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An adaptive pseudo-inverse method for the fault-tolerant output
allocation in linear observers with redundant sensors

Andrea Cristofaro and Luca Zaccarian

Abstract— We address the problem of output redundancy
in linear plants, wherein the presence of redundant sensors
is motivated by an unknown bias or fault affecting each
sensor output. In this context, we address the design problem
of a nonlinear observer consisting in a linear Luenberger
structure augmented with an adaptive weighted pseudo-inverse
combination of the available measurements. We characterize a
number of properties of the proposed scheme and under certain
conditions we establish local asymptotic stability of a certain
attractor where the estimation error is zero and the fault is
completely rejected. Simulation results are also given to show
the potential behind the proposed solution.

I. INTRODUCTION

Input redundancy and control allocation has been widely
investigated, to a large extent in the framework of control
allocation [17], [10], [5], [19]. Conversely output allocation,
or dual redundancy, is a less studied problem yet very
interesting and many-sided [4]. The Kalman filter and the
extended Kalman filter [11] [2] are estimation methods
aiming at the minimization of the covariance error, and thus
they benefit from the presence of a redundant set of outputs.
However, such redundancy is usually not explicitly analyzed
and is used in a passive way. As for the case of actuator
redundancy, the presence of redundant outputs results in the
potential enhancement of the estimation robustness to sensor
faults and biased measurements. In this regard, some results
pertaining safety and reliability of marine systems have been
proposed [15]. On the other hand, sensor fault detection
is a challenging problem, as there are no unquestionable
methods to establish whether a sensor is faulty or not, based
on the measurement value. Several approaches have been
proposed [16], such as robust observers [3], [13], consensus
based schemes [8], adaptive approximation [6], [18], [14] or
statistical methods [12], [9]. Robust observers are typically
designed for systems with structured faults by exploiting
geometric properties to achieve fault decoupling. The un-
derlying idea of consensus methods is to put more trust in
the measurements on which the largest group of sensors
agree, while adaptive approximation consists in the online
reconstruction of a fault estimation, typically by means of
neural networks architectures.

The method presented in this paper arises instead from
the elementary observation that, among all the possible

A. Cristofaro is with Department of Engineering Cybernetics, Norwegian
University of Science and Technology and with Center for Autonomous
Marine Operations and Systems (AMOS), Trondheim, Norway. email:
andrea.cristofaro@itk.ntnu.no

L. Zaccarian is with LAAS-CNRS, Université de Toulouse, CNRS,
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combinations of outputs, there is one which is less sen-
sitive or even insensitive to a given fault. On the other
hand, as the fault is typically unknown and unpredictable,
such optimal combination is also generally unknown. In the
absence of faults and external perturbations, an equivalent
full-rank, lower dimensional output model can be extracted
using a weighted pseudo-inverse, where the weights indicate
the burden on each individual sensor. The introduction of
dynamic pseudo-inverses allows to design a fault-tolerant
adaptive observer with the nice property of being self-tuning.
Moreover, the asymptotic value of the adaptive weights is
a clear indication of faults presence, location and relative
magnitude. One key-advantage of the proposed scheme is
that it does not require any knowledge of the structure of
the perturbations. Clearly, even though the approach has been
developed with the aim of designing fault-tolerant observers,
the setting is readily capable to handle different kinds of
output perturbations, such as biased measurements [7] or
outliers [1].

The paper is structured in four main sections. First in Sec-
tion II-A the problem is formally stated, and the construction
of the observers together with the dynamic pseudo-inverses
is addressed in Section II-B, where the adaptation scheme is
based on a modified gradient method. Some nice properties
of the modified gradient operator are then exploited in Sec-
tion IV and, under some assumptions on the system structure
and the class of faults, local asymptotic stability is stated
for the adaptive estimator composed by the observer and
the dynamic weights. Finally, in Section V some numerical
examples illustrate the method performances and support the
theoretical results. All the proofs have been omitted from this
conference publication due to space constraints.

II. PROPOSED SCHEME

A. Problem data

Let us consider a linear plant

ẋ = Ax+Bu
y = Cx+ φ

(1)

where x ∈ Rn is the state, u ∈ Rm is the system input, and
y ∈ Rp is the output. The unknown vector φ ∈ Rp models
faults or calibration errors possibly affecting the sensors.
We suppose that a redundant set of measurements is avail-
able, i.e.

rank(C) = q < p. (2)

The latter assumption may correspond to the presence of
multiple identical sensors, as well as to the result of a suitable
sensor fusion operation. Due to (2), matrices H ∈ Rq×n and
Y ∈ Rp×q can be found such that

C = Y H, rank(Y ) = rank(H) = q.



As a matter of fact, an infinite number of such pairs (Y,H)
exist; having selected one, we refer to such H as an extracted
full rank (EFR) output matrix. In this regard, consider the
virtual system

ẋv = Axv +Bu
zv = Hxv

(3)

where the EFR output matrix H has been used. We need the
following assumption.

Assumption 1: There exists a full-order observer for the
virtual system (3), namely a system:

˙̂xv = Ax̂v +Bu+ L(zv − ẑv)
ẑv = Hx̂v

(4)

satisfying for all initial conditions and all inputs u,

lim
t→∞

|xv(t)− x̂v(t)| = 0.

Note that Assumption 1 implies that pair (H,A) be
detectable.

Definition 1: Given the redundant output matrix C, we
denote by C] the set of matrix transformations that reduce C
to its EFR, i.e.

C] := {Z ∈ Rq×p : ZC = H}.

B. Observer design

Exploiting the output redundancy, the aim of this section
is to design a self-tuning observer capable to select the
best combination of outputs in order to optimize the state
estimation in spite of the constant vector φ in (1).

Given the diagonal matrix GΓ = diag(Γ) with Γ =
[γ1 · · · γp]T , let us define the matrix

ZΓ = (Y TGΓY )−1Y TGΓ. (5)

The latter is a weighted pseudo-inverse of Y and, by con-
struction, it verifies

ZΓ ∈ C] ∀Γ : det(Y TGΓY ) 6= 0.

Consider the following observer

˙̂x = Ax̂+Bu+ L(ZΓy − ẑ)
ẑ = Hx̂,

(6)

together with the adaptive parameter update equation

Γ̇ = −κφ|det(Y TGΓY )|[∇Γ|ZΓy − ẑ|2]T

+κΓ(1− |Γ|2)Γ,
(7)

where κφ, κΓ > 0 are rate parameters to be specified, and
the operator ∇Γ is the gradient with respect to (γ1, ..., γp).

Remark 1: We point out that the norm of Γ is controlled
by the second term in the right-hand side of (7), and therefore
the vector of weights remains bounded. Moreover, in order to
prevent an overflow in the computation of ZΓ the adaptation
law might be enhanced with the introduction of a reset policy
for reinitializing Γ whenever det(Y TGΓY ) becomes too
close to zero. However, this goes beyond the scope of the
present note, where we focus on a local analysis for which
the condition det(Y TGΓY ) 6= 0 is uniformly guaranteed. ◦

III. ADAPTATION LAW AND STRUCTURAL PROPERTIES

The adaptation law (7) consists of two terms. The first
term is given by a gradient of the norm of the difference
ZΓy− ẑ, rescaled by the determinant of Y TGΓY , and aims
at minimizing the effect of the fault in the observer output
injection (6); the second one, as already pointed out, is
instead responsible of keeping the norm of Γ unitary, this
being compatible with the gradient-like optimization scheme
thanks to the scale invariance of the pseudo-inverse ZΓ.

It is useful to give an explicit expression of the gradient
term in equation (7). In this perspective, the following
technical result is needed.

Lemma 1: The gradient term appearing in (7) can be
expressed as

[∇Γ|ZΓy − ẑ|2]T

= 2 diag(y − Y ZΓy)Y (Y TGΓY )−1(ZΓy − ẑ)
(8)

Using expression (8) it is straightforward to verify that, in
nominal conditions, observer (6) guarantees the asymptotic
estimation of state x, as formalized below.

Proposition 1: Let us consider system (1) without any
output perturbation, that is φ ≡ 0. Let the initial condition
for the weight vector Γ(0) be such that ZΓ(0) ∈ C]. Then the
estimator (6)-(7) satisfies the asymptotic conditions

lim
t→∞

|x(t)− x̂(t)| = 0, (9)

lim
t→∞

Γ(t) = Γ(0)/|Γ(0)|. (10)

The reason for introducing the adaptive scheme (7) is the
attempt to design a sensor fault tolerant observer. For the
sake of simplicity and in order to allow the statement of
formal mathematical results, the fault φ is assumed to be
constant, i.e. a step vector:

φ(t) = 0 t < T0

φ(t) = φ? T ≥ T0
(11)

where T0 > 0 is the fault occurrence time. Consider the
compact set:

AΓ := {Γ ∈ Rp : hΓ := ZΓφ
? = 0 and |Γ| = 1}, (12)

which is undetermined as long as the fault φ∗ is unknown.
It is easy to see that, whenever the vector Γ of adaptive
weights tends to AΓ, one has ZΓy − ẑ ≈ H(x − x̂) and
hence the observer performances are recovered. The aim of
this study is to investigate under what conditions the set AΓ

results to be attractive for state Γ of the dynamical system
(7) interconnected with the error dynamics of the proposed
asymptotic observer. The following remark provides a first
class of faults that must be excluded from the analysis.

Remark 2: Suppose that φ∗ ∈ Im(Y ), in particular φ∗ =
Y w for some w ∈ Rq . Then one has

(Y TGΓY )−1Y TGΓφ
∗ = (Y TGΓY )−1Y TGΓY w = w.

As a consequence in this case the set AΓ reduces to the
empty set since one has ZΓφ

∗ = w for any admissible Γ. ◦
The above remark shows that when φ∗ ∈ Im(Y ), there is

a complete loss of authority from Γ. This fact motivates the
following assumption:

Assumption 2: The fault vector φ∗ does not belong to the
image of Y .



We notice that nonsingularity of the matrix Y TGΓY is
a necessary property to be able to evaluate the gradient
appearing in (7) and hence for the control architecture in (5)–
(7) to make sense. In this regard, we introduce an additional
assumption based on the following family of sets.

Definition 2: For any w ∈ Rq , we define the set Iw as

Iw = ker(Y T diag(Y w)),

and consider the class of admissible faults

Υ0 = {φ ∈ Rp : ker(Y T diag(φ)) ∩ Iw = 0 ∀w ∈ Rq}.
Assumption 3: The fault vector φ∗ verifies φ∗ ∈ Υ0.
Lemma 2: Under Assumption 2 and Assumption 3, for all

Γ∗ ∈ AΓ, matrix Y TGΓ∗Y is nonsingular.

Remark 3: We notice that the set Υ0 is not a linear
subspace, but a generalized cone with vertices in the origin.
As a matter of fact, for any α ∈ R and φ1, φ2 ∈ Υ0 one has
αφ1 ∈ Υ0 and αφ2 ∈ Υ0, while the inclusion φ1 +φ2 ∈ Υ0

in not guaranteed. ◦
Remark 4: When q = 1, the condition φ∗ ∈ Υ0 is always

verified whenever φ∗ /∈ Im(Y ). When instead q = p − 1
and φ∗ /∈ Im(Y ), the inclusion φ∗ ∈ Υ0 is enforced when
rank(Y T diag(φ∗)) = q and

ker(Y T diag(φ)) ∩ {Γ : Γj > 0 ∀j} 6= 0.

◦

IV. LOCAL ASYMPTOTIC STABILITY

We are interested in the stability analysis for the dynamics
of the estimation error x−x̂, coupled with the adaptation law
for Γ. In particular, in this section we will study the local
asymptotic stability property of an attractor for the closed-
loop dynamics (6)-(7), wherein we have that the estimation
error is zero and the state Γ belongs to set AΓ (this attractor
is defined below in (14)).

We first exploit a helpful property, which allows to express
the difference ZΓy− ẑ in terms of the error e and the steady-
state fault value φ∗. Observing that, for t ≥ T0, the output
of the system verifies y = Cx + φ∗ = Y Hx + φ∗, it is
straightforward to infer that

ZΓy − ẑ = Hx−Hx̂+ ZΓφ
∗

= He+ ZΓφ
∗ =: He+ hΓ.

Moreover, the diagonal matrix in (8) satisfies the nice equiv-
alence
diag(y − Y ZΓy) = diag(Y Hx+ φ∗ − Y ZΓ(Y Hx+ φ∗))

= diag(φ∗ − Y ZΓφ
∗),

where the identity ZΓY = I has been used. The following
property is useful to show that the dynamics of hΓ := ZΓφ

∗

is independent of the norm of Γ.
Lemma 3: Let Γ be such that det(Y TGΓY ) 6= 0, and

φ∗ ∈ Rp. Then it holds
∂ZΓφ

∗

∂Γ
Γ = 0.

To suitably characterize desirable properties of the ob-
server (6)-(7), we define the estimation error as e := x − x̂
and compute the closed-loop error dynamics, resulting in:

ė = (A− LH)e− LhΓ

ḣΓ = −2κφ|det(Y TGΓY )|WT (Γ)W (Γ)(He+ hΓ),
(13)

where we have used the equalities (also from Lemma 3):

ḣΓ =
∂ZΓφ

∗

∂Γ
Γ̇, κΓ(1− |Γ|2)

∂ZΓφ
∗

∂Γ
Γ = 0,

and we have set

W (Γ) := diag(φ∗ − Y hΓ)Y (Y TGΓY )−1.

In light of the nonlinear error dynamics (13) we can now
formally state the goal of this section, which is to establish
conditions for local asymptotic stability of the following
compact attractor:

A := {(e,Γ) : e = 0 and Γ ∈ AΓ}, (14)

where AΓ has been defined in (12).
To establish some reasonable conditions for local asymp-

totic stability of A, consider now any Γ∗ ∈ AΓ. Then we
get: diag(φ∗ − Y hΓ∗) = diag(φ∗) from which we obtain

WT(Γ∗)W (Γ∗)

= (Y TGΓ∗Y )−1Y T [diag(φ∗)]2Y (Y TGΓ∗Y )−1,

where the two inverses exist from Lemma 2, as long as
Assumptions 2 and 3 hold.

Motivated by the above equation and to simplify the
stability analysis, we restrict the attention to the following
class of faults:

Assumption 4: The fault vector φ∗ satisfies

φ∗ ∈ Φ0 := {ϕ : det(Y T [diag(ϕ)]2Y ) 6= 0}. (15)
Restricting the attention to faults satisfying Assumption 4

is not a necessary assumption for exponential stability of
A (for example, consider the case φ∗ = 0 characterized in
Proposition 1), but is a useful starting point to provide some
conditions for the existence of strict Lyapunov functions. In
particular, for each φ∗ ∈ Φ0, due to the fact that set AΓ is
compact and from the non-singularity condition established
in Lemma 2, it is possible to find two positive scalars µmin

and µmax such that for all Γ ∈ AΓ,

µminI ≤ κφ|det(Y TGΓY )|WT (Γ)W (Γ) ≤ µmaxI. (16)

This uniform positive definiteness property is especially
useful if one considers a candidate Lyapunov function for the
feedback interconnection (13) arising from some weighted
sum of the two unperturbed systems, namely a Lyapunov
function selected as:

V (e, hΓ) := eTPe︸ ︷︷ ︸
:=Ve(e)

+ ζ1h
T
ΓhΓ︸ ︷︷ ︸

:=VΓ(Γ)

+ζ2(1− |Γ|2)2, (17)

where the two composing functions Ve and VΓ are good
Lyapunov functions for the non-interconnected system. More
specifically, matrix P can be selected as the solution to the
following Lyapunov equation:

(A− LH)TP + P (A− LH) = −I, (18)

which always exists as long as Assumption 1 holds (note that
more general choices may lead to less conservative stability
conditions, but we regard this as future work with respect to
this preliminary conference submission).

The arising local asymptotic stability result requires a spe-
cific inequality on the quantities defined above, as formalized
in the next theorem. While this is a difficult condition to



check in general, we provide next a corollary discussing a
special case when this condition is automatically satisfied.

Theorem 1: Suppose that the steady-state fault value sat-
isfies the inclusion φ∗ ∈ Φ0 ∩ Υ0 and φ∗ /∈ Im(Y ). If the
following condition holds:

4ζ1µmin > (|PL|+ ζ1|H|µmax)2, (19)

then attractor (14) is locally asymptotically stable for the
closed-loop error dynamics (13).

Corollary 1: If matrix A is Hurwitz, then condition (19)
always holds for a sufficiently small gain L and a sufficiently
small scalar ζ1. Therefore, attractor A is locally asymptoti-
cally stable.

Remark 5: The proposed technique also works reasonably
well with time-varying faults φ(t) even though we do not
establish formal results for this case. In particular, when φ is
non-constant, parameters Γ(t) aim at achieving some kind of
output error attenuation. This generalization may be a key to
enlarge the class of admissible faults. Indeed, the class Φ0

introduced in (15) may appear quite restrictive. However,
from a practical point of view, the presence of noise in
the measurements provides a persistence of excitation (PE)
condition that can help the adaptation law to keep running
even when the particular fault φ∗ would make the matrix
W (Γ) become singular at certain time steps. Such a nice
feature will be clearly illustrated in the simulation tests of
Example 2, where a fault φ∗ affecting a single sensor is
considered, thus leading to det(Y T [diag(φ∗)]2Y ) = 0 as
long as matrix Y has column dimension larger than 1. In that
case, fault rejection is obtained due the presence of additive
noise on φ∗. ◦

V. A SIMULATION STUDY

Let us consider a plant corresponding to (1) described by
the following matrices:

A =

[ −1 3 0
0.1 −5 0.4

0 0 −5

]
, B =

[
1
0
−1

]

C = Y H, Y =

[
1 1
1 0
2 1

]
, H =

[
1 0 0
0 1 0

]
Since matrix A is Hurwitz, for the sake of simplicity and

without loss of generality, no control input has been consid-
ered in the simulations, i.e. u ≡ 0. The same transient for the
error dynamics would clearly be obtained for any nonzero
selection of u. A bounded noise term affecting the outputs
has been implemented in all the simulated scenarios to better
illustrate the applicability of the result. For simplicity, in all
our simulations, the gains κφ, κΓ have been chosen equal to
the same value κφ = κΓ = κ.

Example 1: Let us first assume that a sensor fault φ(t)
occurs in the system according to the following scheme

φ(t) =

{
0 t < 60
φ∗ t ≥ 60

with φ∗ = [3 0.5 − 1]T . We select two different observer
gains

L1 =

[
6 2.7

−0.2 −1
−0.2 −5.1

]
, L2 =

[
8 2.9

−0.1 8
−1.4 37.5

]
, (20)
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Fig. 1. Example 1: estimation error for three different cases: no adaptation,
slow adaptation and fast adaptation.
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Fig. 2. Example 1: pseudo-inverse weights for slow and fast allocation.

corresponding to a slower and a faster estimator. Moreover,
we have considered two different learning rates in the adap-
tation law, namely:
• slow allocation, κ = κslow = 1,
• fast allocation, κ = κfast = 10.

In both cases, the initial weight vector has been chosen as
Γ(0) = 1√

3
[1 1 1]T , this being a natural choice corresponding

to an equally distributed use of the sensors with |Γ(0)| = 1.
The norms |e| of the estimation errors in various scenarios

are plotted in Figure 1. As expected, when no output alloca-
tion is implemented, namely when κ = 0, the performance of
the observers is corrupted by the fault effect: this is evident
from the upper picture where the error |e| remains nonzero
both with the fast observer gain L1 (magenta) and the slow
observer gain L2 (blue) in (20). Conversely, adjusting the
pseudo-inverse weights according to the proposed adaptation
law, the estimation of the system state is achieved notwith-
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Fig. 3. Example 1: pseudo-inverse weights for slow and fast allocation.
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Fig. 4. Example 1: norm of the error signal hΓ (zoom).

standing the presence of the fault (see middle and bottom
pictures). It is noticeable how the performances change as
the parameters for the observer and the adaptation law vary.
In particular, even though stability has been proved based on
the assumption of A being Hurwitz, it is interesting to note
that the convergence rate depends indeed on the choice of
the gain L and not only on the open-loop properties of the
plant. A zoom of the bottom traces of Figure 1 is plotted in
Figure 2, in order to highlight the transient of the estimates.
It is not surprising that the fast observer gain L1 (magenta)
injects a larger transient in the error dynamics, as compared
to the slow observer gain L2 (blue). Moreover, comparing
the two sub-figures one sees that the fast allocation is more
effective at reducing peaks and transients.

The evolution of the dynamic weights Γ is shown in
Figure 3 for all the different scenarios. One can notice that
the steady-state of the weights is approximately the same for
both observer gains L1 and L2 and for both learning rates
κslow and κfast. The decreasing behavior of the error signal

0 20 40 60 80 100 120 140 160 180 200
0.998

0.9985

0.999

0.9995

1

1.0005
slow allocation

0 20 40 60 80 100 120 140 160 180 200
0.9997

0.9998

0.9998

0.9999

0.9999

1

1
fast allocation

time (s)

 

 

slow observer

fast observer

Fig. 5. Example 1: norm of the weights vector Γ.

hΓ after the fault occurrence is depicted in Figure 4, while
Figure 5 is a plot of the norm of the vector Γ.

Example 2: In order to further illustrate the efficiency and
the potential capabilities of the proposed dynamic pseudo-
inverse method, we consider now a second example where
the fault affects only one sensor

φ(t) =

{
0 t < 85
φ∗ t ≥ 85

with φ∗ = [0 4 0]T . The aim of this example is to
illustrate that the proposed technique can work well also
in the presence of time-varying faults (see the discussion
in Remark 5). Moreover, we show that having a time-
varying fault may become a key feature to handle one of
the critical cases examined in Remark 5, where the matrix
W (Γ) is rank deficient and hence W (Γ)TW (Γ) is only
positive semidefinite. We consider the same two observer
gains in (20) as in the previous example, and a learning rate
κ = κslow = 1. The results are shown in Figures 6-10. We
notice that, even though the considered fault is not in the
class Φ0, thanks to the persistence of excitation guaranteed
by the presence of noise in the outputs, the adaptation law
is still working properly and the fault accommodation in
the state estimation process is successful (see Figure 6, and
Figure 7 for a zoom). As expected, the weight γ2 converges
to zero in order to cancel the effect of the fault: this is clear
from the picture in Figure 8. Moreover, as shown respectively
in Figure 9 and Figure 10, the norm of the injected signal hΓ

is rapidly decreasing and the norm of Γ is kept essentially
constant before and after the fault occurrence.

VI. CONLCUSIONS AND FUTURE WORK

A new paradigm has been proposed based on a pseudoin-
verse with adaptive weights when designing linear Luen-
berger observers in the presence of redundant measurements
for linear plants. The proposed scheme is successful at reject-
ing certain constant faults affecting the sensor measurements
as long as certain geometric conditions are satisfied for the
fault under consideration. Several simplifying assumptions
have been made in this preliminary work, including some



rank condition on the fault that could be removed in future
extensions. We also regard as future work proving global or
“in the large” asymptotic stability results, as we only prove
local asymptotic stability properties in this note.
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Fig. 6. Example 2: estimation error with and without allocation.
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Fig. 7. Example 2: estimation error with allocation (zoom).
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Fig. 9. Example 2: norm of the error signal hΓ (zoom).
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