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Abstract—We consider the problem of hyperspectral cube
reconstruction with a new controllable imaging system. The
reconstruction with a small number of images acquired with
different configurations of the imager avoids a complete scanning
of the hyperspectral cube. We focus here on a quadratic penalty
reconstruction approach, which provides a fast resolution thanks
to the high sparsity of the involved matrices. While such a regu-
larization is known to smooth the restored images, we propose to
exploit the system capability to acquire the panchromatic image
of the scene, to introduce prior information on the sharp edges
of the image, leading to a fast and edge-preserved reconstruction
of the image.

I. INTRODUCTION

Hyperspectral (HS) Imaging, that is, acquisition of images
with a large number of narrow spectral bands, has applications
in numerous contexts. Conventional HS imaging technologies
proceed by spatial or spectral scanning: they are not instan-
taneous and are restricted to the acquisition of static scenes,
where the imager is either static or follows precisely controlled
motions in the case of spatial scanning.

To circumvent this limitation various snapshot devices were
proposed [1]. Some require complex optical systems, which
include, for example, a series of imagers mounted behind a
series of dichroic mirrors or spectral filters. Others exploit
reconstruction algorithms using a spatio-spectral mixture of
the HS cube obtained through an optical system defined
once and for all, at the design phase. In the latter case, the
acquisitions of the three-dimensional structure of the cube
made by a two-dimensional matrix, necessarily induces a
loss of spatial and/or spectral information. The reconstruction
algorithms then require assumptions on the scene, and are
expensive in computing resources. In addition, these systems
require an accurate spatio-spectral calibration.

In this article we are interested in the reconstruction of
hyperspectral cubes using a recently proposed device [2]. This
imager has a dual disperser configuration analogous to the
one presented in [3]. It does not suffer from any dependent
wavelength shift effect thanks to co-location property: all the
spectral components of a given spatial position (x,y) in the
cube are imaged at the same point on the CCD. Besides, it is
programmable via the control of a matrix of micro-mirrors
(Digital Micromirror Device, DMD). This allows the defi-
nition of adaptive acquisition schemes, i.e. that sequentially
adapt the DMD configurations to the spectral content of the

observed scene. For these acquisition schemes to be relevant,
the reconstruction step at each iteration needs to be as fast as
possible, ideally in real time. To implement such schemes, it
is thus necessary to be able to reconstruct an HS cube from a
small number of acquisitions in different configurations, at a
reduced computation cost.

Section II presents the device and its optical and numerical
modeling. In section 3, we address the reconstruction of an
HS cube using quadratic regularization, fast and adapted to the
system properties. Due to the size of the sparse matrices in-
volved in the reconstruction process, typically 30.106×30.106

for a 1Mpixel-image with 30 spectral bands, a straightforward
inverse is not feasible. In section 4 we expose the implemen-
tation of an alternative iterative algorithm CGNE (Conjugate
Gradient for Normal Equations) and the speed up gained
owing to the characteristics of the device. Finally, we present
some reconstruction results obtained by simulating the device
to acquire data from a HS cube.

II. DEVICE MODELING

A. Acquisition device

The device described in [2], is composed of two symmetri-
cal 4f -lines (assembly of two lenses and a diffraction grating),
separated by a DMD placed in the plane of symmetry as
shown in Fig. 1. Each of the micro-mirrors of the DMD can
be configured to transmit or block the incoming light, thus
performing a spatial filtering of the signal. The first 4f -line
behaves as a spectrometer with a completely open slit that
outputs a diffracted image of the observed scene, which is
then spatially filtered accordingly to the micro-mirrors config-
urations of the DMD. The joint effect of the first 4f -line and
the micro-mirrors, is thus equivalent to a spatio-spectral filter
completely characterized by the DMD configuration. Finally,
the second 4f -line compensates the diffraction introduced by
the first one: it cancels the wavelength-dependent shift and
untangles the spatial and spectral components reaching the
CCD. So, in the particular case where all the DMD mirrors are
open, the CCD captures a panchromatic image of the observed
scene.

B. Optical modeling

This section describes the different transformations that
the image undergoes in the optical system, by modeling the



Figure 1. Principle of the device for one line (x, λ) of the HS cube. Lines
are independent.

propagation along the instrument of the spectral density of the
observed object S0(x0, y0, λ), where x0 and y0 represent the
location of a pixel on the plane and λ is the wavelength.

We denote by Sn(xn, yn, λ) the spectral density of the
object at the n-th plane of the device. Owing to the device’s
geometry each (x, λ) line of the HS cube is independent of
others. Therefore, in the following, the variable y will be
omitted and the one-dimensional spectral density (along the x-
axis) Sn(xn, λ) located at the n-th plane, as shown in Fig. 1,
will be considered instead. We denote T (x) the transmittance
of the DMD:

T (x) ,
K∑
k=1

tk11∆(x− x̃k)

where x is the position on the DMD’s plane, x̃k and the
boolean variable tk represent respectively the location and
the state of the k-th micro-mirror of the DMD, 11∆ is a gate
function of support [−∆/2,∆/2], where ∆ is the width of the
micro-mirrors, and K is the number of micro-mirrors.

The spectral density S1 of the scene before the DMD is:

S1(x1, λ) =

∫
δ(x0 − [x1 + α(λ− λc)])S0(x0, λ) dx0

= S0(x1 + α(λ− λc), λ),

where the central wavelength λc represents the wavelength
of the light propagating along the system’s optical axis and
the coefficient α represents the spectral dispersion of the
system along the x-axis. After passing through the DMD of
transmittance T (x), the density becomes:

S2(x2, λ) = T (x2)S1(x2, λ)

=

K∑
k=1

tk11∆(x2 − x̃k)S0(x2 + α(λ− λc), λ).

As the second 4f -line undoes the wavelength dependent shift,
the density S3 at the CCD can be written as follows:

S3(x3, λ) =

∫
δ(x2 − [x3 − α(λ− λc)])S2(x2, λ) dx2

=

K∑
k=1

tk11∆(x3 − x̃k − α(λ− λc))S0(x3, λ).

Finally, by integrating S3 spatially over the width ∆d of the
CCD pixels, and over the spectral domain, we retrieve the
intensity received by the pixels. The intensity I(c) measured
on the c-th pixels is therefore written, as a function to the
observed object S0, in the form:

I3(x3) =

K∑
k=1

tk

∫
11∆(x3−x̃k− α(λ−λc))S0(x3, λ)dλ (1)

I(c) =

∫
11∆d

(x3 − c)I3(x3) dx3 (2)

Equation (1) reflects the co-location property of the instru-
ment, since the intensity I(x3) depends exclusively on the
contents of S0 at the location x3. Note that when all micro-
mirrors are transmissive (tk = 1,∀k), the data corresponds to
the integration over all wavelengths of the observed object’s
spectral density, thus to its panchromatic image.

C. Matrix modeling

Considering the linear relationship between the acquisition
I(c) and the HS cube S0, a matrix representation can be estab-
lished via discretization. Hence considering an approximation
of S0(x3, λ) by a staircase function of two variables, constant
spectrally and spatially along intervals of width ∆ and ∆d

respectively, one can write:

I(c) ≈ ∆∆d

α

K∑
k=1

tkS0(c, λ̃k). (3)

For the sake of simplicity ∆ and ∆d are considered to be equal
in the following, without any loss of generality. For a given
configuration of the DMD, relation 3 can be written in matrix
form I = To, where I is a vector containing the value of all
the C pixels of a CCD column, o is the discretized version of
S0 with the same spatial size as the CCD i.e. C positions, and
W wavelengths. Due to the co-location property, T is highly
sparse which will be shown to be valuable in the reconstruction
process.

Our objective is to reconstruct the HS cube from N image
acquisitions I(n) each done with a different DMD configura-
tion T(n). Fortunately the matrix representation for multiple
acquisitions can be readily drawn from the single acquisition
model. To extend the first model, we concatenate all the N
acquisitions I(n) to form a vector d of dimension N C and
likewise for the DMD configuration matrices T(n) to form a
matrix H of size NC × CW :

d =

 I(1)

...
I(N)

 =

 T(1)

...
T(N)

o = Ho. (4)

Finally, to consider the general reconstruction case, that is,
for a multiple rows CCD, we simply reiterate the concatenation
process to obtain the multi-acquisition model. Note that this
extension is possible thanks to the the line independence prop-
erty of the device. Thus for a R rows CCD, the dimensions of
d, H and o are NRC, NRC×RCW and RCW respectively.



III. HYPERSPECTRAL IMAGE RECONSTRUCTION

A. Reconstruction using a quadratic penalization

The reconstruction problem is a linear inverse problem,
which consists in recovering the ground truth object from
the data. We seek to retrieve the HS cube o of the observed
scene from the noisy data d with a small set of acquisitions
N : N < W . As a consequence, the system (4) is under-
determined, and additional hypotheses are necessary to solve
it. Regularization have proved to yield efficient solutions to
such inverse problems.

A classical approach to regularization is to minimize a
penalized cost function of the form:

ô = arg min
o
||d−Ho||2 + Ω(o), (5)

The first term of this cost function (which is related to the
likelihood function in the case of additive white Gaussian
noise) aims to reconstruct a solution compatible with the data,
whereas the second term favors certain properties of the object.

The choice of the function Ω is a cornerstone of the
regularization process: it should be based on prior information
on the observed object. Classically, such information can be
modelled with a stochastic model taken into account in a
Bayesian framework (see e.g. [4]). In image restoration or
reconstruction, the challenge is to model piecewise smooth
images, to preserve the edges of the images. An alternative is
based on assumptions of sparsity of the object in a certain
representation space (see e.g. [5]). Recent works based on
the sparsity of the object in a wavelet basis has shown its
effectiveness for the reconstruction of hyperspectral cubes
from devices close to ours [6]. Despite many research on
efficient optimization algorithms specific to such problems,
they always require more computational resources than using
a simple quadratic function for Ω (historically known as
Tikhonov regularization) which leads to a linear least-squares
problem.

As we are interested in fast reconstruction algorithms,
we focused on Tikhonov quadratic regularization. In the 3-
dimension case of hyperspectral cubes this leads to penal-
ize quadratically the spatial and spectral variations of the
cube which results in the penalization function Ω(o) =
µx||Dxo||2+µy||Dyo||2+µλ||Dλo||2, where Dx,Dy and Dλ

represent the finite differences along the spatial (x and y) and
spectral (λ) dimensions respectively, and µx, µy and µλ their
associated regularization coefficients. In this case solution (5)
admits an analytic expression:

ô = (HtH + µxD
t
xDx + µyD

t
yDy + µλD

t
λDλ)−1Htd (6)

However, this solution has a major flaw, related to the
quadratic penalty: it smoothes the image at the edges, resulting
in a loss of spatial and spectral resolutions. To overcome
this defect, many works have proposed to replace quadratic
regularization with edge-preserving non-quadratic regulariza-
tion [4]. However, computing the associated solution requires
more computation time. Some iterative algorithms designed to
solve these problems, sometime called Majorize-Minimization

algorithms, are based on computation of solutions equivalent
to (6) at each iteration (see e.g. [7]).

In our case, we can benefit from the properties of the
imaging device to detect the edges on the panchromatic image
of the observed scene, easy to acquire. A simple segmentation
algorithm can locate the edges in this image, which can be ac-
counted for in the quadratic regularization scheme. In practice,
this is simply implemented by removing the rows of matrices
Dx and Dy corresponding to actual spatial edges, thereby
preserving the quadratic regularization only in homogeneous
areas of the panchromatic image. Note that such a procedure
amounts to relax the smoothness constraint near the edges and
does not force edges for all spectral bands.

B. Implementation

Due to the very large dimensions of matrices, the direct
matrix inversion involved in solution (6) is intractable, even
with the highly sparse matrices H, Dx, Dy, and Dλ. Conse-
quently, we propose to use an iterative algorithm, re-writting
equation (6) as the following normal equation:

AtAô = Atd (7)

with A = [H,
√
µxDx,

√
µyDy,

√
µλDλ]t. Thus the CGNE

(Conjugate Gradient for Normal Equation) algorithm can be
used to compute the solution with a very low computational
cost. Each CGNE iteration require mainly to compute the
image of vectors by A and At which boils down to compute
the images by matrices T(n), Dy , Dx and Dλ and by their
transposes. The images of the direct and transposed finite
differences operators are straightforward to compute as simple
spatial or spectral first order difference of pixels in the HS
cube. Thanks to the co-location property of the imaging
device, the image of operator T(n), which corresponds to
solving the forward model of eq. (3) for each spatial pixel, can
be computed as a weighted projection of the object (with 0 or 1
weights): this requires less than NWRC additions. The image
of the adjoint operator T(n)t is even easier to compute as it
corresponds to a kind of retro-projection, without any addition
or products. The CGNE algorithm is guaranteed to converge
in at most WRC iterations but, in practice, it converges in less
than 110 iterations for a precision of 10−6.

IV. RESULTS AND DISCUSSION

In this section we present some reconstruction results
from data simulated with a real data cube of dimensions
820×820×31 excerpted from [8], illustrated Fig. 2. The CCD
acquisitions I(n) used for the reconstruction are simulated
using equation (4). For the sake of simplicity, we considered
the spectral sampling of the cube as constant and equal to
∆/α, and equal widths for the DMD and the CCD. Hence each
unitary spectral displacement ∆/α corresponds to a spatial
shift of one pixel on the CCD and the size of the acquired
images I(n) is 820× 820. We exploit acquisitions performed
with random DMD patterns where each micro-mirror state
(transmission or rejection) tk follows a Bernoulli distribution
of parameter P (tk = 1) = 10%, that is, on average 10% of
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Figure 2. Illustration of the observed object. Up: RGB image with two
regions of interest ”ROI1” and ”ROI2” denoted respectively by the green and
yellow frames, and panchromatic image of the ”ROI1” where the green and
cyan segments represent respectively the vertical and horizontal edges. Down:
RGB intensities along the pink line, and associated panchromatic intensities
where the red dotted lines mark the positions of detected edges – the shaded
region corresponds to the ”ROI1”.

mirrors are in a transmission state. A white Gaussian noise is
added to the data, with a signal to noise ratio (SNR) of 20dB.

Some reconstruction results obtained using 5 acquisitions
for random DMD patterns are shown Fig. 3. One example
of such acquisition is shown in Fig. 3 (e). Note that this
figure 3 only shows the reconstruction related to the ”ROI1”
of 300×150×31 pixels (see Fig. 2), while the reconstruction
has been performed on the whole image. The regularization
parameters are set to (µx, µy, µλ) = (5, 5, 0.5) in order to
favor the spectral resolution compared to the spatial one. The
spatial resolution has been improved by accounting for the
edges, as explained in § III-A. The edges have been detected
from the panchromatic image using a simple spatial gradient
thresholding method.

The images at a given wavelength of Figs (b), (c), and (d)
as well as the spatial/spectral sections of Figs (f), (g), and
(h), help to evaluate the quality of the reconstructions, with
and without accounting for the edges detected on the panchro-
matic image. The improvement given by the edge preserving
approach in terms of spatial resolution is obvious, in particular
in the neighborhood of the edges, comparing the (x, y) cross-
sections of Fig (d) to the one of Fig. (c) which is blurred.
Such edge-preserving effect is also clearly visible on the (x, λ)
cross-sections of Figs (h), and (g). However, the improvement
in terms of spectral reconstruction quality is more difficult to
appreciate from such figures. Nevertheless, such improvement
is clearly visible Figs. (i) and (j), where the amplitude of the
spectra is clearly better estimated in the neighborhood of the
edges when the latter are taken into account. However, such
a result inherently depend on the performance of the edge
detection process since over uniform regions (far from the
edges) the reconstruction is nearly the same for both methods.

As can be seen near x = 275 in Fig. (i) and near x = 190 in
Fig. (j), where no edge have been detected, the edge-preserving
method fails to improve the reconstruction result. Finally,
the distribution of the reconstruction errors helps to compare
the overall reconstruction results without or with taking into
account the edges. Such a distribution computed on the entire
scene (Fig.(k)) is slightly more peaky when the edges are taken
into account. But the improvement is clearly more visible if
these distributions are computed in a region with a lot of edges
as ”ROI2” (defined Fig. 2) as shown Fig. (l).

V. CONCLUSION

In this paper we have proposed a fast HS cube edge-
preserving reconstruction method that takes advantage of the
main characteristics of a double disperser hyperspectral imager
controllable thanks to a DMD, namely the co-location property
and the ability to acquire a panchromatic image. Using only a
few acquisitions (compared to the number of wavelenghts),
for random configurations of the DMD, we obtained very
satisfactory reconstruction results, in particular when the edges
detected from the panchromatic images are taken into account.
Indeed, the original and the reconstructed HS cubes are very
similar despite the lack of information given by the data.
Note that the degradation of the resolution due to quadratic
regularization have been partially compensated by the edge
preserving approach.

The influence of the acquisitions parameters (number of
acquisition, ratio of transmission on the DMD, SNR) has to be
studied before using such a method on real data. This requires
the definition of metrics to evaluate the reconstruction quality
in particular in terms of spatial and spectral resolution.

Our ultimate goal is to exploit the instrument in an adaptive
way, in which the DMD configuration of each acquisition is
controlled in order to improve the information on the observed
object. Therefore, the ability to quickly reconstruct the HS
cube is important to define adaptive acquisition schemes.
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Figure 3. Simulation results. (a) RGB image of ”ROI1”. (b) (x, y) cross-section of ”ROI1”, for band = 10, and its reconstruction (c) without and (d) with
accounting for edges. (e) One simulated CCD acquisition of ”ROI1”. (f) (x, λ) cross-section of ”ROI1”, for y = 360 (pink line of (a)), and its reconstruction
(g) without and (h) with accounting for edges. (i) and (j) Cross-sections of the figures (f), (g) and (h), at band=10 and 25 respectively. (k) and (l) Distribution
of the reconstruction error computed over the entire scene and restricted to ”ROI2” respectively.


