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Abstract

In AC/DC converters, a peculiar periodic nonsmooth waveform arises, the so-called ripple. In this paper we propose a novel
model that captures this nonsmoothness by means of a hybrid dynamical system performing state jumps at certain switching
instants, and we illustrate its properties with reference to a three phase diode bridge rectifier. As the ripple corrupts an
underlying desirable signal, we propound two observer schemes ensuring asymptotic estimation of the ripple, the first with
and the second without knowledge of the switching instants. Our theoretical developments are well placed in the context of
recent techniques for hybrid regulation and constitutes a contribution especially for our second observer, where the switching
instants are estimated. Once asymptotic estimation of the ripple is achieved, the ripple can be conveniently canceled from
the desirable signal, and thanks to the inherent robustness properties of the proposed hybrid formulation, the two observer
schemes require only that the desirable signal is slowly time varying compared to the ripple. Exploiting this fact, we illustrate
the effectiveness of our second hybrid observation law on experimental data collected from the Joint European Torus tokamak.

Key words: hybrid dynamical system, hybrid observer, power system, tokamak plasma, ripple

1 Introduction

Many engineering applications require power electron-
ics in their actuators and often these power electronics
are equipped with AC/DC converters whose switching
nature produces a peculiar ripple disturbance. A similar
disturbance on the torque arises in the presence of split
ring commutators on the shaft of DC motors. Ripple dis-
turbances may have damaging effects on control design,
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not only because they affect the actuation signal (like
in a DC motor), but also because they often affect the
power supply, thus possibly affecting all sensor measure-
ments due to the magnetic coupling. This phenomenon
is especially noticed in high-power applications such as
tokamaks and plasma control [22]. One of the important
features of the ripple is that its frequency is typically a
known parameter with little uncertainty, because it is a
multiple of the utility frequency in the electrical power
grid, which is in turn tuned very finely to the values of
either 50 or 60 Hz. Due to this fact, it appears natural to
address the problem of ripple estimation and rejection
using linear [8] or nonlinear [11, Ch. 8] regulation theory.

However, the peculiar non-smoothness of ripple distur-
bances makes them less prone to be addressed with clas-
sical continuous-time approaches and makes it an inter-
esting problem to be tackled using hybrid regulation the-
ory (see, e.g., the preliminary work in [13] and the more
recent results in [3–5,14] and references therein). These
works, as well as the approach adopted here, are based
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on the novel framework for the description of nonlinear
hybrid dynamical systems in [9, 10]. In particular, the
advantage of adopting that framework will be evident
here because it enables us to exploit important robust-
ness properties following from suitable regularity of the
dynamics. We make large use of the robustness results es-
tablished in [10, Chap. 7] to specifically address a “ripple
cancellation” problem, wherein the ripple corresponds
to a high-frequency perturbation affecting a slowly vary-
ing signal within an available measurement. Then the
goal of our design is to estimate the ripple component
that can be suitably subtracted from the measurement
signal. To this end, we consider a general context where
an unknown constant bias affects the measurement, we
take care of this constant bias by incorporating a band-
pass filter in our ripple observer, and then rely on the
robustness results in [10, Cor. 7.27] to apply the scheme
in the presence of slowly varying signals.

Our approach is much inspired by the recent results in [6]
and the machinery given in [24, Thm. 2] (also reported
in [7, Lemma 1] with a notation that resembles more
closely the situation addressed here). We would also like
to emphasize that a hybrid approach to tackle this prob-
lem does not seem to be the only viable one, because
the ripple disturbance is indeed an absolutely continu-
ous function and one may find ways to generate it with a
nonsmooth continuous time approach (see, e.g., the re-
sults in [12] where a continuous-time exosystem is built
that generates the absolute value of a cosine waveform).
However, it remains unclear how to do this for the spe-
cific waveform characterized in here. Our results are also
close in nature to those reported in [5, Sec. 4.2], where
a hybrid exosystem also generates the absolute value of
a cosine waveform. However, as compared to that result,
we focus here on ripple signals that perform commuta-
tions at phases different from±π/2 (see also Remark 1).
Alternative methods that are relevant in the proposed
context pertain to the scientific area of observer design
for switched systems, because one may think of the rip-
ple as being generated by a suitable switching system.
Then, one may follow the approaches in [20] if the active
mode (or, equivalently, the jump times among modes) is
known, or rely on the approaches of [1,19,21] and refer-
ences therein, where the active mode is estimated online.
In addition to requiring a reformulation of our model as
a switched system (which seems to be possible due to
the continuity of the ripple output), the problem with
applying these switched observation laws is that it is un-
clear how to take into account the slowly varying signal
affecting the output measurement. In our work we in-
corporate a band-pass filter to remove that component
from our ripple observer, and then we use the robust-
ness of our formulation to prove rigorous properties of
our scheme under a reasonable timescale separation as-
sumption. Conversely, within the active mode detection
of the above works, this seems to be a nontrivial goal.

A preliminary version of this paper was presented in [2].

Here, as compared to [2], we give the proofs of our two
main theorems, and we discuss the application of the
proposed scheme to experimental signals from the Joint
European Torus (JET) tokamak, whereas only simula-
tion results were given in [2].

The paper is organized as follows: in Section 2 we in-
troduce the hybrid model for the ripple generation and
present the cancellation problem under consideration.
In Sections 3 and 4 we illustrate the two proposed es-
timation schemes, and state and prove their desirable
properties. Finally, in Section 5 we illustrate the effec-
tiveness of the more general scheme on the experimen-
tal measurements from the JET tokamak. The notation
used throughout the paper is that of [10]. An illustrative
survey of this approach can be found in [9] and a brief
review in [17, Sec. 2].

2 A hybrid model for the ripple-induced noise
in measurement signals

Let us consider a simple physical example where a rip-
ple disturbance arises, i.e., the three phase diode bridge
rectifier depicted in Figure 1, where the valves are ideal
diodes. This device converts a three-phase voltage to a
mono-phase almost direct voltage, which is applied to
a load, for example a resistor. The resulting voltage is
almost direct because, due to the logic of conversion, a
non smooth waveform, the ripple, is superposed to the
ideal direct voltage.

vAG

vBG

vCG

A

B

C

vP

vN

vo
LOAD

G

Figure 1. A three phase diode bridge rectifier for AC/DC
conversion, which results in a waveform affected by a ripple.

Indeed, by denoting ground by G, the three phase volt-
ages have the form:

vAG = vA − vG = Vf sin (ωt+ θ0)

vBG = vB − vG = Vf sin
(
ωt+ θ0 − 2π

3

)
vCG = vC − vG = Vf sin

(
ωt+ θ0 − 4π

3

)
,

(1)

and given the power supply in (1), the output voltage vo
of the converter in Figure 1 can be shown to be

vo = vP − vN =
√

3Vf max
i∈Z

cos
(
ωt+ θ0 − iπ3

)
. (2)

This result follows easily from well-known circuit theory
rules that establish the conducting diode, when more
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than one are connected at cathode or anode. Over an
interval [0, T ] = [0, 2π/ω], (2) can be equivalently ob-
tained by taking at each time the maximum among the
three line-to-line voltages and their opposites in sign, as
depicted in Figure 2.
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Figure 2. Line-to-line voltages in a three-phase diode bridge
rectifier.

Based on the hybrid system formalism in [10], we propose
a different characterization of the ripple and we show in
Proposition 1 how it represents equivalently the physical
example we have just introduced. The flow and jump
dynamics read

ẋr =

[
0 −ω
ω 0

][
xr1

xr2

]
=: Arxr

˙̄b = 0

, (xr, b̄) ∈ C (3a)


x+
r =

[
1 0

0 −1

][
xr1

xr2

]
=: Jrxr

b̄+ = b̄

, (xr, b̄) ∈ D, (3b)

meaning that a solution can evolve according to the given
differential or difference equation whenever the state be-
longs to C or to D, respectively. The sets C and D are
called intuitively flow and jump sets and are specified
below. We use the following output equations:

yr = xr1 + b̄ =
[
1 0
]
xr + b̄ =: Crxr + b̄ (3c)

θ = ∠(xr). (3d)

Output yr in (3c) is the measured signal comprising a
constant bias signal b̄, whereas θ is not available for
measurement (even though we may assume knowledge
of its transition times, see Section 3). Function ∠(·) re-
turns the phase of the vector at the argument, namely
for each xr 6= 0 it is the only angle θ ∈ [−π, π) satisfying

xr = |xr|
[

cos(θ)
sin(θ)

]
, which is well defined for all xr satisfy-

ing |xr| 6= 0. Note that function ∠(·) resembles the well
known function atan2(·, ·) used in the robotics context.

The jump and flow sets in (3a)-(3b) are defined as

K := {(xr, b̄) : δ ≤ |xr| ≤ ∆, |b̄| ≤ ∆ with ∆ ≥ δ > 0}
(3e)

C := {(xr, b̄) : − π/6 ≤ θ ≤ π/6} ∩ K (3f)

D := {(xr, b̄) : θ = π/6} ∩ K (3g)

and are depicted in Figure 3, where we added a possible
solution to (3) flowing in C and jumping when it reaches
D. In C and D, the intersection with the set K assumes
that a nonzero ripple is actually present (δ strictly posi-
tive) but is bounded (existence of ∆). Indeed, δ 6= 0 only
excludes |xr| = 0, corresponding to no ripple at all, and
ensures that ∠(·) in (3d) is well defined. However, δ and
∆ can be arbitrarily small and large, respectively, and
nowhere in our design the knowledge of their values is
required. Moreover, this choice enables us to deal with
compact C and D, so that (3) satisfies the so-called hy-
brid basic conditions [10, Assumption 6.5], and thus we
can rely on useful results from [10, Chap. 7]. In particu-
lar, this allows us to derive our main result, Theorem 2,
for the case of constant b̄, but apply the correspond-
ing scheme to the case of a slowly time varying signal
b̄ [10, Cor. 7.27].

xr2

xr1

∆

δ

D

K

C

Figure 3. Sets K, C, D (projected on the plane (xr1, xr2))
together with a possible trajectory (solid arrow for the flow
and dashed arrow for a jump).

Remark 1 If the ripple was not generated by a three-
phase system, we would consider a different angle in
(3f) and (3g) instead of π/6. For example, for a 6-phase
or a 12-phase system the angle would be respectively
π/12 or π/24. y

The following straightforward Proposition 1 motivates
the study of ripple disturbances through the hybrid
model (3). For its solutions we use hybrid time do-
mains parametrized by two directions (t, j), where t
denotes elapsed continuous time and j denotes elapsed
discrete jumps (see [10, Chap. 2] and also [17, Sec. 2]).
We constrain θ0 to be in the set [−π/6, π/6] because
any other value of θ0 could be shifted to this interval
without changing the resulting value of vo in (2). A
relevant fact that we also establish below is that all
solutions to (3) can be continued forward in time and
have unbounded domain in the t direction of hybrid
time (t, j) (this implies that all maximal solutions are
complete [10, Sec. 2.3]).

Proposition 1 For any value of θ0 and Vf > 0 in (2),

there exist initial conditions xr(0, 0) =
√

3Vf

[
cos θ̄0
sin θ̄0

]
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and b̄(0, 0) = 0 such that the unique solution to (3) has
unbounded domain in the ordinary time direction and
satisfies yr(t, j) = vo(t), for all (t, j) ∈ dom(yr).

Proof. First notice that (2) provides the same output
for shifts of π/3 in θ0 (due to the max). Therefore we
consider without loss of generality θ0 ∈ [−π/6, π/6] and
θ̄0 = θ0. We carry out the proof in polar coordinates that
are globally defined in C ∪ D. In particular, for a linear
oscillator like (3a), the coordinate θ in (3d) evolves along

flows according to θ̇ = ω. Moreover, by the definition
of jump set (3g), as soon as θ = π/6, (3b) in polar
coordinates reads(
|xr|
[

cos(π6 )

sin(π6 )

])+

= Jr|xr|
[

cos(π6 )

sin(π6 )

]
= |xr|

[
cos(−π6 )

sin(−π6 )

]
,

showing that |xr| remains constant and θ changes sign
across jumps. Therefore, each pair of consecutive jumps
witnesses a dwell time of exactly π/(3ω) which is the
time for θ to flow again from −π/6 to π/6. This shows
dwell time of all solutions and proves that the domain of
all solutions is unbounded in the ordinary time direction.
Indeed, the flow and jump maps are Lipschitz single-
valued functions and no flow is possible from the jump
set, because the flow map θ̇ = ω points out of C∪D (more
rigorously, its intersection with the tangent cone to C∪D
is empty – see [10, Prop. 6.10]). Therefore, the solution
to (3) is unique. From (3a), d

dt |xr| = 0 along flows and
θ keeps revolving in the set [−π/6, π/6], where cos(θ)
assumes its maximum. Therefore, all solutions starting
from b̄(0, 0) = 0 satisfy

yr(t, j)=xr1(t, j) = |xr(t, j)| cos(θ(t, j))

= |xr(0, 0)|max
i∈Z

cos
(
θ(0, 0) + ωt− iπ3

)
, (4)

and then for xr(0, 0) =
√

3Vf
[

cos θ0
sin θ0

]
and θ(0, 0) = θ0

in (4), the (unique) solution to (3) satisfies the claim. �

Using Proposition 1, it is evident that in our motivat-
ing example we would like to track the zero-mean nons-
mooth ripple disturbance

d(t) := vo(t)−
ω

2π

∫ 2π
ω

0

vo(τ)dτ = vo(t)−
3
√

3Vf
π

,

to get from yr(t) the direct voltage simply as yr(t)−d(t).

Identity ω
2π

∫ 2π
ω

0
vo(τ)dτ = 6ω

2π

∫ 2π
12ω−

θ0
ω

− 2π
12ω−

θ0
ω

√
3Vf cos(ωτ +

θ0)dτ =
3
√

3Vf
π was used in the integral.

More generally, the goal of the paper can be formulated
as follows.

Problem 1 In a measurement yr, a desirable signal σ is
affected by a (nonsmooth, zero-mean) ripple disturbance
d, i.e.,

yr = σ + d. (5)

Our objective is to estimate asymptotically d only from
yr, so that we recover σ by trivial subtraction. We assume
σ slowly varying compared to the timescale of d.

When the hybrid basic conditions are satisfied, [10,
Cor. 7.27] establishes notably that if stability and con-

vergence of an estimate d̂ of d hold for a constant σ, then
they are preserved also for a slowly varying σ thanks to
inherent robustness properties, therefore in our design
we will assume that σ be constant. Making explicit the
setting of Problem 1 for model (3), we have

d(t, j) := yr(t, j)− b̄(t, j)− 3
π |xr(t, j)|

= xr1(t, j)− 3
π |xr(t, j)| (6a)

σ(t, j) := b̄(t, j) + 3
π |xr(t, j)| (6b)

d̂(t, j) := x̂r1(t, j)− 3
π |x̂r(t, j)|, (6c)

which are respectively the zero-mean ripple disturbance,
the (constant) desirable signal and the disturbance esti-
mate.

3 Ripple estimation with knowledge of switch-
ing instants

If the switching instants of the ripple generator in (3) are
known, it is possible to design an estimator consisting
in a suitable Luenberger observer during flows and per-
forming simultaneous jumps with the ripple generator
(namely, the jump and flow sets remain unchanged and
do not depend on the observer states). This corresponds
to a simplified setting for the observer design. The as-
sumption that the switching instants of the hybrid rip-
ple generator are available to the ripple observer may
be verified, for example, if the observation algorithm is
connected to the circuitry commanding the switches of
the rectifier in Figure 1, so that the switching times are
known. Another case is that of a torque ripple generated
by a DC motor where one may assume to measure the
shaft angle and then compute the switching times based
on the position of the split ring commutator.

Band-pass
filter

xr -
generator

b̄
yr

ŷr

ef

Signal with
ripple disturbance

Switching instants

Estimation
of xr d̂ = x̂r1 − |x̂r| 3π

Ripple estimate

Figure 4. Scheme with generator, filter and hybrid observer
of xr when the switching instants are known.
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The architecture of the proposed solution is sketched
in Figure 4. The block “Signal with ripple distur-
bance” corresponds to hybrid system (3), whereas the
block “Band-pass filter” corresponds to

F (s) :=
s
ω(

1 + s
ω

)2 , (7)

with a double pole at the ripple frequency ω that isolates
the dominant mode of the (nonsmooth) signal d from
the constant bias and the high-frequency noise. The spe-
cific form of F (s) is crucial to obtaining the structure
below in (9) and the result of Lemma 1. The state-space
representation of (7) is

Af Bf

Cf

 :=


0 1 0

−ω2 −2ω 1

0 ω

 . (8a)

For the observer (block “Estimation of xr”) and filter
dynamics, we add to (3) the following flow and jump
equations{

ẋf = Afxf +Bf (yr − ŷr)
˙̂xr = Arx̂r + Lef ,

(xr, b̄) ∈ C (8b){
x+
f = xf

x̂+
r = Jrx̂r,

(xr, b̄) ∈ D, (8c)

and the following output equations

ef = Cfxf
ŷr = Crx̂r

(8d)

where L := [ `0 ] is the Luenberger gain and the scalar
` > 0 is a design parameter. The flow and jump sets are
the same as in (3) and depend only on output θ in (3d).
We emphasize that to implement the hybrid observer
(8) it is not necessary to measure θ, but only to know
its switching times, that is, the times when the observer
state x̂r should jump.

To suitably analyze the overall system (3) and (8), let
us introduce the error variable

e :=

[
x̃r

x̃f

]
:=

[
xr − x̂r

xf +A−1
f Bf b̄

]
, (9a)

where x̃r is the error related to the ripple generation
and x̃f is a coordinate transformation of the filter state
variables chosen to satisfy Af x̃f = Afxf +Bf b̄. Thanks

to ˙̄b = 0 and CfA
−1
f Bf = 0, the (hybrid) error dynamics

corresponds then to

ė =

[
Ar −LCf
BfCr Af

]
e =: Aee, (xr, b̄) ∈ C (9b)

e+ =

[
Jr 0

0 I2

]
e =: Jee, (xr, b̄) ∈ D, (9c)

for which Lemma 1 holds.

Lemma 1 Given dynamics (3) and (8) and the error
dynamics (9), for every ` > 0, the selection L := [ `0 ] in
(8b) and (9b) ensures the existence of P = PT > 0 and
H ∈ R1×4 such that (H,Ae) is an observable pair and
the function

V (e) := eTPe (10)

satisfies

〈∇V (e), Aee〉 = −eTHTHe, (xr, b̄) ∈ C (11a)

V (Jee)− V (e) = 0, (xr, b̄) ∈ D. (11b)

Proof. Consider the diagonal P :=

[
1 0 0 0
0 1 0 0
0 0 ω3` 0
0 0 0 ω`

]
. From

` > 0, it followsP = PT > 0. Moreover, usingAe in (9b),

one obtains PAe+ATe P =

[
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −4ω2`

]
= −HTH, and

H := [ 0 0 0 2ω
√
` ]. Then (11a) follows. As for H, the ob-

servability of the pair (H,Ae) is verified through the ob-

servability matrix [HT (HAe)
T (HA2

e)
T (HA3

e)
T ]
T
, whose

determinant is −16ω9`2 6= 0. Finally,

V (e+)− V (e) = V (Jee)− V (e) = eT
(
JTe PJe − P )e

= eT

([
JTr Jr 0

0 ω3` 0
0 ω`

]
− P

)
e = 0

proves (11b), given that JTr Jr = I2. �

Remark 2 The proof of Lemma 1 applies for any selec-
tion of the jump instants. Therefore the scheme in Fig-
ure 4 is effective at estimating the ripple yr also when
the jump set D is empty, which boils down to a stan-
dard linear disturbance rejection problem with an inter-
nal model. Due to this fact, our scheme can be seen as a
generalization of the last one, much related to the recent
works in [3–5,14] and references therein. y

Based on the Lyapunov construction of Lemma 1 we
state next our first main result establishing asymptotic
estimation of the ripple signal.

5



Theorem 1 For every ` > 0, the selection L = [ `0 ] in
(8b) and in (9b) guarantees that the compact attractor

A := {(xr, b̄, x̂r, xf ) : e = 0 and (xr, b̄) ∈ K}, (12)

is uniformly globally exponentially stable for the closed-
loop dynamics (3) and (8).

Proof. With Lyapunov function (10), the result is a di-
rect consequence of [24, Thm. 2] (see also [7, Lemma 1]
where a parallel formulation to this one is used). �

From (6a) and (6c) and (9a), the disturbance estimation
error is

d− d̂ =
[
1 0 0 0

]
e+

3

π
(|x̂r| − |xr|),

so that Theorem 1 implies that for any positive choice

of the scalar parameter `, the estimate d̂ converges uni-
formly and exponentially to the ripple disturbance d.
Smaller selections of ` lead to slower convergence but are
less sensitive to noise, whereas larger selections of ` lead
to faster convergence but larger noise sensitivity should
be expected.

4 Ripple estimation without knowledge of
switching instants

In most practical cases it is difficult if not impossible
to know the switching instants, and the scheme of the
previous section cannot be implemented. This calls for
the enhanced estimation scheme in Figure 5, where we
estimate the switching instants by building an estimate

θ̂ of the unavailable output θ in (3d).

Band-pass
filter

xr -
generator

b̄
yr

ŷr

ef

Signal with
ripple disturbance

Switching
instantsEstimation

Ripple observer

of θ

Estimation
of xrd̂ = x̂r1 − |x̂r| 3π

Ripple
estimate

Figure 5. Scheme with generator, estimation of the switching
instants, filter and hybrid observer of xr when the switching
instants are not known.

Remark 3 In the sequel, to keep the notation simple,
we will introduce several coupled dynamical systems rep-
resenting different components of the scheme in Figure 5
and having different jump and flow sets. These jump and
flow sets will be specified in terms of only some state

variables, implicitly meaning that the other state vari-
ables may assume any value within their respective do-
mains. With this simplified notation we refer to the hy-
brid system constructed having flow set corresponding
to the intersection of all the specified flow sets, flow map
arising from stacking up all the specified flow equations
(no flow equations will be repeated thus generating no
ambiguity), jump set corresponding to the union of all
the jump sets and jump map corresponding to the stack
of all the specified jump maps. y

Using the simplified notation mentioned in Remark 3,
we preserve the main dynamics in (8) using a jump rule

now triggered by the new state θ̂


ẋf = Afxf +Bf (yr − ŷr)
˙̂xr = Arx̂r + Lef
˙̂
θ = ω,

θ̂ ∈
[
−π

3
,
π

6

]
(13a)


x+
f = xf

x̂+
r = Jrx̂r

θ̂+ = θ̂ − π/3,
θ̂ ∈

[π
6
,
π

3

]
, (13b)

with the same output equations (8d). Note that the lower

bound on θ̂ in (13a) and the upper bound in (13b) are
coarser than those in (8b) and (8c), because we want to

leave some margin for suitable adaptation of θ̂.

Clearly, dynamics (13) converges to the right estimate

when θ̂ = θ. The scheme is then completed by an addi-

tional action that updates periodically θ̂ in such a way
that it converges to θ. Such convergence will be estab-
lished based on the Lyapunov function:

Vθ(θ, θ̂) := min
i∈Z

(
θ − θ̂ + i

π

3

)2

= θ̃2, (14a)

θ̃ := θ − θ̂ + i∗
π

3
, (14b)

i∗ := argmin
i∈Z

(
θ − θ̂ + i

π

3

)2

. (14c)

In particular, the following lemma is fundamental to
achieve this convergence property.

Lemma 2 Consider any hybrid solution to solely (3)

and (13). The output θ̃ defined in (14b) and the Lyapunov
function Vθ in (14a) both remain constant along flows
and across jumps. Moreover, defining 4 for each t ≥ 0

4 Note that the definition of j∗(t) is valid for all t ≥ 0
because all solutions have unbounded domain in the ordinary
time direction, as established in Proposition 1.
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the function j∗(t) := max
(t,j)∈domθ

j, the next identity holds:

∫ t+ π
3ω

t

θ̂
(
τ, j∗(τ)

)
d
(
τ, j∗(τ)

)
dτ = −|xr(0, 0)|ρ(θ̃),

(15)

where ρ is such that θ̃ 7→ ρ(θ̃)θ̃ is a positive definite

function in the interval θ̃ ∈ (−π/6, π/6) and d is in (6a),
corresponding to d = |xr| cos(θ)− 3

π |xr|.

π
6

π
6

−π
6

−π
6

θ
θ̂

θ̃

π
6

π
6

−π
6

−π
6

θ

θ̂
θ̃

−π
6 + θ̃

d d

π
6 + θ̃

Figure 6. Proof for θ̃ > 0 (left) and θ̃ < 0 (right).

Proof. When one considers solely (3) and (13), θ̃ and Vθ

remain constant along solutions because θ̇ − ˙̂
θ = ω −

ω = 0 along flows and θ+ = θ − π
3 (similarly for θ̂+) so

that across jumps quantity i∗ in (14c) changes but the
minimum in (14a) does not.

Regarding integral (15), we compute it by dividing the
analysis in the two cases shown in Figure 6. After some
calculations, essentially splitting each integral in two
parts, ρ in (15) can be found to be

ρ(θ̃) :=

{
− 1

6ω

(
π − 6θ̃ − 2π sin

(
π
6 − θ̃

))
=: ρp(θ̃) θ̃ ≥ 0

−ρp(−θ̃) θ̃ < 0

so that θ̃ 7→ ρ(θ̃)θ̃ is positive definite in (−π/6, π/6). �

Remark 4 As graphically illustrated in Figure 6, scalar
θ̃ characterized in Lemma 2 is the difference between
θ and θ̂ modulo π/3, that is, by θ̃ one measures their
distance in a way that remains constant across jumps. y

Based on the preliminary result of Lemma 2, we com-
plete now the hybrid observer (13) with an additional
dynamics implementing integral (15) and imposing suit-

able jump rules on θ̂ to ensure its convergence to θ. Con-
sider 

˙̄yr = 0

˙̄yrI = yr − ȳr
η̇ = θ̂(yr − ȳr)
τ̇ = 1,

τ ≤ π

3ω
(16a)



ȳ+
r = ȳr + kav

3ω

π
ȳrI

ȳ+
rI = 0

η+ = 0

τ+ = 0

θ̂+ = θ̂ − satπ
6

(kθη),

τ =
π

3ω
, (16b)

where kav ∈ (0, 1] and kθ > 0 are two positive gains
to be tuned, and function satπ

6
(·) is the scalar symmet-

ric saturation function whose output is limited within

[−π/6, π/6]. Note that this limitation ensures that θ̂+

always belongs to the union of the flow and jump sets
in (13), which guarantees existence of solutions. In (16),
state τ is a periodic timer ensuring that integral (15) is
computed periodically; over this period state ȳrI inte-
grates the difference between output yr and its average
value, so that ȳr can converge to the average value of yr.
Finally, η implements left-hand side of (15) by subtract-
ing the (estimated) average value ȳr from measurement

yr and multiplying it by θ̂.

The overall ripple estimation scheme corresponds to the
plant (3), the estimator dynamics in (13), and the extra
flow and jump rules in (16), where the role of the different
jump and flow sets should be intended as explained in
Remark 3. The overall state is then given by

ξ := (xr, b̄, xf , x̂r, θ̂, ȳr, ȳrI , η, τ),

where we note that because (xr, b̄) belongs to the com-
pact set K and τ ∈ [0, π/(3ω)], then there exists a large
enough scalar M such that (ȳr, ȳrI , η, τ) ∈MB4, where
B4 is the four-dimensional closed unit ball. In the next
theorem we establish parallel results to those of Theo-
rem 1 in terms of stability properties of the attractor

Ae := A× [−π/3, π/3]×MB4, (17)

where A is defined in (12) and corresponds to the set

where the estimate θ̂ is correct. Note that Theorem 2
only establishes local properties of the scheme although
its results could be strengthened by relying on a more

sophisticated update law for θ̂ (see, e.g., [15] for global
asymptotic stabilization of dynamics on bounded man-

ifolds like our angles θ and θ̂) and on global results on
cascaded hybrid systems.

Theorem 2 For every ` > 0, every kav ∈ (0, 1] and a
small enough value of kθ > 0, the selection L := [ `0 ] in
(13a) guarantees that the compact attractor Ae is uni-
formly locally asymptotically stable for the closed-loop
dynamics (3), (13), (16).

Proof. The scheme can be represented as the cascade of
three hybrid dynamical systems.
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The lowermost system corresponds to the dynamics re-
stricted to the set

Aθ := {ξ : θ = θ̂},

which is clearly forward invariant because the dynamics

of θ̂ coincide with that of θ. Using the result of Theorem 1
it is readily seen that the dynamics restricted to Aθ is
UAS (actually UES) to Ae.

The intermediate system corresponds to the dynamics
restricted to the set

Aȳ := {ξ : ȳr = b̄(0, 0) +
3

π
|xr(0, 0)|}, (18)

which is again forward invariant because, from (6a) and
(3), the scalar b̄(0, 0)+ 3

π |xr(0, 0)| is the average value of

yr(t, j
∗(t)), and b̄ and |xr| remain constant along flows

and across jumps. Also, the set Aθ is uniformly (locally)
asymptotically stable for the dynamics restricted to Aȳ.
To establish this fact we use the Lyapunov function Vθ in
(14a), which remains constant along flows (as established
in Lemma 2). To analyze the change of Vθ across jumps,
first note that inAȳ we have that d = yr− ȳr. Then, due
to periodicity of timer τ in (16) and due to the results
of Lemma 2, we have before each jump in (16b) that

η = −|xr(0, 0)|ρ(θ̃). Therefore, across all such jumps,
the quantity in (14b) satisfies

(θ̃+)2 =
(
θ − θ̂+ + (i∗)+π

3

)2

≤
(
θ − θ̂+ + i∗

π

3

)2

=

=
(
θ̃ − satπ

6

(
kθ|xr(0, 0)|ρ(θ̃)

))2

,

where the inequality follows from the fact that i∗ in
(14c) is a minimizer. Then from uniform boundedness

of |xr(0, 0)| and positive definiteness of θ̃ 7→ ρ(θ̃)θ̃ in
the set (−π/6, π/6), it is ensured that the function Vθ
is (locally) strictly decreasing as long as kθ > 0 is suffi-
ciently small. For all other jumps triggered by the jump
sets in (3b) and (13b), function Vθ remains constant as
established in Lemma 2. Since jumps in (16b) are peri-
odic from periodicity of τ , then the asymptotic stability
of Aθ relative to initial conditions from Aȳ follows from
persistent jumping and [10, Prop. 3.24].

The uppermost system corresponds to the dynam-
ics starting anywhere in the allowable set of initial
conditions, which clearly converge to the attractor
in (18). Indeed, at each jump triggered by (16b) it
holds that 3ω

π yrI is the difference between the aver-

age of yr, b̄(0, 0) + 3
π |xr(0, 0)|, and its estimate ȳr,

so that the update law in the first equation in (16b)
leads to uniform convergence to zero of the Lyapunov
function Vy := (b̄ + 3

π |xr| − ȳr)
2 (once again we ap-

ply [10, Prop. 3.24] and persistent jumping to establish
this fact). Recall that b̄ and |xr| remain constant along

solutions, while ȳr remains constant during flowing,
so that Vy remains constant along flows and decreases
across jumps thanks to kav ∈ (0, 1].

Once the three above nested (or cascade-like) results
are established, the uniform (local) asymptotic sta-
bility of the innermost attractor given by Ae in (17)
can be established applying iteratively the reasoning
in [9, Corollary 19] by intersecting the flow and jump
sets with sufficiently large compact sets. �

Remark 5 Small choices of kav may be desired to suit-
ably filter possible noise affecting the measurement. Sim-
ilarly, kθ should be selected small in such a way to ensure
that Theorem 2 applies and that suitable noise rejection
is obtained. In general, the tuning of the three param-
eters kav, kθ and ` should be carried out based on the
cascaded structure of the proof. Indeed, to experience a
graceful transient performance, it is reasonable to pick
gain kav as the most aggressive one, kθ in such a way to
induce an intermediate speed of convergence, and ` as
the one that induces the slowest transient. This type of
tuning procedure was adopted in Section 5. y

5 JET experimental measurements

In this Section we apply the scheme in Figure 5 to exper-
imental data collected from the JET tokamak [18]. For
simulations confirming the effectiveness of the method
presented in Section 4 in the case of ideal nonsmooth sig-
nals, we refer the reader to [2, Sec. V] while here we focus
on the application of the scheme to experimental signals.
The stabilization of the unstable plasma vertical position
at JET facilities is achieved by changing the radial mag-
netic field produced by current flow on dedicated coils.
Such a current is regulated by the Vertical Stabiliza-
tion (VS) system by means of a current amplifier named
ERFA. At the time of experiment ]78000 (used here) a
previous amplifier FRFA (Fast Radial Field Amplifier)
was in place. The VS system acts on FRFA requesting a
desired current IFRFA,des that is obtained as the sum of
two terms: the “fast” velocity loop that reacts promptly
to plasma vertical displacements and the “slow” current
loop that aims at regulating IFRFA to zero. The ripple
generated by the power electronics present in the exper-
iment affects the feedback signal ZPD, which is obtained
by combining suitable magnetic measurements (from the
Mirnov coils). For the current application we have

yr(t) = α IFRFA(t) + ZPD(t) (19)

where IFRFA(t) is the current flowing within the poloidal
coil and the scaling factor α = 4 · 104 m/s/A. All these
quantities are depicted in Figure 7, where it is evident
that the specific value of α in the linear combination (19)
is selected to eliminate the current bursts around time
17.72 (to be found whenever a nonzero voltage is applied
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to FRFA) and to let the ripple signal emerge in yr. The
resulting signal yr is of clear graphical significance (the
ripple effect was hidden in the oscillations within IFRFA

and ZPD) but its experimental meaning is a subject of
future work and goes beyond the goal of this paper. The
experimental data on which we tested our hybrid ob-
server are the useful 20-second portion of pulse ]78000.
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Figure 7. Experiment data from the JET tokamak: current
IFRFA, measurement ZPD and their combination yr.

To obtain a ripple-free signal, we apply the scheme in
Figure 5 where we discard completely the “Signalwith
ripple disturbance” block and we inject directly into
the “Ripple observer” block the signal yr in (19). As
a matter of fact, we have no longer a constant signal on
which the ripple disturbance is superposed, but a signal
that varies slowly with respect to the frequency of the
ripple, as one can see from the bottom of Figure 7. As
clarified after Problem 1, our solution also applies to this
case, as long as the signal b̄ is sufficiently slowly varying.
In particular, the following Corollary of Theorem 2 fol-
lows from [10, Corollary 7.27], the fact that Ae in (17)
is compact, and that dynamics (3), (13), (16) satisfy the
hybrid basic conditions of [10, Assumption 6.5].

Corollary 1 For every ` > 0, every kav ∈ (0, 1] and a
small enough value of kθ > 0, the selection L := [ `0 ] in
(13a) guarantees that the compact attractor Ae in (17)
is uniformly locally asymptotically stable for the closed-
loop dynamics (3), (13), (16), with the second equation

in (3a) replaced by ˙̄b ∈ [−ρb, ρb], where ρb is a sufficiently
small positive constant.

Note that the modified dynamics for b̄ in the above state-
ment enables considering “biases” that are varying at
sufficiently small rate ρb. According to the discussion af-
ter Problem 1 (see Eqs. (5) and (6c)) the signal resulting
from the ripple cancellation filter corresponds to

σ̂ := yr − d̂ = yr −
(
x̂r1 −

3

π
|x̂r|
)
. (20)
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Figure 8. Original signal yr, desirable signal σ̂ and ripple

estimate d̂ in different timescales.

Figure 8 is obtained for the following parameters and
initial values of the hybrid observer in (13) and (16):
` = 7.5, kav = 0.9, kθ = 1, ȳr(0, 0) = −0.5 · 106,

ȳrI(0, 0) = 0, η(0, 0) = 0, τ(0, 0) = 0, θ̂(0, 0) = 0,
xf (0, 0) = [ 0

0 ], x̂r(0, 0) =
[

9.6·106

0

]
(leading to a phase

shift of roughly 90◦). Following the discussion in [2,
Sec. V-A] about implementing slightly inflated versions
of flow and jump sets, in the current case of JET mea-
surements we used only {ξ : π

3ω ≤ τ ≤ 1.005 π
3ω} instead

of {ξ : τ = π
3ω} since we have no longer a ripple genera-

tor. This forces the maximal hybrid solutions to be also
complete [10, Chap. 2.2 and 2.3] and prevents numerical
perturbations from bringing solutions out of C∪D, lead-
ing to premature termination of complete solutions. At
the bottom of Figure 8 we have both yr and σ̂ on the full
timescale. In the upper part, the beginning of the time
history is zoomed on the left, and the end on the right
(same zoom as in Figure 7). The red vertical lines corre-

spond to the instants when the estimate θ̂ jumps: at the
beginning they are not in phase with the original signal
yr while at the end they are, so that after convergence
the hybrid observer effectively removes from yr the rip-

ple disturbance d̂ in the right central part of Figure 8.

We compare our hybrid approach with one based on the
internal model (IM) principle for linear systems [8]. Ac-
cording to the latter, we may approximate the ripple dis-
turbance d in yr by a pure sinusoid with frequency 6ω,
deliberately neglecting its nonsmoothness and thereby
accepting a steady-state residual error. Then a standard
unity-feedback system as in Figure 10 guarantees that

d̂IM approximately manages to converge to the main lin-

ear harmonic in d, and by subtracting d̂IM from yr one
gets asymptotically some linear estimate σ̂IM of the de-
sirable signal σ. We note that the coefficients κ1 and κ2

in IM(s) affect mainly the transient, and are less rel-
evant for the (approximately) asymptotic tracking we
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Figure 10. Internal model scheme and signals.

want to show in Figure 9. The resulting σ̂IM from this
approach is plotted in Figure 9 together with σ̂ from our
hybrid approach, which provides an improved estima-
tion because it is based on a more accurate model of the
specific ripple waveform. In particular, note that the lin-
ear cancellation scheme exhibits noticeable errors where
the ripple waveform is not differentiable.

We also compare our approach with the solution of a
(nonlinear) optimization problem exploiting numerical
tools. Consider as cost function the squared error be-
tween the (sampled) output yr and the estimated signal
ŷr over a window of N past samples, that is,

JN (k) :=

N−1∑
i=0

(
yr(tk−i)− ŷr(tk−i)

)2
(21)

ŷr(tj) = σ̂Jj +
√

3Vf max
i∈Z

cos

(
ωtj + θj − i

π

3

)
− 3
√

3

π
Vf ,

The minimization variables (in ŷr) are θk and σ̂Jk , and
their optimal values are found iterating a numerical gra-
dient descent algorithm on JN (fmincon() of the op-
timization toolbox of Matlab R©). In our case we have
Vf = 1.8 · 106 and we take N = 30 samples, and the re-
sult is shown in Figure 9. This approach is similar to the
one proposed in [16, 23] where Newton and extremum-
seeking techniques have been exploited to minimize JN .
With this approach the computational complexity is
much higher, the time spent by iterations at each new
sample to provide the new value of θk and σ̂Jk is not
known a priori, and the resulting σ̂Jk can be nonsmooth.
Important high frequency information could be canceled
out by this approach, whose proof of convergence is in
general a difficult problem and has not been addressed
for the considered example.

Although our hybrid observer scheme is presented for

offline experimental data, we finally emphasize that it
can be used for estimating and removing the ripple on
line, so that an estimate of the desirable signal σ̂ in (20)
is available for feedback purposes.

6 Conclusions

We proposed a hybrid dynamical system to model the
ripple phenomenon arising in the context of power elec-
tronics. In particular, we discussed its effectiveness illus-
trating its (hybrid) solutions, flow/jump dynamics and
sets with a three phase diode bridge rectifier. We pro-
posed two hybrid schemes capable of asymptotically es-
timating the state of the hybrid model that generates the
ripple waveform both when the switching instants are
known and unknown. The proposed methodology was
applied to reconstruct the ripple disturbance affecting
experimental data of the vertical stabilization system at
the JET facilities.
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