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Abstract: Active diagnosis is defined as the association of fault detection and isolation algorithms with 

the execution of control plans that optimize fault research performance. This paper addresses active 

diagnosis of hybrid systems. It proposes to associate a diagnosis method based on multimodel 

identification and a framework for optimal conditional planning relying on a Markov decision process 

(MDP). The multimodel diagnosis algorithm identifies the most probable fault by measuring a distance 

between residual vectors generated from the test system and a set of reference fault models. Moreover a 

criterion called the correct diagnosis rate (CDR) is set up to evaluate the accuracy of the diagnosis results 

depending on the applied operation sequence. Conditional planning is formulated as a MDP, which is a 

model mixing a discrete structure and probabilistic variables.  It is based on a reward function weighing 

diagnosis accuracy and the cost of actions and the optimal conditional plan is characterized thanks to the 

recursive Bellman function. An application to a diesel engine airpath model is presented so as to illustrate 

the diagnosis and planning methods in practice. 
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1. INTRODUCTION 

Car diagnosis is challenged by the unceasing evolution of car 

technologies. Technicians diagnosing car failures in repair 

workshops are helped in their task by decision support tools 

that need to be continuously enhanced. One opportunity to 

improve them is to combine fault detection and isolation 

(FDI) algorithms, which monitor the system behavior, with 

the application of relevant control laws, meant at boosting 

fault research performance. Such a mix of control and 

diagnosis is known as active diagnosis. 

The first objective of our work is to set up an active 

diagnosis solution. It is a method integrating both a 

diagnosis algorithm and a conditional planning method that 

finds optimal sequences of actions based on the past 

observations. The method has been designed with the aim of 

being applicable to a family of hybrid systems, which consist 

of interactions between continuous and discrete dynamics, 

and to an industrial system: a diesel engine airpath. A third 

key objective is to integrate techniques belonging to two a 

priori distinct worlds of the literature, which are active 

diagnosis of continuous systems (CS) and test sequencing of 

discrete event systems (DES). The approach is thus built 

likewise (Bayoudh et al. 2009). 

The literature of active diagnosis of CS is firstly composed 

of methods based on multimodel identification. On the one 

hand, diagnosis is formulated as determining from a set of 

models, each corresponding to a nominal or fault situation, 

the one that best fits the system behavior. On the other hand, 

planning for diagnosis is achieved, e.g. in (Blackmore & 

Williams 2006), through quadratic optimization on 

linearized systems and in (Šimandl & Punčochář 2009) 
through an generic control framework where an input 

generator interacts with a diagnosis module. The authors use 

a criterion balancing trajectory tracking and fault detection 

objectives and the optimal input is characterized thanks to 

the Bellman function. This framework includes the notion of 

Markov chain. In a similar spirit, (Gholami et al. 2011) bases 

its method on parameter estimation where optimal inputs are 

the ones that maximize the sensitivities of the parameters. 

Finally, (Eriksson et al. 2013) contributes to the active 

diagnosis literature, even if not explicitly stated. The goal is 

to analyze the effect of uncertainties and control inputs on 

the capacity to distinguish two fault models from each other 

thanks to a bank of residual. A distinguishability measure, 

based on the Kullback-Leibler norm, is set up so as to carry 

this analysis out. 

In the literature oriented towards DES, (Bayoudh et al. 2009) 

presents a method of active diagnosis of hybrid systems cast 

in a DES framework. The system model, in the form of a 

hybrid automaton, is transformed into a purely discrete 

automaton and then into a diagnoser that integrates signature 

events obtained from residual signals with thresholds. A 

minimax search algorithm applied to the diagnoser finds 

conditional trajectories of modes that optimize fault 

discrimination. Besides, test selection for hybrid systems is 

addressed in (Pons et al. 2015). The paper details an 

algorithm using consistency based diagnosis principles. Then 
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1. INTRODUCTION 

Car diagnosis is challenged by the unceasing evolution of car 

technologies. Technicians diagnosing car failures in repair 

workshops are helped in their task by decision support tools 

that need to be continuously enhanced. One opportunity to 

improve them is to combine fault detection and isolation 

(FDI) algorithms, which monitor the system behavior, with 

the application of relevant control laws, meant at boosting 

fault research performance. Such a mix of control and 

diagnosis is known as active diagnosis. 

The first objective of our work is to set up an active 

diagnosis solution. It is a method integrating both a 

diagnosis algorithm and a conditional planning method that 

finds optimal sequences of actions based on the past 

observations. The method has been designed with the aim of 

being applicable to a family of hybrid systems, which consist 

of interactions between continuous and discrete dynamics, 

and to an industrial system: a diesel engine airpath. A third 

key objective is to integrate techniques belonging to two a 

priori distinct worlds of the literature, which are active 

diagnosis of continuous systems (CS) and test sequencing of 

discrete event systems (DES). The approach is thus built 

likewise (Bayoudh et al. 2009). 

The literature of active diagnosis of CS is firstly composed 

of methods based on multimodel identification. On the one 

hand, diagnosis is formulated as determining from a set of 

models, each corresponding to a nominal or fault situation, 

the one that best fits the system behavior. On the other hand, 

planning for diagnosis is achieved, e.g. in (Blackmore & 

Williams 2006), through quadratic optimization on 

linearized systems and in (Šimandl & Punčochář 2009) 
through an generic control framework where an input 

generator interacts with a diagnosis module. The authors use 

a criterion balancing trajectory tracking and fault detection 

objectives and the optimal input is characterized thanks to 

the Bellman function. This framework includes the notion of 

Markov chain. In a similar spirit, (Gholami et al. 2011) bases 

its method on parameter estimation where optimal inputs are 

the ones that maximize the sensitivities of the parameters. 

Finally, (Eriksson et al. 2013) contributes to the active 

diagnosis literature, even if not explicitly stated. The goal is 

to analyze the effect of uncertainties and control inputs on 

the capacity to distinguish two fault models from each other 

thanks to a bank of residual. A distinguishability measure, 

based on the Kullback-Leibler norm, is set up so as to carry 

this analysis out. 

In the literature oriented towards DES, (Bayoudh et al. 2009) 

presents a method of active diagnosis of hybrid systems cast 

in a DES framework. The system model, in the form of a 

hybrid automaton, is transformed into a purely discrete 

automaton and then into a diagnoser that integrates signature 

events obtained from residual signals with thresholds. A 

minimax search algorithm applied to the diagnoser finds 

conditional trajectories of modes that optimize fault 

discrimination. Besides, test selection for hybrid systems is 

addressed in (Pons et al. 2015). The paper details an 

algorithm using consistency based diagnosis principles. Then 
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a criterion balancing trajectory tracking and fault detection 
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the ones that maximize the sensitivities of the parameters. 
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diagnosis literature, even if not explicitly stated. The goal is 

to analyze the effect of uncertainties and control inputs on 

the capacity to distinguish two fault models from each other 

thanks to a bank of residual. A distinguishability measure, 

based on the Kullback-Leibler norm, is set up so as to carry 

this analysis out. 

In the literature oriented towards DES, (Bayoudh et al. 2009) 

presents a method of active diagnosis of hybrid systems cast 

in a DES framework. The system model, in the form of a 

hybrid automaton, is transformed into a purely discrete 

automaton and then into a diagnoser that integrates signature 

events obtained from residual signals with thresholds. A 

minimax search algorithm applied to the diagnoser finds 
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in (Chanthery et al. 2010) an application of active diagnosis 

of DES is developed based on an AO* heuristic search in a 

AND/OR graph derived from a diagnoser automaton. 

Besides, in (Pattipati & Alexandridis 1990) the authors 

formulate and solve a test sequencing problem based on a 

Markov Decision Process. 

The method developed in this paper is, first of all, based on a 

simplifying hypothesis. The considered hybrid system 5 is 

considered to be remaining into a limited operation range 

called mode q, where discrete events do not occur and its 

behavior consists only of continuous dynamics. That is why 

the approach exploits a nonlinear model, typically used to 

represent continuous systems. 

The first part of the method presents a diagnosis process 

based on multimodel identification, also called here 

multimodel diagnosis. The method explains how to generate 

residuals with multiple models and how to find the most 

probable fault by comparing the system residuals with the 

fault models ones, by means of a distance measure. 

Furthermore a new criterion, called the Correct Diagnosis 

Rate (CDR), is presented. Its function is to rate the 

confidence of a diagnosis depending on the uncertainty level 

and on the past sequence of actions. The multimodel 

diagnosis process is presented in section 2. The second part 

of the method outlines a framework for conditional planning 

for active diagnosis formulated as a Markov Decision 

Process (MDP). A new reward function based on the CDR 

and the cost of actions is proposed. Section 3 is dedicated to 

this MDP formulation. Finally, section 4 deals with the 

application of the method on an industrial model of a diesel 

engine airpath system. It illustrates its complexity and shows 

how to generate residuals, how to compute the CDR and 

finally how to solve a simple conditional planning scenario. 

Conclusions and perspectives are given in section 5.   

2. MULTIMODEL DIAGNOSIS PROCESS 

The first stage of the approach is dedicated to the design of a 

diagnosis algorithm along with a way to rate the relevance of 

its results. The process of multimodel diagnosis involves 

three steps which are the building of multiple fault models, 

the generation of residual sequences for the system and each 

fault model and finally the selection of the fault model 

whose residuals best match the system ones. Furthermore, a 

quantitative criterion called the Correct Diagnosis Rate 

(CDR) is introduced. Its role is to help guiding the process of 

active diagnosis by indicating how much confidence can be 

assigned to a diagnosis depending on the past sequence of 

actions. 

2.1 System, control framework and multiple fault models 

�h� !&!"�m "o dia�no!� i! a h&� id !&!"�m 5� constrained 

into a limited operation mode q, where its dynamics are 

purely continuous. Its model is given, for each time tn ϵ T = 

{t0,t1�) tNT}, by the following discrete-time stochastic state 

space representation:  

),,,( nnnn1n wfuxgx ��    (1) 

),,,( nnnnn vfuxhy �     (2) 

where gn and hn are nonlinear vector functions. xn 9 ℝNx
 is 

the continuous state of the system, un 9 ℝNu
 is the input,      

yn 9 ℝNy 
is the output and f 9 ℝNf

 is the fault parameter.  wn 9 
ℝNw

 and vn 9 ℝNv
 are respectively the process and 

measurement noise variables. They are modeled by zero 

mean Gaussian probability density vector functions p(wn) 

and p(vn).  

�h� !&!"�m 5 i! in"�� a"�d in a ��n� ic clo!�d-loop control 

architecture, shown in figure (1), where it is connected with 

a con" oll�  1. Hence the system behavior is more robust to 

uncertainties and in the specific case of automotive control, 

it helps preventing the engine to stall or to be overspeeding. 

The controller 1 is fed in a discrete-time approach by control 

actions a ϵ Ω, where Ω is the finite set of NΩ control actions. 

A sequence of NA consecutive actions a is denoted                    

A = {a0�)� aNA-1} 9 6NA, while its associated time sequence is 

TA. x0 is the initial state of the system.  

The essence of multimodel diagnosis is to anticipate the 

system fault behaviors by means of fault-dedicated models. 

The process of building fault models starts by defining a list 

of fault parameters. They represent the faults cases which 

may occur and that have not yet been discarded by other 

diagnosis means. The finite set of (NF+1) fault parameters    

fi 9 ℝNf is denoted F = {f0�)� fNF
}. f0 accounts for the 

nominal case. The single fault hypothesis holds, hence only 

one element of a parameter vector fi ϵ F deviates from zero 

at a time. Moreover, various fault parameters can refer to the 

same fault, when different fault amplitudes are modeled. For 

example, biased measurement faults of 5% and 10% of a 

specific sensor can be modeled by two different fault 

parameters fi and fj ϵ F. 

A set of fault-dedicated models is finally obtained by 

replacing the variable f in the equations (1) and (2) by a fault 

parameter fi ϵ F, resulting in stochastic models denoted sfi 
. 

This set of multiple fault-dedicated models is denoted in a 

synthesized way, SDIAG = {sfi
}fiϵF. The set SDIAG thus 

represents 5 in a whole range of anticipated fault situations. 

System

Σ

Controller

Γ

input  un
control 

action an

output  

yn

 

�i�� �� �h� !&!"�m 5 i! a!!ocia"�d "o a ��n� ic con" oll�  1. 

2.2 Residual generation 

Now that each fault has its model, the motivation here is to 

generate the data on which to base the comparison between 

the system and the fault models. Most contributions in the 

active diagnosis literature do it by means of input-output 

data; see (Blackmore & Williams 2006) and (Šimandl & 
Punčochář 2009). However, a more generic alternative, 

widespread in the classical FDI literature, consists in using 

residuals instead. Residuals are signals resulting from a 

processing of the input-output behavior data of the system. 

Residuals are theoretically zero when there is no fault and 
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considered to be remaining into a limited operation range 
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behavior consists only of continuous dynamics. That is why 
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The first part of the method presents a diagnosis process 

based on multimodel identification, also called here 
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residuals with multiple models and how to find the most 

probable fault by comparing the system residuals with the 

fault models ones, by means of a distance measure. 

Furthermore a new criterion, called the Correct Diagnosis 

Rate (CDR), is presented. Its function is to rate the 

confidence of a diagnosis depending on the uncertainty level 

and on the past sequence of actions. The multimodel 

diagnosis process is presented in section 2. The second part 

of the method outlines a framework for conditional planning 

for active diagnosis formulated as a Markov Decision 

Process (MDP). A new reward function based on the CDR 

and the cost of actions is proposed. Section 3 is dedicated to 

this MDP formulation. Finally, section 4 deals with the 

application of the method on an industrial model of a diesel 

engine airpath system. It illustrates its complexity and shows 
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diagnosis algorithm along with a way to rate the relevance of 

its results. The process of multimodel diagnosis involves 
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the generation of residual sequences for the system and each 

fault model and finally the selection of the fault model 

whose residuals best match the system ones. Furthermore, a 

quantitative criterion called the Correct Diagnosis Rate 

(CDR) is introduced. Its role is to help guiding the process of 

active diagnosis by indicating how much confidence can be 

assigned to a diagnosis depending on the past sequence of 

actions. 

2.1 System, control framework and multiple fault models 
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The controller 1 is fed in a discrete-time approach by control 

actions a ϵ Ω, where Ω is the finite set of NΩ control actions. 

A sequence of NA consecutive actions a is denoted                    

A = {a0�)� aNA-1} 9 6NA, while its associated time sequence is 
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The essence of multimodel diagnosis is to anticipate the 

system fault behaviors by means of fault-dedicated models. 

The process of building fault models starts by defining a list 
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may occur and that have not yet been discarded by other 

diagnosis means. The finite set of (NF+1) fault parameters    
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}. f0 accounts for the 

nominal case. The single fault hypothesis holds, hence only 

one element of a parameter vector fi ϵ F deviates from zero 

at a time. Moreover, various fault parameters can refer to the 

same fault, when different fault amplitudes are modeled. For 

example, biased measurement faults of 5% and 10% of a 

specific sensor can be modeled by two different fault 

parameters fi and fj ϵ F. 

A set of fault-dedicated models is finally obtained by 

replacing the variable f in the equations (1) and (2) by a fault 

parameter fi ϵ F, resulting in stochastic models denoted sfi 
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This set of multiple fault-dedicated models is denoted in a 

synthesized way, SDIAG = {sfi
}fiϵF. The set SDIAG thus 

represents 5 in a whole range of anticipated fault situations. 

System

Σ

Controller

Γ

input  un
control 

action an

output  

yn

 

�i�� �� �h� !&!"�m 5 i! a!!ocia"�d "o a ��n� ic con" oll�  1. 

2.2 Residual generation 

Now that each fault has its model, the motivation here is to 
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deviate from zero at least during a transient, when at least 

one of the faults they are sensitive to, affects the system. 

The general manner to generate residuals is to identify in the 

system model, a set of equations and known variables that 

reconstructs a given variable in two different ways. The 

known variables are the input un, output yn and control 

actions an, as shown in fig. 2. 

Residual

generator

action an

input  un

output yn

residuals rn

 
Fig. 2. Generic residual generation scheme. 

In the application part (cf. section 4.2), two residual 

generation techniques are specified, which are estimation 

error residuals and simulation error residuals. The following 

developments are independent of the residual generation 

technique.  

In the active diagnosis case, a sequence of residuals is 

evaluated online by drivin� "h� !&!"�m 5 %i"h "h� ac"ion 

sequence A. The sequence is denoted � �
AN

rR
��

�� �
nnA 0

. 

Besides, it is also sought to generate residuals specific to 

each fault. Therefore, in an offline process, each fault-

dedicated model sfi
 of the set SDIAG is used to generate 

residual sequences by reproducing in simulation the 

condi"ion! a��li�d "o 5. The sequence is 

denoted � �
AN

rR
��

�
n

f

n

f

A
ii

0
 for each fi ϵ F. The process of 

residuals generation in a multimodel scheme thus results in 

sequences o�  �!idual! �o  "h� !&!"�m 5 and �o  �ach �aul" 
model sfi

 ϵ SDIAG. This paves the way for electing the most 

probable fault with the diagnosis test. 

2.3 Diagnosis test 

The role of the diagnosis test is to identify the fault 

parameter fi ϵ F that best explains the system behavior. It 

relies on a distance measure that compares residuals from the 

system and the fault models with each other. These residuals 

are then seen as data points in a multidimensional algebraic 

space. Moreover, as it is thoroughly explained in (Eriksson 

et al. 2013), model uncertainties are key to interpret residuals 

values. In order to simplify the uncertainty definition, the 

following approximation is made. The noise on the residual 

value resulting from the process noise and measurement 

noise is considered to be a white Gaussian noise of variance 

matrix I3. Even if this hypothesis is not strictly true for 

nonlinear systems, it is reasonable in the context of our 

study. The variance matrix I3 is designed based on the 

analysis of the gap between experimental behavior data of 

the system and its modeled behavior. Let us now define a 

distance measure � that evaluates the dissimilarity between 

the residuals sequences of the !&!"�m 5 and a fault model    

sfi  
ϵ SDIAG:  

�
�

���� ���
Ant

t
rrIrrRR

�

� )()(),( 1 iii f

nn

f

nn

f

AA  (3) 

Based on this distance measure, the next definition specifies 

how to determine the most probable fault, i.e. the diagnosis.  

Definition 1 Given an action sequence A, the fault 

parameter fi ϵ F is the diagnosis if: 

),(minarg jf

AA
Ff

i RRf
j

�

�
� �    (4) 

This definition means that the diagnosis is considered to be 

the fault parameter whose residuals are the most similar, in 

"� m! o� "h� di!"anc� m�a!u � 2, with the system ones. 

2.4 Correct diagnosis rate 

The diagnosis algorithm returns the most probable fault after 

a given action sequence A. But due to model uncertainties, 

the system residuals may be not closer to the theoretical 

residuals from the fault the system is affected by, and the 

distance measure diagnosis may be wrong. This is illustrated 

in figure 5 (mostly presented in part 4) where noisy fault 

residual vectors, which are spread in a large area, mingle 

with other residuals from other faults. Thus there is an 

ambiguity on the diagnosis result due to uncertainties. 

This ambiguity also depends on the applied actions. For 

example, as illustrated in figure 4 (mostly presented in part 4 

as well), the nominal residuals are similar to the intake 

leakage residuals after the control action a1, while they are 

dissimilar to both the intake leakage and the airflow sensor 

residuals after the control action a3. As a result, there is a 

greater ambiguity on a diagnosis concluding that the system 

is nominal (with no fault) after the action {a1} rather than 

after the action sequence {a3} or {a1, a3}, because there is 

less chance to confuse the nominal case with the leakage. 

So as to quantify the concept of ambiguity of a diagnosis, 

and help in the selection of the best action sequences, a 

criterion called the Correct Diagnosis Rate (CDR) is defined. 

It relates to the ambiguity as the less the diagnosis is 

ambiguous, the greater the CDR. The criterion refers to both 

a diagnosis fi ϵ F and a past sequence of actions A. So as to 

pave the way for the definition of the MDP, a new concept 

of diagnosis state is as well defined so as to synthetize A and 

fi in a single mathematical object. 

Definition 2 The system 5 i! in "h� dia�no!i! !"a"� if

Ad if the 

last available diagnosis obtained by the application of the 

action sequence A 9 6NA, is the fault parameter fi ϵ F. 

The CDR is computed offline, based on a test sample of 

noisy fault models, denoted STEST. This test set is built by 

duplicating all models of the initial set SDIAG, into a large 

number of clone models, and replacing the measurement and 

noise parameters, vn and wn, by randomly instantiated values 

according to their probabilistic models. All fault parameters  

fi ϵ F appear the same number of times in STEST. The CDR is 

defined by the following probabilistic expression: 

� � � �i

TEST

i f

AiS

f

A p dfd �CDR    (5) 
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The CDR is a way to compute the probability of true 

positives in a multiple fault framework. This stage has thus 

specified a multimodel diagnosis algorithm. Also to prepare 

the design of the best action sequences, a criterion rating the 

ambiguity of a diagnosis has been set up. 

3. OPTIMAL CONDITIONNAL PLANNING 

FORMULATED AS A MARKOV DECISION PROCESS 

The second and last stage of the approach consists in 

formulating a problem of optimal conditional planning for 

active diagnosis. The objective here is to design an optimal 

policy of actions, i.e. to determine which is the best next 

action based on the past observations. After any sequence of 

actions, the resulting diagnosis always carries some 

ambiguity, because of model uncertainties. Therefore the 

optimal policy of actions should minimize this ambiguity by 

driving the system to the most informative operation points. 

Also, the diagnosis should stop when no significant 

reduction of the diagnosis ambiguity is expected to occur. In 

the approach, a MDP model is introduced so as to represent 

this problem and its optimal solution is characterized with 

the help of the Bellman equation. 

3.1 Definition of the Markov Decision Process 

Optimal conditional planning is modeled as a Markov 

Decision Process, illustrated in figure 6, that consists of the 

following elements: 

4 a !�" o� !"a"�! if

Ad ,  

4 a !�" o� ac"ion! a 9 6�  

4 a transition function � �ij f

aA

f

A �dad ,,T ,  

4 a  �%a d �unc"ion � �ij f

aA

f

A �dad ,,R . 

The states if

Ad  , defined in definition 2, are associated to both 

a diagnosis fi ϵ F and a past sequence of actions A. They also 

include an initial state Startd that precedes the start of the 

active diagnosis session. The number of states ND equals the 

number of combinations of (fi, A), i.e. � ��
�

���
�nt

n

FD NNN .1 . 
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�,,T  gives the transition 

probabilities from any state jf

Ad  to any next state id
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 given 

a control action a. In practice, these transition probabilities 

are computed offline, based on the test set STEST, according 

to the definition below. 
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In other words, evaluating transition probabilities consists in 

counting the proportion of models sfk
 ϵ STEST that are in the 

state jf

Ad after the control sequence A, and reach the state 

id
f

aA�
 when the additional action a is applied. Moreover, the 

transition function satisfies � ��
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The role of the reward function is to orient the choice of 

action by associating a reward value to each state transition. 

In the approach it is based on the correct diagnosis rate CDR 

and a cost of action C, which is constant and independent of 

the action a 9 6. The reward function is defined as follows: 
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The first two terms of the function consist of the 

improvement of the diagnosis accuracy. The actions that 

better the confidence of a diagnosis are then favored 

compared to other.  The third and last term is the cost of 

action. Its role is to disadvantage the application of new 

actions compared to stopping the diagnosis, in the case they 

do not significantly improve the CDR. 

Optimal conditional planning is a decision process in the 

sense that next actions are decided based on the past 

observations. Furthermore, this is a Markovian decision 

process provided it respects the property of process without 

memory. This property says that based upon the present 

state, the future and the past are independent. In a 

mathematical form, it is summed up as:  
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The hypothesis is made here that the decision process 

respects this property. In the context of active diagnosis, the 

present diagnosis, realized based on all available residuals 

(from time t1 to current time tn) is the only relevant one, and 

all past diagnosis are obsolete. Therefore the property of 

process without memory is consistent with the problem. As a 

result, the formalism of the MDP is now fully set up and 

next step presents its optimal solution. 

3.2 Optimal solution 

The objective here is to characterize the optimal policy 8* of 

the MDP. The concept of utility function is firstly 

introduced. 

Definition 3 �i$�n a �olic& 8, the utility function )( f

AV d
�  is 

the expected sum of future rewards starting in state f

Ad and 

then acting according to the �olic& 8 until reaching a final 

state. 

The optimal policy, denoted 8*, is the one that maximizes 

the utility of the initial state. According to the Bellman 

principle, 8* also maximizes the utility starting from any 

state of the MDP. The Bellman equation translates this 

principle in a mathematical form. It characterizes the optimal 

utility )(* jf

AdV starting from any state jf

Ad , in a backward 

recursive way, as follows: 
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The computation of the optimal policy based on the Bellman 

equation requires enumerating all the states and computing 

the rewards and transition probabilities for all cases. Due to 
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The CDR is a way to compute the probability of true 
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present diagnosis, realized based on all available residuals 

(from time t1 to current time tn) is the only relevant one, and 

all past diagnosis are obsolete. Therefore the property of 

process without memory is consistent with the problem. As a 

result, the formalism of the MDP is now fully set up and 

next step presents its optimal solution. 
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The objective here is to characterize the optimal policy 8* of 

the MDP. The concept of utility function is firstly 

introduced. 

Definition 3 �i$�n a �olic& 8, the utility function )( f

AV d
�  is 
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the process size, which consists of ND states, this solution is 

intractable in the general case. Heuristic techniques, such as 

the AO* algorithm, may however address this issue by 

quickly identifying suboptimal policies. 

4.  APPLICATION TO A DIESEL ENGINE AIRPATH 

MODEL 

This last part exemplifies the multimodel diagnosis and 

conditional planning methods on an industrial model of a 

Diesel engine airpath. It is a dynamic, nonlinear and greybox 

model made of both physical equations and data-based maps. 

The design of optimal control actions for diagnosis is 

simplified by taking account only static operation points. It 

fits with the framework developed in part 2 and 3 with the 

condition that time steps are taken very large compared to 

the system dynamics. The key ideas of this part are to show 

how the diagnosis method is setup in practice, how it takes 

into account model uncertainties with the CDR and finally 

how to select the best next actions based on the MDP. 
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Fig. 3.Illustration of the diesel engine airpath system 

4.1 System description, fault modeling and residual design 

The studied airpath system is illustrated in fig. 3. It is 

composed of 11 sensors, e.g. pressure and temperature 

variables, and 4 actuators: the fuel injection uInj, 

turbocharger valves position uTurb, EGR valve position uEgr 

and throttle uThrt. Moreover a PI controller is used to control 

uInj according to a reference for the engine speed NEng. Many 

faults can affect the system such as clogging, leakage, sensor 

and actuator faults. In the case study, yet 3 fault models are 

considered: the nominal case, a leakage in the intake 

manifold and a positive bias of the airflow sensor, 

respectively denoted fNom, fLkInMfd and fSnsQair+. They are 

modeled according to the equations in (Eriksson et al. 2013). 

The section of the leakage is set at 2% of a standard engine 

pipe section and the level of the sensor bias is 5% of the real 

value of the measured variable. Moreover, the standard 

deviation of the model uncertainties encompassing process 

and sensor noise is set at 5% on the output variables. 

Then a bank of 2 residuals is designed. They are the intake 

manifold pressure simulation error rP and the airflow 

estimation error rQ. The estimation of the airflow is 

reconstructed thanks to other measured variables. 

� � nom

InMfd

nom

InMfd

meas

InMfd PPPr ��p     (10) 

� � nom

Air

est

Air

meas

Air QQQr ��Q
     (11) 

� � � �meas

ExchInMfd

meas

InMfdVolCyl

meas

Eng

est

Air T120rPηVNQ �   (12) 

where PInMfd is the intake manifold pressure, QAir is the 

airflow, VCyl is the cylinders volume, 7Vol is the volumetric 

efficiency, rInMfd is the gas constant in the intake manifold 

and TExch is the temperature after the exchanger. The 

exponents 
meas

 and 
est

 respectively refer to measured and 

estimated variables. 

4.2 Distance measure diagnosis & CDR 

The operation points of the case study are the following 

ones: a1 = {NEng = 3000rpm, uturb = 0%}, a2 = {NEng = 

3000rpm, uturb = 100%} and a3 = {NEng = 2000rpm, uturb = 

100%}. The inputs uegr and uthrt are set to fixed values. The 

residuals generated by simulation for the three fault models 

associated to fNom , fLkInMfd and fSnsQair+ on the 3 operation 

points are illustrated on figure 4. The x-axis refers to the 

residuals rP and rQ while the y-axis refers to their value. This 

graph illustrates how residuals vary depending on the fault 

and the operation point. Let us zoom now on the first 

operation point a1. Figure 5 represents the 2 residuals on a 

2D view. The large crosses are the responses of the fault 

models without noise. The disks represent the standard 

deviation of the process and measurement noise (5% on all 

residuals). A real system would generate residuals 

represented by a data point on this graph. The diagnosis by 

distance measure 2 is equivalent to finding the fault model 

whose response is the closest in this graph to the real system 

data point. STEST is composed in this case study of 3000 

noisy fault models and is not fully represented on the graph 

for sake of simplicity. The CDR is also computed for each 

fault and each action sequence. On the operation point a1, the 

CDRs for fNom and fSnsQair+ are 39.0)CDR( �Nom

a1d and  

60.0)CDR( ��SnsQair

a1d . Indeed, as shown in figure 5, the 

nominal residuals are close to the intake leakage residuals on 

a1, rather than the airflow sensor bias distant from those two 

first fault responses. Therefore there is more ambiguity 

(lower CDR) on a diagnosis giving fNom, as there is a higher 

risk of mixing with fLkInMfd, and less ambiguity (higher CDR) 

on a diagnosis giving fSnsQair+. 

4.3 MDP based conditional planning 

��"+! now illustrate the conditional planning mechanism by 

considering a situation where the system has already been 

driven on the operation point a1 and the diagnosis process 

has identified the nominal case fNom as the most probable 

fault. Figure 6 shows the MDP and the considered subpart 

(in bold) starts from state Nom

a1d . There are 3 next possible 

decisions: applying the control action a2, applying a3 or no 

applying any additional action. The utility function is 

computed for the 3 cases, by choosing a cost of action         

C = 0.05. This computation uses the values of the transition 

probabilities and the CDRs, stored in table 1, themselves 

evaluated thanks to STEST. The resulting utility values are 

given in table 2. They show that, with respect to the chosen 

reward function, applying action a2 is the best decision 
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compared to applying a3 or stopping the diagnosis. This is 

consistent with figure 4 as on the operation point a2 all the 3 

fault signatures are rather dissimilar with each other rather 

than on a3, the residuals for fLkInMfd and fSnsQair+ are rather 

similar. Hence a2 should be preferred to a3. In the same 

analysis between a2 and a1, one can conclude that after 

having applied a1 and reaching the state Nom

a1d , applying a2 is 

a better option than stopping the diagnosis there. This shows 

how to compute utility values for a one-step horizon. A 

perspective for this approach is to use a heuristic technique 

so as to make the computation of the utility fast, as for a 

longer horizon the number of states to explore grows 

exponentially and the problem becomes intractable. 

-0,05

0

0,05

 

 

rQ rP rQ rP rQ rP    

fNom

fLkInMfd

fSnsQair+

a2a1
a3

 

Fig. 4. Stem view of residual vectors for 3 faults fNom, fLkInMfd 

and fSnsQair+ and 3 static control actions a1, a2 and a3. The y 

axis has no unit because residuals values are relative. 

 
Fig. 5. 2D view of residual vectors without noise (+) and 

with noise (*), for the 3 faults and the static control action a1. 

5. CONCLUSIONS 

This paper addressed the design of an active diagnosis 

solution. The scope includes hybrid systems whose operation 

is constrained into a mode and an industrial application that 

is a Diesel engine airpath system. The originality of the 

research approach lies in the mix of techniques dedicated to 

CS and DES. A multimodel diagnosis process is set up and 

introduces a specific distance measure and a criterion called 

the CDR. The CDR helps rating the confidence assigned to a 

diagnosis depending on the uncertainties level and on the 

past sequence of actions and consists of a first contribution. 

Then conditional planning for active diagnosis is formulated 

as a MDP with a reward function weighing the diagnosis 

accuracy (CDR) and the cost of additional actions. This 

framework consists of a second contribution. At last, an 

application to an industrial model of a diesel engine airpath 

illustrates the feasibility of the approach. 

The main perspective of this work is to apply heuristic 

techniques, such as the AO* algorithm, to address the 

complexity issue of the MDP and to quickly build 

suboptimal conditional plans. 
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Fig. 6.  Partial Markov Decision Process for the 3 faults and 

the final operation sequences {a1,a2} and {a1,a3}, with a 

highlight on the subpart starting from state Nom

a1d . 
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Table 1. Transitions probabilities and CDR for the subpart of 

the MDP starting from Nom

a1d . 

��	"���
���# ��
"���

���# �����"���
���#

0.23 0.17 0
 

Table 2. Utility values for actions a2, a3, and stop from Nom

a1d . 
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