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Identification and Vibration Attenuation for
the Parallel Robot Par2

Luiz R. Douat, Isabelle Queinnec, Germain Garcia, Micaël Michelin, François Pierrot and Sophie Tarbouriech

Abstract—Par2 is a two-degree-of-freedom parallel robot de-
signed for high-speed and high-accuracy industrial pick-and-
place operation tasks. As a result of the high acceleration trajec-
tories, the end-effector undergoes some undesirable vibrations
after reaching the stop positions, compromising its precision
and leading therefore to an increase in the operation cycle
time. Accelerometer sensors placed on the end-effector and
piezoelectric patch actuators wrapped around the robot arms
are employed in order to actively reduce these vibrations in
a non-collocated closed-loop setting. After submitting the robot
to an identification procedure, the obtained nominal model is
used to synthesize a reduced order controller with the H∞ Loop
Shaping technique. Performance analysis as well as simulation
and experimental results exhibit that vibration reduction is
achieved around the nominal operating point, but fails for some
extreme operating points, due to high control efforts. An anti-
windup strategy is then employed to deal with the saturation of
the actuator, which allows to achieve vibration attenuation on the
whole operation domain, for a given configuration of the robot
at the stop point.

Index Terms—High-speed parallel robotics, robust control,
vibration attenuation, piezoelectric actuators, saturation, anti-
windup.

I. INTRODUCTION

In the context of industrial handling and assembly tasks,
the increasing demand for productivity imposes more and
more strict requirements in terms of production cycle times.
Lighter than their serial counterparts, parallel robots [24] are
able to accomplish the desired trajectories faster and with a
better precision. For pick-and-place operations, these higher
trajectory accelerations demand correspondingly higher decel-
erations each time the end-effector reaches some stop position,
giving rise to undesirable vibrations and therefore impairing
the positioning accuracy. The gain obtained in reducing the
trajectory time by using higher accelerations is thus countered
by an increase in the residual vibration levels after reaching
the stop positions.

For minimizing these vibrations, different measures could
be undertaken:

1) Improvement of the robot design (light but stiff robot
links) [5], [22];
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2) Optimization of the pick-and-place trajectory, avoiding
inflection points in the higher successive position deriva-
tives [6], [11];

3) Active vibration control during the trajectory by means
of the motor magnetic moments [7], [21];

4) Active vibration control during the trajectory by means
of piezoelectric actuators [13], [14]. This case is of
particular interest when the vibrations may induce haz-
ardous consequences to the robot during the trajectory;

5) Active vibration control at the stop positions by means of
piezoelectric actuators [15], [25], [29]. According to the
type and placement of the sensors and actuators in the
robot, two different architectures can be characterized:
collocated and non-collocated. In the non-collocated
case [30], [34], addressed in this paper, different kinds of
sensors can also be used, as for instance accelerometers
[1], generally allowing better performances [37].
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Fig. 1. Parallel robot - Par2

Par2, depicted in Figure 1, is one such fast pick-and-
place two-degree-of-freedom parallel robot [3]. Despite its
very good stiffness properties, there are still some remaining
vibrations showing up at the end of each trajectory, which are
measured by means of three orthogonally oriented accelerom-
eters (in X , Y and Z directions) placed on the end-effector.
Given that these vibrations hinder the accurate positioning of
the end-effector at the stop positions, it is at these precise
points that active control is required. Following the strategy
adopted in [1], piezo-actuator patches are glued all along and
around the arms of Par2 in order to attenuate the residual
vibrations by means of the controlled deformation of the arms
(section II). The control objective is then to reject disturbances,
seen as the residual vibrations coming up just after the arrival
of the end-effector at a stop position, for various trajectories
and load conditions.
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In order to synthesize a control law, it is essential to have
first a representative model of the plant. Piezoelectric devices
generally exhibit nonlinear response behavior involving hys-
teresis, drift, creep, and/or time delay [19], which may be
critical in certain applications of high-precision positioning of
nano-devices. In the current work, however, we are mainly
concerned with the vibration response of the piezo-elements
further used to compensate for the vibrations induced by
the motion of the robot. Set as a black box connecting the
piezoelectric voltage (system input) to the measured end-
effector acceleration (system output), a system identification
procedure is performed using state subspace techniques [20],
leading to the production of a nominal model of the system
[8] (section III).

Aiming at synthesizing a robust controller, capable of atten-
uating the vibrations generated at different operating points
(trajectories and load conditions), the H∞ Loop Shaping
strategy is employed (section IV). It differs from previously
published papers from the authors on the subject, where a
mixed sensitivity H∞ design strategy was considered [9], [10].
The current strategy is adopted here to benefit from its easy
implementation with robust and easily tunable filters.

For some operating points kept away from the nominal
point, saturation of the actuator may however induce a nasty
effect, from loss of performance to loss of stability. Then,
an anti-windup compensator strategy may be addressed as an
additional control loop on the closed-loop system, active only
when saturation occurs. Many different anti-windup design
strategies have been addressed in the literature [32], [39]. We
consider here a direct linear anti-windup compensator design,
and we restrict to the case of a simple static anti-windup gain
which acts on the output of the robust controller previously
designed (section V).

At each step of the whole control design procedure, sim-
ulations and experimental results are proposed to exhibit the
potential interest of the approach proposed in this paper.

II. PROBLEM STATEMENT

The manipulator end-effector trajectories (dash-dotted rep-
resentation in Figure 2), constrained to the xz plane between
stop positions Pos1 (x = 0.35 m, z = −0.925 m) and Pos2
(x =−0.35 m, z=−0.925m), are commanded by the so-called
active arms (those directly connected to the motors, Figure
1) while the passive ones hinder, as much as possible, the
perpendicular motions.

Pos1Pos2

X
Z

Fig. 2. Stop positions

The piezo-actuator patches are glued on those arms (Figure
3), and are labelled with letters A and P, given accordingly
to the active or passive characteristic of the arm. They are
PZT elements (PI, DuraAct P-876.A12) whose deformation
can be considered linear with respect to an input voltage
signal ranging from 0 to 400 V . Each piezo-actuator input
voltage signal is supplied by means of a high-voltage amplifier
(Walcher Electronik, HVA-400-100-ISO) with bandwidth of 8
kHz, that amplifies the -10 V to 10 V control signal sent by
the control unit (Adept, sMI6).

Fig. 3. Par2s arms equipped with the piezoelectric patches

Despite presenting vibrations during the whole pick-and-
place trajectory, their effects are problematic only when ampli-
fied by the high decelerations on the arrival at a stop position,
overly exciting some modes of the robot arms and translating
into loss of end-effector precision. These amplified vibrations
at the stop positions are called the disturbances to our system.
The accelerometers (BrüelKjaer, DeltaTron 4506) employed to
measure these vibrations are able to provide linear measures
up to 700 m/s2 (70 g) with a sensitivity of 100 mV/g and
frequencies between 0.3 Hz and 3 kHz. Before sending them
to the control unit, the accelerometer signals are filtered by a
charge amplifier (Endevco, Model 133) of 100 kHz bandwidth
and adjustable cut-off frequency.

The pick-and-place motions of the robot (from Pos1 to
Pos2 and vice versa) can be accomplished for many different
operating points. Each operating point is characterized by a
load on the end-effector (varying from empty to 3.5 kg) and
a particular trajectory peak acceleration (varying from 10 g to
30 g). Considering that the robot motor currents are limited to
30 A, the higher is the load on the end-effector, the lower is the
maximum acceleration allowed for a trajectory. The operating
points taken into account in this work, for which the residual
vibrations have to be reduced, are depicted in Figure 4, where
the upper circles represent the maximal pick acceleration for
each load condition.

Fig. 4. Operating points - load conditions and trajectories
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We consider in this work the case where the piezo control is
activated immediately after arriving at the stop position Pos2
(the residual vibrations observed at the stop positions Pos1
and Pos2 are symmetrical and, thus, only Pos2 is considered
here). For the control law synthesis, we first need to identify
a nominal open-loop dynamical system which connects the
piezo-actuator to the accelerometer. Such a model is associated
to a particular nominal operating point. We then want to
synthesize a robust control law, that is, a controller able to
reduce the vibrations not only for the nominal operating point,
but also for the largest set of uncertain model representations
around this point. We choose a 2.5 kg load with a 18 g
trajectory to be our nominal operating point and want to verify
the efficacy of its associated robust controller over the whole
space of selected operating points (Figure 4).

It was experimentally verified that, due to a much lower
damping factor, the residual vibrations in all desired operating
points are much more substantial in the Y direction. This
phenomenon is illustrated for the nominal operating point in
Figure 5, in the frequency domain, and in Figure 6, in the
time domain. Two experiments are plotted, dist 1 and dist 2,
to illustrate that they are reproducible. Figure 5 exhibits a low
damped flexible mode around 21.7 Hz in the Y direction. In
Figure 6, the disturbances in the Y direction between 0.01 s
and 1 s are far less damped than the disturbances in the other
two directions.
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domain

To control the acceleration in the Y direction, it is rec-

ommended to manipulate the piezo-element patches on the
passive arms (labelled with P), which are exactly provided
to limit those off-line vibrations. Then in order to remain as
simple as possible, rather than to consider a multiple input
system with one input associated with each passive piezo-
actuated arm, we prefer to select a pair of passive piezo-
actuated arms (namely P1P2 in Figure 1), jointly and equally
actuating and from now on considered as a single element, to
be our system input. We then consider a SISO control problem
and, moreover, we keep free the other piezo-actuators for a
potential future extension of the approach to the full MIMO
control problem.
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Fig. 7. Function block representation of the closed-loop system

According to the system representation of Figure 7, this
work can be initially divided into 3 steps. The first step,
briefly described above and presented in detail in [8], is the
characterization of the frequency spectra of the disturbance
signal d for the nominal operating point. The second step
concerns the open-loop identification of the nominal model G
from the piezo-actuator input voltage u to the accelerometer
in the Y direction (section III). The third set addresses the
design problem of a robust controller K capable of attenuating
the vibrations for the nominal operating point as well as for
all operating points represented in Figure 4 (section IV). It
is initially done without taking explicitly into account the
saturation of the voltage delivered to the piezo-actuator. Then,
the influence of this nonlinear element in the closed-loop may
be further studied (section V).

III. IDENTIFICATION

Dynamical model production can be either analytic or black-
box based. An analytic model is obtained based on physical
principles and allows a better comprehension of what is
happening inside the model. Its main disadvantages are the
often strenuous conceptual phase and the need of further exper-
imental parameter validation (data updating). If the dynamical
model is to be used only for control purposes, a fast-to-obtain
and easy-to-validate alternative is to employ black-box sys-
tem identification techniques. These identification techniques
deal with the problem of building mathematical models of
dynamical systems based only on its input-output data [20].
The validation of these models is often done by the comparison
in the frequency domain of the estimated model with a non-
parametric model obtained from the same input-output data. A
typically used non-parametric model in the frequency domain
is called ETFE (Empirical Transfer Function Estimate), given
by the division of the discrete Fourier transforms of the output
and input vector signals.
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We can classify the identification techniques into classical
methods and methods based on subspaces. The works of [20]
and [36] show that subspace identification methods allow an
easy extraction of good quality models. For that reason, the
open-loop models relating the piezo-actuator input voltage to
the accelerometer output of Par2 are identified based on one
of these subspace methods. The identification procedure is
performed twice, giving rise to two models: one used for
control synthesis and another for validation of the obtained
controller in computer simulations.

A. Subspace identification methods

Subspace identification emerged from the association of the
multivariable statistical analyses methods (stochastic realiza-
tion) from the 30’s and modern numerical linear algebra tools
like QR and SVD decompositions [16], [17]. Contrarily to
classical parameter identification methods as ARMAX and
Box-Jenkins [20], subspace methods allow to obtain a state-
space system representation based on the estimation of certain
subspaces from matrices formed with the input and output
experimental data vectors. Some advantages from subspace
methods over the classical ones are:
• Only the desired (expected) system order for the state-

space model must be provided as an entry parameter.
This unique-parameter feature makes subspace methods
easier to employ than their counterpart methods (classical
parametric methods of equivalent complexity, where the
polynomial orders have to be specified, usually require
from 3 to 5 tuning parameters);

• There are no nonlinear optimization problems. Subspace
methods are based on subspace matrices projections
without any parametric optimization procedure involved,
avoiding problems like local-minima and non-convexity;

• The method is directly expandable to multivariable sys-
tems and without the drawbacks of classical methods ap-
plied to MIMO systems which often give ill-conditioned
models and are usually very time demanding [4].

There exist many different subspace identification algo-
rithms: MOESP [35], IVM [38], CVA [18], N4SID [28], etc.
In this work the N4SID (Numerical algorithm For Subspace
IDentification) algorithm was employed because of its proven
applicability to the identification of vibration system models
[31], [26], [8].

In the N4SID algorithm, an extended observability matrix
of a system with state-space representation in some base
T is estimated through the input-output data vectors. This
observability matrix allows the extraction of a Kalman filter
state sequence which is then used to obtain, by means of the
solution of a least square problem, an estimate of the state-
space matrices of the original system in the same base T .

B. Open-loop piezo-actuator identification

For the identification procedure, a chosen input voltage
signal excited the resonant modes of the piezo-actuator P1P2.
The corresponding time response vibration was then stored
for the accelerometer measurements in the Y direction. These

input and output data vectors were pre-processed and used
to build a mathematical description of the piezo-actuator
dynamical behaviour, by means of the N4SID subspace identi-
fication algorithm. The identified model of the piezo-actuator
did not depend on the peak acceleration as the identification
experiments were performed with the end-effector initially at
rest at the position Pos2. On the other hand, it depended on the
load at the end-effector. We considered here the end-effector
with a nominal load of 2.5 kg. The experimental identification
set-up is summarized in table I.

TABLE I
EXPERIMENTAL IDENTIFICATION SET-UP

Signal type linear CHIRP
Signal sweep range 0 to 150 Hz
Signal duration 100 s
Sampling rate 1 kHz
Low-pass analogic 500 Hz
cut-off frequency (Nyquist frequency)
Low-pass digital 150 Hz
cut-off frequency

During the identification steps, a sampling rate of 1 kHz
was chosen after verification that the initially adopted 2 kHz
sampling rate led to stable but ill conditioned models (poles
very close to each other near the real value 1 in the unit
circle). According to the identification experiments performed
in [1] and [8], a chirp signal was used as input excitation. It
was experimentally verified that the highest main frequency
modes excited in the Y direction for all considered operating
points (Figure 4) did not surpass by far the limit of 30 Hz.
For that reason the chirp signal used was empirically chosen
to sweep linearly a five times larger spectrum (from 0 up to
150 Hz) during 100 s (sufficient to minimize the influence of
the sweeping transitory effects [20]). The output acceleration
signals were analogically low-pass filtered by the charge
amplifier with a cut-off frequency set to 500 Hz (Nyquist
frequency) before being stored. Despite the analogical filtering
process, the noise levels verified in the output data were
still considerable. Therefore, a digital 5th order low-pass
Butterworth filter with 150 Hz cut-off frequency was applied
to the input-output stored data, shown in Figure 8.
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Fig. 8. Data for mod ctrl 2.5kg - Input and output signals

The procedure was applied twice to obtain two input-output
data vectors. It has been checked that associate non-parametric
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frequency models show a good reproducibility between the
two experiments. They were then used to build two models,
initially named mod ini ctrl 2.5kg and mod ini sim 2.5kg. These
models were further reduced and became mod ctrl 2.5kg, used
for control synthesis purposes, and mod sim 2.5kg, employed
for validating the obtained controller in numerical simulations.

Let us consider the first set of input-output data. By using
the N4SID algorithm with different desired state-space model
orders, the obtained candidate mod ini ctrl 2.5kg models can be
seen in Figure 9 with also the non-parametric model directly
issued from the experimental data (NP model). Both amplitude
and phase are represented in this figure. Nevertheless, the
control technique adopted in this work is based on a worst case
amplitude criterion without any consideration to the phase.
This reason motivated our choice to present, from now on,
only the harmonic gain amplitudes.
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Figure 9 shows that the 40 order N4SID model was close to
the non-parametric model (used for validation) in the frequen-
cies of interest, being therefore the selected one. Considering
the high order of the model, a reduction procedure was then
performed in two steps, through techniques that preserve the
main dynamical properties of the original model. Note that it
is recommended to select a high-order model, then to reduce
it, as an original low-order model would not focus enough
on the low frequency part of the data, and would put too
much emphasis to the high frequency part related to noise
activity. In the first step of reduction, the high frequency modes
were suppressed. Under the assumption of linearity, all the
poles and zeros beyond the input signal excitation range were
considered to be noisy measurements and did not reveal any
information about the system. These singularities from 150 Hz
to 500 Hz were thus eliminated and the model was reduced
to a 22 order model. The second step consisted in rewriting
the resulting system in a new base, called balanced, where
the controllability and observability gramians were equal and
diagonal. This realization allowed to isolate the states that
less contributed to the output system dynamics. Once isolated,
these states could be eliminated with, for instance, the singular
perturbation model reduction method [12].

After writing the 22 order model in a balanced realization,
a Hankel singular value analysis shows, in Figure 10, that the
first 14 Hankel singular values correspond to 96% of the model

energy. Using the singular perturbation reduction method it is
therefore reduced to a 14 order model, being now called mod
ctrl 2.5kg.
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Fig. 10. Hankel singular values for the partially reduced model mod ini ctrl
2.5kg of order 22

The same procedure of identification and reduction was
applied also to mod ini sim 2.5kg (respectively mod sim 2.5kg).
Considering that the model for simulation shall be more
informative than the model for control synthesis, the N4SID
method was applied to mod ini sim 2.5kg using a conservative
order of 80. The high frequency modes were suppressed and
the model order was reduced to 43. After a balanced realization
followed by a singular perturbation reduction method the final
mod sim 2.5kg model obtained was of order 30 (corresponding
to 98% of the energy of the partially reduced 43 order mod
ini sim 2.5kg model).

The non-parametric frequency model, compared to both
mod ctrl 2.5kg (for control synthesis) and mod sim 2.5kg
(for controller validation in numerical simulations) models is
shown in Figure 11.
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Fig. 11. Models mod ctrl 2.5kg (order 14) and mod sim 2.5kg (order 30)

The models mod ctrl 2.5kg and mod sim 2.5kg were identi-
fied in the discrete time domain. However, the MAT LAB R©
function (hinfsyn from the Robust Control Toolbox) used
further on to synthesize the H∞ control law is available only
for the continuous time case. This reason together with the fact
that the visual analysis of poles and zeros is often easier in the
continuous time domain prompted us to convert the discrete
time models into the continuous time. These conversions were
done by using a Tustin bilinear transformation [27]. Figure
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12, comparing the model mod ctrl 2.5kg in the discrete and
continuous time, shows that the approximation is valid.
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IV. H∞ LOOP SHAPING CONTROL

A. The H∞ Loop Shaping Design Procedure

Traditional loop shaping techniques are mainly based on
the fact that, under certain assumptions, the magnitude of
the open-loop gain can approximately determine the behavior
of the associated closed-loop transfers. The uncertainties are
represented acting on the normalized coprime factors of the
nominal model and the robust closed-loop objectives are
established in terms of (desired) shaped open-loop singular
values [23], [40]. The control performance goals are usually
to reduce the magnitude of the sensitivity function S in some
desired (normally low) frequency ranges, while preventing
high control signals in high frequencies, which could lead
to noise amplification, saturation and, in the particular case
of resonant systems, the spillover phenomenon (excitation of
non-modeled high frequency resonant modes).

Based on this objectives and taking into account Figure 13,
the H∞ LSDP can be described in four steps:

GW1 W2

KS

GS

Fig. 13. Loop Shaping Design Procedure (LSDP) scheme

1) Choose the filters W1 and W2 to shape the desired
open-loop system GS from the nominal model G (GS =
W2GW1). The filters are chosen accordingly to the pre-
viously mentioned principles for conforming the desired
S and KS closed-loop functions;

2) After a normalized coprime factorization of the obtained
model GS, find the robust controller KS that stabilizes
the closed-loop system for the largest possible set of

uncertainties (associated to a stability margin ε) acting
on the coprime factors [23]. This is done by solving the
H∞ problem:

min
K

∥∥∥∥[ W−1
1

W2G

]
(I−KG)−1 [ W1 GW−1

2

]∥∥∥∥
∞

3) If the resulting stability margin ε is greater than 0.2,
the frequency response of KSW2GW1 is close to that
of W2GW1 [23], and we can conclude that our shaped
function GS is close to the open-loop gain KSW2GW1;

4) In this case, the controller K of the original system can
be recovered as K =W1KSW2.

B. Controller design and experimental validation

As we are dealing with a SISO system, only the W1 filter
is considered for the GS shaping in the LSDP (the W2 filter
can be set to 1). The GS function is shaped to favour both
high gains at low frequencies, implying a reduced S at these
frequencies, and a decreasing slope at the higher frequencies,
to prevent high amplitude signals and the spillover effect. The
W1 filter is chosen as

W1 =
0.055(s+300)(s+1600)2

(s+100)3 (1)

and its effect on the nominal mod ctrl 2.5kg model is shown
in Figure 14.
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Fig. 14. LSDP open-loop ponderation

Applying the LSDP, a controller KA of order 19 is obtained.
This controller is further reduced to a 4 order controller, named
KAr, by using a balanced realization followed by a singular
perturbation reduction method. It is defined by

KAr =
−0.44(s2 +9s+1.32e4)(s2−232s+4.2e5)
(s2 +159s+6987)(s2 +29.6s+1.48e4)

(2)

The comparison between KA and KAr is illustrated in Figure
15, showing a good correspondence in the desired frequency
range.

The sensitivity function SAr for the nominal simulation
model (mod sim 2.5kg) with the reduced order controller KAr
is given in Figure 16, showing that frequencies around 21.7
Hz (corresponding to the main Y direction disturbance mode
shown in Figure 5) should be well attenuated.
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The frequency spectrum of the open-loop response for
the nominal operating point is compared in Figure 17 with
the spectra obtained in closed-loop numerical simulation
and experimental results. The noticeable vibration attenuation
associated to the good correspondence between simulation
and experimental result attest the efficiency of the proposed
controller for the nominal operating point. Accordingly, time
domain responses and control signals are illustrated in Figures
18 and 19.
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Fig. 17. Experimental results - Robot with 2.5 kg and reduced controller
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We consider now the experimental validation of the con-
troller KAr applied to all operating points of Figure 4. The
performance criterium adopted to measure attenuation is based
on the RMS acceleration value [2]. The percentage reduction
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Fig. 18. Experimental results - Robot with 2.5 kg and reduced controller
KAr - 18 g trajectory - Simulated and experimental responses
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of vibrations (during the first two seconds immediately after
reaching stop position Pos2) in the Y direction of the closed-
loop RMS acceleration with respect to the open-loop RMS
acceleration is illustrated in Figure 20.
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From Figure 20 we can observe that the closed-loop re-
sponses with the controller KAr are better attenuated than those
in open-loop for all but two cases. These exceptional limit
cases correspond, first, to the system with a 3.5 kg load and a
trajectory of 15 g (representing a 3.6% closed-loop vibration
augmentation), and second, to all situations without load. This
second limit case is not even represented because the controller
brings the system to instability for all trajectories. The two
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limit cases have their time responses respectively represented
in Figures 21 and 22. We can observe in both figures the
important saturation levels leading, in the first limit case, to
performance degradation and, in the second limit case, to
system instabilities (illustrated for 10 g, 20 g and 30 g).
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Fig. 21. Experimental results - Robot with 3.5 kg and controller KAr - 15 g
trajectory - Time response and control signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

−10

0

10

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

0

10

 

 

A
cc
Y
(m

/s
2
)

Time (s)

C
o
n
tr
o
l
si
g
n
al
(V
)

10 g trajectory

20 g trajectory
30 g trajectory

Fig. 22. Experimental results - Robot without load and controller KAr - 10
g, 20 g and 30 g trajectories - Time response and control signal

V. SATURATION ISSUES AND ANTI-WINDUP
COMPENSATION DESIGN

The experimental results obtained with the controller KAr
have brought out that, despite attenuating the disturbances
for almost all chosen operating points, there are still some
remaining limit cases where this controller is not efficient. The
stability and performance problems for these limit cases are
associated with the high control signals delivered by the con-
troller, which induce saturation of the actuator. This can also
be exhibited thanks to a stability analysis of the closed-loop
saturated system in presence of exogenous energy-bounded
disturbance (see [32], Chapter 3, Proposition 3.14), consid-
ering explicitly that the input of the piezo-actuator model is
subjected to amplitude saturation −u0 ≤ u(t)≤ u0, u0 = 10V .
For an a priori given bound on the disturbance, i.e., for a
disturbance belonging to the set1

W =

{
w : [0,∞)→ℜ

q ;
∫

∞

0
w(τ)′w(τ) dτ ≤ δ

−1
}

1x′ denotes the transpose of vector x.

one can evaluate the L2 performance gain γ between the
disturbance and the output acceleration of the end-effector.
Results are summarized in Table II, both for the saturation-
free case (second column) and for the saturated input case
(third column).

We can check that, as expected, the controller KAr, designed
without taking saturations into account explicitly, ensures
excellent results for the nominal model in the unconstrained
case (γ=0.08). As the actuator is actually subject to saturations,
the saturated case (third column) exhibits that, for the nominal
case, vibrations should not be amplified (γ=1.00) but the
expected performance is much reduced. When the load is
changed (reduced to 2kg or increased to 3.5kg), the expected
performance is degraded as well for the unconstrained case
and for the saturated case. This is observed experimentally,
i.e. the disturbance is not attenuated but amplified in the
higher load case (Figure 21). Moreover, the controller KAr is
definitively not appropriate when the robot does not carry any
load (γ=165.27 without limitation and the problem is even
infeasible in presence of limitations of the actuator). This
explains the loss of stability experimentally observed (Figure
22) in that case.

At that point, one option may be to design another controller
with the LSDP such as to reduce the control signals and avoid,
as much as possible, saturation of the piezoelectric actuator.
This is for example the case of controller KBr, designed
with the W1 weighting filter selected such as to reduce the
gain from 0.2 to 0.1. Such a solution however also reduces
the disturbance attenuation performance around the nominal
operation point (see Table II, column 5, where the nominal
attenuation at 2.5kg is increased from 0.08 with KAr to 0.23
with KBr). This is also illustrated in Figure 23, which exhibits
that the vibration attenuation with the second controller is
increased with respect to the open-loop behavior for all the
operating points of Figure 4, even for the limit cases, but
is decreased at (and around) the nominal operating point for
which have been designed the controllers.
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Fig. 23. Experimental results - Percentual RMS acceleration reduction during
the first 2 seconds - Closed-loop system with the controller KBr in relation to
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As an alternative, we propose to build an additional anti-
windup compensator, which does not modify the performance
of the nominal controller when no saturation occurs and only
acts when the saturation becomes active. A similar anti-windup
strategy has been already considered for active vibration
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isolation systems in a slightly different problem [33], and
proved its efficiency.

The anti-windup strategy employed in this paper is fully
described in [32] (Chapter 7, Proposition 7.4) and briefly
commented here. Let us go back to Figure 7 and consider
now an anti-windup compensator block acting on the controller
KAr(s). The state-space dynamics controller KAr(s), between
the acceleration y of the end-effector (input of the controller)
and the controller output yK is then modified as follows:{

ẋK(t) = AKxK(t)+BKy(t)+ vx(t)
yK(t) =CKxK(t)+DKy(t) (3)

where the additional input vx(t) allows to introduce the con-
troller’s anti-windup correction factor in the dynamics of the
controller. In a static strategy, it is defined as

vx(t) = Dx
aw(u(t)− yK(t)) (4)

i.e., it uses the error between the real input u(t) = sat(yK(t))
and the output of the controller yK(t) to compute the anti-
windup action. Considering the piezo-actuator model identified
with a 3.5 kg load, the nominal controller KAr, the disturbance
bound δ = 0.2 and the bound u0 = 10, one computes the static
anti-windup compensator

Dx
aw = [−0.3032 −0.1134 −0.0368 −0.1694]′ (5)

Roughly speaking, the associated L2 performance gain γ is
improved (Table II, column 4) with respect to the saturated
case without anti-windup (Table II, column 3), although the
values remain larger than one. It may be checked in Figure
24 that the anti-windup closed-loop system now attenuates
the vibration in this operation point (3.5kg load and 15g
acceleration).
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Fig. 24. Experimental results - Robot with 3.5 kg and controller KAr +
anti-windup - 15 g trajectory - Time response and control signal

To go further, one can check that, with the same anti-
windup gain, vibrations are also attenuated in the case of
the robot without load (see Figure 25). Moreover, using this
solution where the anti-windup action is only active when the
input saturates, the vibration attenuation is unchanged for all
the other operating points where the actuator almost never
saturated.
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VI. CONCLUSIONS AND FUTURE WORKS

This work presented the results obtained for the piezo-
actuated robust vibration attenuation of a high-speed and
high-accuracy pick-and-place parallel robot in a set operating
pointsdescribed by the peak accelerations and loads and for a
given configuration of the stop position.

First, based on well reproducible experimental data, the
N4SID subspace identification algorithm was used to estimate
models for the piezo-actuator in a nominal operating point.
A controller was synthesized by employing the H∞ Loop
Shaping Design Procedure to the nominal model. This con-
troller was capable of attenuating the vibrations for almost all
operating points. In the other operating points (limit cases),
the high control signals saturated the system input, leading,
as a consequence, to loss of performance and, in some
cases, even to loss of stability. Then, rather than designing
another less active controller able to prevent, as much as
possible, saturating signals, we have added a static anti-windup
compensator to alleviate the malicious effect of saturation.
Fair performance level has been observed in such a case in
experimental evaluations on the whole domain of operation.

The results obtained underline the feasibility of such strat-
egy involving piezoelectric patches on the arms of the robot
for vibration attenuation during high-speed pick-and-place
movements of the parallel robot. They pave the way for future
evaluation of the strategy from an industrial point-of-view, in
a MIMO context and for different configurations of the stop
point. Actually, if the robot configuration at the stop point is
changed, then one can expect that the model will not be any
more valid. Either one can design a controller for each possible
configuration Pos2 (if the robot is used within a limited and
a priori given set of configurations) or the control design has
to be robust to the set of configurations.
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TABLE II
PERFORMANCE ANALYSIS OF THE CLOSED-LOOP SYSTEM (FOR δ = 0.2)

controller KAr controller KBr

model γ

unconstrained
γ

with saturation
γ

with saturation and AW
γ

unconstrained
empty 165.27 unfeasible unfeasible 77.72

2kg 0.52 1.98 1.09 0.77
2.5kg 0.08 1.00 0.75 0.23
3.5kg 0.80 1.97 1.45 1.02


