
an object X = [x1, ..., xd]T and a µ-cluster µC

k

, named
as dis(X,µC

k

), is calculated as the sum of the distances
between the µC

k

vector center c
k

= [c1
k

, . . . , cd
k

]

T and the
object value for each feature as shown in equation (2):

dis(X,µC
k

) = L1(X, c
k

) =

dX

i=1

��xi � ci
k

�� . (2)

The data is normalized according to the data context,
i.e. the feature range [mini,maxi

] of each feature i, i =

1, ..., d. If no context is available in advance, it may be es-
tablished online. The size of the hyperboxes Si along each
dimension i is set as a fraction of the corresponding feature
range. The hyperbox size per feature is hence found ac-
cording to (3), where �i is a user constant parameter in the
interval (0, 1), establishing the fraction:

Si

= �i|maxi �mini|, 8i = 1, . . . , d. (3)

Whenever an object X arrives, the algorithm searches for
the closest µ-cluster. Once found, a maximal distance cri-
terion is evaluated to decide whether or not the object fits
inside the µ-cluster hyper-box. If the fitting is sufficient the
µ-cluster feature vector is updated using the object infor-
mation; if not, a new µ-cluster is created with the object
information using its time-stamp as cluster time of creation.

The density of a µ-cluster µC
k

is calculated using the
current number of objects n

k

and the current hyper-volume
of the bounding box Vk =

Qd
i=1 S

i, as shown in (4):

Dk =
nk

Vk
. (4)

Let µC
k↵ and µC

k� be two µ-clusters, then µC
k↵ and µC

k�

are said to be directly connected if their hyper-boxes overlap
in all but ' dimensions, where ' is an integer. The parame-
ter ', fixed by the user, establishes the feature selectivity.

A µ-cluster µC
k1 is said to be connected to µC

kn if
there exists a chain of µ-clusters {µC

k1 , µCk2 , · · · , µCkn}
such that µC

ki is directly connected to µC
ki+1 for i =

1, 2, · · · , n� 1. A set of connected µ-clusters is said to be
a group.



3.2 Dynamic clusters
Dyclee is a dynamic clustering algorithm, which means that
not only the parameters but the classifier structure changes
according to input data in an automatic way. It achieves
several cluster operations like creation, elimination, drift,
merge, and split. For instance, a cluster is splitted into two
or more clusters if, with the arrival of new data, high density
regions can be distinguished inside the cluster. In that sce-
nario, dense regions are separated by low density regions,
making the cluster no longer homogeneous. Even more, the
cluster center could be situated in a low density region, loos-
ing its interpretability as prototype of the elements in the
cluster. Splitting the cluster creates smaller homogeneous
clusters, completely representative of the belonging sam-
ples. An illustrative example of this phenomenon is shown
in Figure 2.

Figure 2: Splitting of cluster A.

3.3 Finding groups of µ-clusters: the KD-Tree
structure

To find groups of connected µ-clusters, a KD-Tree [20] is
used. A KD-Tree is a binary tree, each of whose nodes rep-
resents an axis-aligned hyperrectangle. Each node specifies
an axis and splits the set of points based on whether their
coordinate along that axis is greater than or less than a par-
ticular value. The tree is queried to return only neighbors
who are at a maximum distance from a point. A µC

j

is
the neighbor of the µC

k

if the condition in equation (5) is
respected :

L1 =

d

max

i=1
|xi

k

� ci
j

| ^ r. (5)

where d is the number of dimension, cij the center of the
µC

j

at the dimension i and r the maximal distance from the
µC

k

. In this context, r is set to �i.

4 A new hierarchical clustering
density-based algorithm

In this section, a new hierarchical clustering density-based
algorithm is presented. Inputs are the connections between
µ-clusters from the KD-Tree and the output is a flat partition
of clusters where all µ-clusters that are in clusters have a
minimum density level guaranteed.

4.1 Representation of the µ-clusters connections
The representation of the connections between all µ-clusters
can be visualized by a weighted Graph. A weighted Graph
G = (N , E ,W) is a triplet where N is a set of nodes. A
node n

i

corresponds to the µ-cluster µC
i

. E is the set of
edges with e

ij

the edge between the node n
i

and n
j

, which

are unordered pairs of elements of G. Finally, W is a set of
weights on E with w

ij

defined in the equation 6.

w
i,j

= min(D
i

, D
j

). (6)

where the density of a µ-cluster D
i

is defined in the equa-
tion 4.
An edge e

ij

between µ-clusters µC
i

and µC
j

means those
are directly connected in the sense defined in the section
3.1. If two µ-clusters are not directly connected, there is no
edge between them which leads to a Graph that is not full.
The Graph of µ-cluster’s connections is built according to
the algorithm 1. Neighbors are searched for each µ-cluster
with respect to the equation 5 (lines 3 to 6). The function
Search_neighbors() is detailed in the algorithm 2. For each
µC

k

, the distance L1 defined in equation 5 is applied where
r = �i, xi

k

the value of µC
k

at the ith dimension and ci
j

the
center of the µC

j

at the dimension i. The variable Neigh-
bors_of_k contains all the neighbors of µC

k

. An edge e
kj

is added to the Graph G for each neighbor µC
j

of the µ-
cluster studied µC

k

and the weight w
kj

is calculated with
the equation defined above (lines 7 to 11).

Algorithm 1 Build the Graph of µ-cluster’s connections
Require: KD-Tree

1: G = Graph()
2: Connection = ()
3: for k = 1 to Number of µ-clusters do
4: N = []
5: N = Search_neighbors(k)
6: Connection[k] = N
7: for j = 1 to Nbre of neighbors of k do
8: Weight = min(D

k

, D
j

)
9: G.add_edges(k, j, Weight)

10: end for
11: end for

Algorithm 2 Research of a µ-cluster’s neighbors
Require: KD-Tree, µ-cluster µC

k

1: for j = 1 to Number of µ-clusters do
2: Neighbors_of_k = []
3: if d

max

i=1
|xi

k

� ci
j

| ^ r then
4: Neighbors_of_k.add(j)
5: end if
6: end for
7: return Neighbors_of_k

Let us consider five µ-clusters µC1, µC2, µC3, µC4 and
µC5 with their densities D1 = 14, D2 = 12, D3 = 3, D4 = 9,
D5 = 13. Figure 3 shows those five µ-clusters.

Figure 3: Example of five µ-clusters.



The search of neighbors begins with the densest µ-cluster.
In this example, the research starts with the µC1 as shown
in Figure 4. All µ-clusters that satisfy the equation 5 are
neighbors of µC1.

Figure 4: Search of neighbors for the µC1.

Once neighbors of µC1 are found, the neighbors of the
other µ-clusters are searched. The result is shown in table
1:

µ-clusters Neighbors
µC1 µC2

µC2 µC1, µC3

µC3 µC2, µC4

µC4 µC3, µC5

µC5 µC4

Table 1: Neighbors for each µ-clusters

The weights are calculated for every edge following the
equation 6 :

8
>><

>>:

w12 = min(D1, D2) = min(14, 12) = 12,

w23 = min(D2, D3) = min(12, 3) = 3,

w34 = min(D3, D4) = min(3, 9) = 3

w45 = min(D4, D5) = min(9, 13) = 9.

(7)

The Figure 5 shows the weighted Graph which represents
the connections between all µ-clusters in the dataset.

Figure 5: Example 1: Graph of connections between µ-
clusters.

4.2 Representation of the hierarchy of clusters
The objective of the algorithm proposed in this paper is to
represent and visualize all the possible clusters at different
levels of density in a dataset. In contrast to most known
hierarchical clustering algorithm, links that relies level
l
n

and l
n

+ 1 in our new algorithm’s dendogram are not
based on the distance between objects but on their densities.
Furthermore, our proposal is not based on the objects

but on µ-clusters that contains the objects to decrease the
complexity of calculation. At the root of the tree, there is
one cluster composed by all µ-clusters. Each cut in the tree
corresponds to a density threshold, i.e each cluster formed
below this cut level is composed by µ-clusters that have a
density higher to the density threshold. At the bottom of the
tree, there is one cluster for each µ-cluster. So root’s density
level is 0 and the last cut on the tree is max(w 2 W).
Like [12], a variable " is user parameter evolving in the
interval " 2 [0,max(w 2 W)]. For each iteration of ", all
the weights w 2 W are checked. if w

ij

^ ", the edge e
ij

is removed. The vertical axis of the dendogram is 1/D to
keep an ascending direction.

Figure 6: Example 1: Graph of connections between µ-
clusters after removed all weight’s edges w

ij

< 3.

Figure 6 represents the case when " = 3. We can
observe two clusters composed by µ-clusters that have their
densities strictly higher to three and one µ-cluster alone.
This method allows to detect a split of clusters case and to
isolate the least denses µ-clusters as early as possible.
Once all values in the interval of " studied and all edges
removed, the dendogram can be generated (see Figure 7).

Figure 7: Dendogram of the example 1.

At the density threshold D = 3, two clusters composed
by µC1, µC2 and µC4, µC5 are found and the µ-cluster
µC3 is alone. One cluster composed by µC1 and µC2 is
found and µC4, µC5. Then for D=9, one cluster composed
by µC3. Finally, above density D = 12, all µ-clusters are
alone.

4.3 Extracting a flat partition of clusters
The dendogram generated, a partition of clusters corre-
sponding to a specific density level can be extracted from the
Graph of µ-cluster’s connections with a density threshold
according to the algorithm 2. To find clusters, the edges that
have a weight strictly lower than the density threshold are
removed (lines 1 to 7). The remaining edges in the Graph
have their weights higher or equal to the density threshold



hence µ-clusters forming the clusters are guaranteed to have
their densities higher or equal to the threshold. Remaining
groups are searched in the Graph. If the size of a group
is equal to 1, i.e the group have not connection with other
µ-clusters, it is considered as noise. Else, the group is rec-
ognized as a cluster (lines 10 to 16).

Figure 8: Example 2 : Graph of connections between eight
µ-clusters.

An other example is shown in Figure 8 to illustrate this
part. Let us consider µ-clusters µC

i

, i = 1, ..., 8 with their
respective densities D1 = 12, D2 = 3, D3 = 10, D4 = 11, D5

= 13, D6 = 9, D7 = 10 and D8 = 4.

Figure 9: Dendogram of the figure 8.

In this example, the density threshold is fixed to " = 8.
Every group of µ-clusters that is below the density thresh-
old is considered as a cluster. If a µ-cluster does not have
connection to the other µ-clusters, then it is considered as
noise. The Figure 10 illustrates how to visualize the clusters
that have a density strictly above the threshold.

Figure 10: Visualization of clusters in the dendogram that
satisfies the " = 8.

Once the density threshold known, all the edges that have
their weights strictly lower are removed to left only groups
of µ-cluster to form final clusters. Figure 11 shows the final
clusters. The first includes µC1 and µC2, the second in-
cludes µC4, µC5 and the last contains µC6, µC7. µC2 and
µC8 are considered as noise because they do not have any
connections with the other µ-clusters.

Figure 11: Clusters formed with a density guaranteed
strictly above 8.

Algorithm 3 Extract a flat partition of clusters
Require: A density threshold DT , Weighted Graph G

1: for " = 0 to DT do
2: for all w(i, j) in G do
3: if w(i, j) ^ " then
4: G.removed(e(i,j))
5: end if
6: end for
7: end for
8: Groups = Find_Groups()
9: k = 0

10: for all g in Groups do
11: if size(g) == 1 then
12: g = Noise
13: else
14: Cluster_k = g
15: end if
16: end for

5 Preliminary tests and results
HDyClee is tested on a benchmark similar to the well
known Continuous Stirred Tank Heater (CSTH) of [21].
The CSTH is a stirred tank in which hot and cold water
are mixed and further heated using steam. The final mix
is drained using a long pipe [14]. Figure 12 shows the
structure of the CSTH.

Process inputs are set-points for the cold water, hot
water and steam valves. Process outputs are hot and cold
water flow, tank level and temperature. Process inputs and
outputs represent electronic signals in the range 4-20 mA.
The test is done using three output variables: cold water
flow CW

flow

, tank level Tank
level

, and temperature of the
water in the tank Tank

temperature

, in the operation mode
OP1. In this mode, these variables are regulated at the
values provided in table 2. The process undergoes several



Figure 12: The continuous stirred tank heater.

faults and several repairs that are reported in table 3.

Variable OP1

CW
flow

(mA) 11.89
Tank

level

(mA) 12.00
Tank

temperature

(mA) 10.50

Table 2: Nominal values for the test on CSTH.

The measurements of CW
flow

, Tank
level

, and
Tank

temperature

are shown in Figure 13 and their
recorded values across time constitute the data set for our
hierarchical clustering experiment. Sudden changes in the
value of regulated variables are indicative of the occurence
of some fault or of some fault being fixed. The dataset was
generated by simulation.

Event Description

l1

Evolving leak starts. Hole diameter
goes from 1 to 3, 5mm in 1500

seconds
l1 Leak fixed

l2

A second evolving leak starts. The
second hole goes from 0 to 1mm in

1500 seconds
l1l2 Leaks fixed
s1 Steam Valve stuck (closed)
s1 Valve repaired
s2 Hot water valve stuck at 10%
s2 Valve repaired

l3
Evolving leak starts. Hole goes

from 1 to 2.6mm in 1000 seconds
l1 Leak fixed

Table 3: Description of faults on the CSTH system for the
operation mode OP1.

Figure 13: Process measurements for multiple fault sce-
nario.

For this experiment, the radius of research for a µ-
cluster’s neighbors r is set to 0.06. The parameter ' that
defines the number of dimensions that must overlap so that
two µ-clusters are considered directly connected is set to
0. That means two µ-clusters µC

k↵ and µC
k� are directly

connected if their hyperboxes overlap in all dimensions.
The parameter " is set to 0 for results shown in Figure 16 that
correspond to the root of the dendogram. For the following
graphs, the x-axis is the flow CW

flow

normalized and the
y-axis is the tank temperature Tank

temperature

normalized.
The tank level Tank

level

is not plotted. Figure 14 shows the
graph of connections between µ-clusters when " = 0. Each
red square represents a µ-cluster. Micro-clusters that are
not connected to the others are considered as noise. The µ-
cluster µC293 is connected to µC222 and µC232, meaning
there are directly connected. µC222 is connected to µC34

and µC232 is connected with µC41 and so on. This chain
of µ-clusters forms a cluster. Figure 15 shows a generalized
dendogram representing the hierarchy of behaviors found in
the dataset.

Figure 14: Graph of µ-clusters connections for the study
case when " = 0.



Figure 15: The dendogram with the nominal behavior and
the occurrence of faults.

HDyClee detects the 6 main behaviors as shown the Fig-
ure 16. The biggest cluster (green cluster) represents the
nominal behavior, the blue cluster represents fault s2, the
pink cluster (bottom of the Figure) represents the fault s1,
the grey cluster models the fault l3, the brown cluster shows
the event l1, and the purple cluster represents l1 and l2
present simultaneously. Black points represent µ-clusters
that have no connection with other µ-clusters. All the ob-
jects inside these µ-clusters are considered as noise.

Figure 16: Clusters found by HDyClee algorithm: the nom-
inal behavior (green cluster) and abnormal situations.

It is possible to visualize the most frequent behaviors of
the system, in our case the normal behavior and fault l3.
This is reproted in Figure 17. For this purpose, the density
threshold is set to " = 6 by using the dendogram. At this
density, the clusters corresponding to other behaviors are
considered as noise because their maximal densities are less
than 6.

Figure 17: The nominal behavior (blue) and the most fre-
quent fault (green).

To visualize only the nominal behavior, the dendogram
must be cut at the density threshold " = 7 because above
this value, the other clusters have no µ-clusters that are con-
nected to each other. This is shown on Figure 19. Figure 18
illustrates the graph of µ-cluster connections after deletion
of the edges with a weight w

ij

^ 7. Some µ-clusters which
were part of the biggest cluster are now considered as noise.
Indeed, edges that connected them to other µ-clusters were
less than the density threshold.

Figure 18: Graph of µ-clusters connections for the study
case after removing the weight’s edges w

ij

< 7.

Figure 19: Visualization of the nominal behavior after hav-
ing cut the dendogram at level " =7.

6 Conclusion and perspectives
The work presented in this paper proposes a new hierarchi-
cal density-based algorithm named HDyclee. The purpose
of this algorithm is to extract a hierarchy of clusters that are
guaranteed to have a level of density at each layer. Branches
in the dendogram do not represent distance between objects
but minimum density difference. This approach allows one
to identify clusters with the poorest densities and then walk
up the hierarchy for higher densities. The algorithm is de-
tailed and tested on a well known monitoring benchmark.
HDyClee is able to detect all the behaviors of the process
and the user can explore more or less frequent behaviors by
cutting the dendogram at different densities.

Next step is to develop experimentations in order to
compare this new algorithm with other density-based algo-
rithms. Then the comparative study will include hierarchi-
cal and distance-based clustering methods [

22

], [
23

]. Sev-
eral perspectives have been identified for HDyClee, which
follow from DyClee properties. In particular, DyClee has
a forgetting function that allows to forget µ-clusters which
do not receive any data or are not significant (not denses µ-
clusters). This function will be included in HDyClee, which



will allow us to produce a dynamic dendogram and then to
visualize the evolution of the different behaviors of a sys-
tem.
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