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Planning to Monitor Wildfires with a Fleet of UAVs

Rafael Bailon-Ruiz1, Arthur Bit-Monnot2 and Simon Lacroix1

Abstract— We present an approach to plan trajectories for a
fleet of fixed-wing UAVs to observe a wildfire evolving over time.
Realistic models of the terrain, of the fire propagation process,
and of the UAVs are exploited, together with a model of the
wind. The approach tailors a generic Variable Neighborhood
Search method to these models and associated constraints.
Simulation results show ability to plan observation trajectories
for a small fleet of UAVs, and to update the plans when new
information on the fire are incorporated in the fire model.

I. INTRODUCTION

When wildfires occur, the information on the fire front
is key for the responders. Its extent, strength and spreading
speed are indeed essential parameters to know in order to
define efficient countermeasures. Gathering such information
is a difficult task: wildfires may extend over tens of square
kilometers, often in remote areas, and their spread is gov-
erned by various parameters, among which some are known
with large uncertainties – in particular the wind on the ground
and the fuel.

Satellite imagery can bring useful information over the
whole fire extent [1]. Firefighters can resort to helicopters
to gather more timely and precise information such as the
flame height, but such operations are costly and risky. A fleet
of fixed-wing UAVs equipped with thermal infrared cameras
can be more agilely deployed, and can be used to monitor
the evolution of wildfires [2], [3].

This article presents an approach to plan wildfire obser-
vations for a fleet of UAVs (Fig. 1), in order to provide
firefighters with a map of the fire front. This problem
raises numerous challenges: the scales of time and distance
involved are large, the process to monitor is dynamic, the
influence of the wind is predominant for both the UAV and
the fire propagation, the UAV motions and observations are
constrained, and the various sources of uncertainties impose
the revision of the plans after the incorporation of new
observations into the fire map.

Approach and contribution: Given initially known char-
acteristics of the terrain, initial observations of the wildfire,
e.g. as provided by a network of ground fire sensors or satel-
lite imagery, and the wind, a propagation model predicts the
fire front for the next hours. These predictions are exploited
by a Variable Neighborhood Search (VNS) approach, that
plans the trajectories of the UAVs to observe the fire front.
Fire observations are integrated into a fire map, which is used
to update the observation plans.

The main contribution of the paper is the tailoring of the
VNS to cope with realistic models and constraints of the
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Fig. 1: A fleet of UAVs equipped with thermal cameras
fly over a wildfire, at a leveled altitude, where the wind
is considered steady and spatially homogeneous. On the
ground, the terrain shape generates more complex winds,
which govern the spread of the fire front. The lowest layer
represents the fire map that incorporates the observations of
the UAVs (in red) and the fire propagation predictions (in
yellow). This map is meant to be used by the firefighters, but
is also the basis upon which further observation trajectories
are planned.

considered application. A generic VNS approach proceeds by
evaluating local modifications to a plan, which is a sequence
of oriented waypoints, linked by UAV trajectories accounting
for kinematic constraints and the wind. Local plan updates
include slight modifications of waypoints, and waypoint
insertions, which are sampled on the basis of the fire front
propagation model. The impact of these plan modifications
is evaluated by the predicted fire observations after having
updated the UAVs trajectories they entail.

Outline: The next section reviews related state of the
art, showing that little work has been devoted to planning the
observations of spreading phenomena. Section III presents
the UAV and fire models used in the planning problem
formulation. Section IV is the heart of the paper: it depicts
how the generic VNS approach is tailored to our specific
use-case and associated models. Section V presents results
obtained with realistic simulations.

II. RELATED WORK

Various research projects have tackled the problem of
wildfire remote monitoring. For instance the COMETS
European project addressed the use of a heterogeneous
fleet of UAVs for cooperative fire detection [4]. The goal



was to detect, locate and monitor fire spots with aerial
vehicles equipped with infrared cameras. More recently,
ASAPTERRA focused in automated information processing
in the context of hazard response, exploiting in particular
satellite imagery for rapid wildfire mapping [1].

The wildfire spread phenomenon is typically described
as a front or boundary propagation, and the robotics lit-
erature about tracking such phenomena is large. In the
case of wildfire monitoring, most approaches are based
on distributed boundary tracking, resorting to automatic
control solutions. [3] deals with communication constraints
of a fleet of UAVs flying along a supposed circular fire
front. [5] depicts a wildfire monitoring system using rotary-
wing UAVs, focusing both on coverage and tracking. A
model-free boundary tracking algorithm have been proposed
in [6]. Automatic control approaches are reactive solutions:
since wildfires can last up to several days, it is also necessary
to plan solutions that drive the monitoring resources over the
long term.

The observation problem we consider resembles the Ori-
enteering Problem (OP) [7]. The solution of the OP is a
path visiting vertices of a graph, such that the duration of
the path is less than some time budget and a collected score
is maximized. There are however some essential differences
for the case of wildfire monitoring. First, every location
traversed by the fire is a vertex that can be visited: even
when the area of interest is discrete, the number of locations
is huge, and so are all the possible trajectory combinations.
Also, the utility function is not a linear combination of
individual rewards, because the value of observing one
particular location is time-dependent and highly correlated
with nearby observations. While many extensions to the OP
and associated solvers have been devised (as surveyed in
[8]), none consistently handle all requirements for wildfire
monitoring. In addition, fixed-wing UAVs are subject to
complex non-linear motion equations due to aerodynamics,
atmospheric conditions and actuator performance bounds ([9]
tackles the OP with such constraints).

III. MODELS

A. Fixed-wing UAV motion

We consider a UAV v flying on a horizontal plane (x, y), at
some constant altitude z, in which there is constant horizontal
wind field (Vwx, Vwy). The UAV flies at a constant airspeed
Va, and its heading ψ is controlled with a bounded turning
rate |u| ≤ ψ̇max. The kinematic model of the UAV is:

ẋ = Vacos(ψ) + Vwx ẏ = Vasin(ψ) + Vwy ψ̇ = u

In the absence of wind, the shortest path between two
oriented points for such a vehicle is given by Dubins tra-
jectories, composed of maximum curvature sections (arcs
of circle) and straight segments [10]. However, this result
does not apply when the vehicle is subject to wind. An
iterative optimal motion planning algorithm that accounts
for a constant wind is proposed in [11]. To compensate the
wind-induced drift, the problem is reformulated as follows:

start

end

wind

virtual
target

Ground frame

Air frame

Fig. 2: Dubins trajectory under the presence of constant wind.
The UAV is commanded to perform the dashed trajectory to
reach the virtual target. Because of the effect of the wind,
the real trajectory will be the solid line and hence attain the
desired end point.

a ground frame, subject to wind, and an air frame, wind-
independent, are introduced. The fixed end point in the
ground frame then becomes a moving virtual target in the
air frame, with a velocity equal to the wind speed in the
opposite direction. The goal of the reformulated problem is
to find a Dubins path that reaches the moving virtual target
(Fig. 2). This path results in the optimal trajectory to the
original target in the ground frame. We use this result to
find the shortest path between two oriented points during
the planning phase.

B. Wildfire propagation

A wildfire starts from one or more ignition points and
then spreads through the surrounding terrain. The direction
and speed of spread depend on numerous factors linked to
the physics of the fire, the vegetation (fuel), the terrain shape
and the wind at the terrain level. Wildfire propagation is a too
complex phenomenon to be modeled in exact terms based on
thermodynamic and combustion laws. Instead, scientists have
defined empirical models, that relate the fire propagation
speed and direction to the terrain, fuel and wind. A very
common propagation model is the Rothermel model [12],
used in most of the support software tools for firefighters.

The Rothermel model exploits information about terrain
slope, fuel parameters, and wind speed and direction. Terrain
slope is static and known, fuel parameters are defined by the
vegetation type and humidity, and can be considered static
[13]. The wind at the terrain level is estimated on the basis
of a steady wind at a given altitude using WindNinja1 that
exploits the models presented in [14] and the digital elevation
map of the terrain.

Our wildfire propagation simulation relies on building a
propagation graph over a discrete environment, as proposed

1http://firelab.github.io/windninja/

http://firelab.github.io/windninja/


0 m 1 km 2 km 3 km 4 km 5 km

East

0 m

1 km

2 km

3 km

4 km

5 km

N
or

th

306
0

90

120

150

180

210

240

270

2
7

0

3
0

0

300

330

330

360

36
0

390

390

420

420

420

450

450 450

480

48
0

480

51
0

510

510
510

54
0

540 540

540570 5
7

0600 6
0

0

Fig. 3: Result of a fire propagation in a mountainous area.
The background color indicates the heights of the digital
terrain map, level curves indicate ignition times labeled in
minutes relatively to the fire start, denoted as a red dot.
Arrows represent the local wind speed and direction. The
time required to compute this propagation is about 11s on
an Intel Core i7 PC running at 2.70GHz.

by [15]. The fire map is modeled by a 25m resolution
Cartesian grid, matching the digital elevation map resolution.
The shape of the fire front depends on the main propagation
direction and the rate of spread from one cell to another [16],
both computed using Rothermel’s method.

Propagation is initialized by setting the ignition time of
one or multiple cells. A cell ignition time is computed
as: ignition(x, y) = min(xn,yn)∈N(x,y)

{ignition(xn, yn) +
travel-time((xn, yn), (x, y))} where N(x,y) are the neighbor
cells of (x, y). This process can be seen as constructing
a propagation graph, built using Dijkstra’s shortest path
algorithm.

Once all the neighbor cells are set on fire, the fire
front moves away from the current cell. As a sim-
plification, we consider that a cell ceases to be on
fire when the fire front moves forward: ignitionend(x, y)
= max(xn,yn)∈N(x,y)

{ignition(xn, yn)}. This implies that
fire at cell (x, y) is observable in the time range
[ignition, ignitionend]. In other terms, for any given time t
there is a set of cells forming a level curve (isochrone) of
the fire propagation manifold (Fig. 3).

C. Fire observation model

UAVs are equipped with a downward looking thermal
infrared camera used to gather geo-tagged images of the fire.
Using a mapping algorithm, the pixels of an image labeled as
on fire can be projected to a digital elevation map to create an
observed fire map. As for most UAV mapping processes, only
images acquired when the camera is pointing close to the
nadir are processed: the size of the area seen by the camera
depends on the field of view, the UAV position, and the angle
at which the camera is pointing. Fig. 4 shows an example
of the observations provided by a flight over a simulated
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Fig. 4: Observations provided when the UAV is following
the trajectory in blue over a fire propagation model. Green
patches are the cells that have been observed while on fire,
the gray patches are the other observed cells. Observations
are only made when the UAV is flying along straight lines.

fire propagation, in which the camera footprint at nadir is
100× 75m (4× 3 grid cells).

The ignition time range depicted in Section III-B defines a
time slack for the UAV to observe a cell on fire. Incidentally,
the level curve geometry of the fire front combined with the
size of the camera footprint makes the observation model
robust with respect to errors in the trajectory tracking.

IV. PLANNING OBSERVATIONS

Our approach to plan the wildfire observations builds on
the VNS metaheuristic that has been applied to numerous
combinatorial optimization problems in Operations Research
[18]. VNS algorithms are built on a sequence of neighbor-
hoods, where each neighborhood defines a local modification
to the plan allowing the generation of closely related plans
(neighbors). A simple neighborhood is for instance the swap
of two sequenced places to visit.

The principle of VNS algorithms is to repeatedly apply:
1) A descent phase that exploits all neighborhoods to find

and apply local improvements to the current plan until
no improvement is found.

2) A perturbation phase aiming at escaping local opti-
mums reached during the descent phase.

In our case, we define the plan as a sequence of waypoints
to reach for each UAV. The fire observations are derived by
an analysis of the Dubins trajectories that link consecutive
waypoints.

One of the key benefits of VNS is its genericity and
adaptable definition. In particular, the observation plans are
iteratively built by the VNS process for the whole set of
UAVs: the problem of allocating UAVs to areas to observe
is implicitly solved, and does not require any specific pro-
cess. Also, as a VNS algorithm works by applying small
incremental improvements to a plan, it can be stopped at
any time or restarted from an existing plan.



The challenge of a VNS approach to solve a given problem
resides in its formulation and in the definition of a good set of
neighborhoods for solving it in reasonable time. This section
depicts the way the VNS is tailored to our problem2.

A. Problem formulation

Definition 1 (Waypoint): A waypoint w is an intermediate
point of the trajectory that a UAV has to reach. A waypoint
is represented by a tuple (x, y, ψ) where x, y, correspond to
East/North coordinates with respect to a reference frame3,
and ψ is the course angle.

Definition 2 (Trajectory): A trajectory T is defined as a
tuple (v, t0,W ) where v is a UAV model as depicted in
Section III-A, t0 is the start time and W = 〈w0, . . . , wn〉 an
ordered sequence of waypoints.

Considering the motion constraints of v and the given t0,
every waypoint w in the trajectory has an associated time
t(w). This is calculated by accumulating the travel time
between waypoints with Dubins paths. The start, w0, and
end, wn, waypoints of a trajectory are located at the same
position to denote a round trip.

Definition 3 (Flight Window): A flight window (v, T,
dmax, [tmin, tmax]) represents the opportunity for the UAV
v to make a trajectory T and whose duration is at most dmax.
The trajectory should start and end within the time window
[tmin, tmax].

Definition 4 (Plan): Given a set of flight windows
{F0, . . . , Fm}, A plan π is a set of trajectories T =
{T0, . . . Tm}, in which each trajectory Ti fits within the flight
window Fi.

Given C the set of cells ignited during the flight windows
of π, our objective is to maximize the total information
gathered over all cells in C. We denote utility(π) as∑
c∈C

1/min
o∈π

dist(c, o). The utility brought by an observed cell,

o, depends on observations already in the plan: if there is al-
ready a nearby observation in the plan, its utility will be low.
This formulation captures the important spatial correlation of
ignition times in the context of wildfire monitoring.

A plan π is valid only if for every Ti and Fi the following
conditions are respected:

• 〈w0, . . . , wn〉 is a feasible ordered sequence of way-
points for v, meaning that each pair of consecutive
waypoints is connected by a valid Dubins trajectory.

• The trajectory is fully contained in the allowed temporal
interval, i.e., tmin ≤ t0 ≤ tn ≤ tmax where tn is the
arrival time at wn.

• The trajectory does not exceed the maximum duration,
i.e., tn − t0 ≤ dmax.

• The trajectory starts and ends at the UAV base, i.e.,
w0 = wn.

2A more detailed description, reasoning and statistical analysis of the
approach can be found in [19]

3The flight altitude z being kept constant at any time, we omit it on the
waypoint definition

wi

wi+1

w'

Fig. 5: Waypoint insertion process. A random chosen way-
point w′ (dashed, light blue) is inserted in a trajectory
between wi and wi+1 (dark blue). w′ is re-projected into a
previous isochrone (light blue) whose time corresponds to the
time needed to reach it from wi. Finally, due to the increment
in travel time between wi and wi+1, wi+1 is moved to a later
isochrone.

B. Variable Neighborhood Search

Definition 5 (Neighborhood): A neighborhood N defines
for each valid plan π a set of neighbor plans N (π) ⊆ Π,
where Π is the set of all valid plans.

1) Neighborhoods: We define two types of neighborhoods
that have empirically proved useful for our wildfire observa-
tion problem.

a) Local Path Optimization: A local path optimization
neighborhood applies a random or deterministic rotation to
a single waypoint in the plan with the objective of reducing
the duration of a trajectory.

b) Waypoint Insertion: A waypoint insertion neighbor-
hood alters a plan by inserting a new waypoint w′ in a
trajectory. The quality of a neighbor plan is assessed by the
plan utility function, with ties broken by trajectory duration.

In order to focus the search to trajectories close to the
fire front, we use an iterative process projectff (“project on
fire front”) that exploits the fire propagation graph depicted
in Section III-B. Given a waypoint wi of a trajectory and a
waypoint w to project, projectff(wi, w) returns a waypoint w′

such that t(w′) ∈ [ignitionw
′
, ignitionw′

end], that is, a waypoint
w′ which is on the fire front when arriving from wi.

Given a random waypoint w and a trajectory T with way-
points 〈w0, . . . , wn〉, we construct a neighbor for each i ∈
[0, n−1] by (i) inserting the w′ from projectff(wi, w); and (ii)
for each j ∈ [i, n−2], replacing wj+1 by projectff(wj , wj+1).
In a nutshell, this inserts a new waypoint in the trajectory and
then updates all subsequent waypoints to make sure they are
still on the fire front. This procedure is illustrated in Fig. 5.

2) Shuffling: Typical VNS implementations include some
neighborhoods that remove, replace or exchange waypoints
between two trajectories. However, we found those to be
inefficient in our setting, due to the mostly continuous tra-
jectories in which a waypoint is best considered together with
the preceding and following one. Instead, we do shuffling to



provide similar benefits at a larger scale.
Definition 6 (Shuffling): A shuffling function f(π, k) :

Π × N → Π produces a new plan by introducing a per-
turbation into the plan π. This perturbation is dependent on
the current iteration k of the search.

The shuffling function used here removes a random frac-
tion of each trajectory in the current plan, with the objective
of escaping local extrema.

3) VNS Algorithm: The VNS algorithm takes as inputs a
sequence of neighborhoods, a shuffling function, a maximum
run time, and an initial plan.

The initial plan πinit is built by taking an empty trajectory
(v, tmin, 〈w0, wn = w0〉) for each flight window. It is easy
to see that such a plan is valid as the start time and the round
trip conditions are respected.

Given πinit, the descent phase of VNS tries to generate
plan improvements by systematically and sequentially trying
all neighborhoods [N1, . . . ,Nn] until a neighborhood Ni

provides an improvement. Particular neighbor plans of Ni

are computed by the gen-neighbor function.
Definition 7 (gen-neighbor): Given a plan π and a neigh-

borhood N , the function gen-neighborN (π) returns either
(i) a valid plan π′ ∈ N (π) such that utilityN (π′) >
utilityN (π), or (ii) nil if the neighborhood failed to generate
an improving neighbor.

When the neighbor plan computed by gen-neighbor gives
an improvement, the current plan is updated and the process
restarts from the first neighborhood N1. When gen-neighbor
is not able to generate an improvement for any Ni, the best
plan found so far is perturbed by the shuffling function and
the descent phase restarts from the first N1. This process is
repeated until a maximum runtime is reached, at which point
the best plan found is returned.

V. RESULTS

A. Initial plan

We consider a mountainous region of 5km×5km where
multiple fire ignitions occur. We let the algorithm run for 1
minute on an Intel Core i7 PC at 2.70GHz. Fig. 6 shows a
scenario with two fire fronts spreading north (the elevation
map is only used to compute the fire propagation, and is
not shown). Two UAVs starting at different positions are
available to observe both wildfires, with a flight duration
limited to 10 minutes. The trajectories given by the VNS
algorithm follow the fire front to maximize the utility of the
plan.

Fig. 7 shows three wildfires being observed by two UAVs
taking off from the same base with larger allowed flight
duration. The planning algorithm does task distribution im-
plicitly in such a way that the UAVs do not observe the
same locations concurrently. Even though they start at the
same time, the different paths are planned such that both
UAVs arrive at each fire at different times.

B. Replanning

Due to model uncertainty and changing environmental
conditions, the actual fire may diverge from the predicted
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Fig. 6: Plan for a fleet of two UAVs observing two indepen-
dently spreading wildfires.
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Fig. 7: Plan for a fleet of two UAVs observing three con-
comitant wildfires.

one. Researchers from the wildfire community recently de-
veloped data assimilation approaches that integrate real-
time fire front information into the propagation models
[20], which in turn allows correcting and improving the
parameters that govern the predicted wildfire. We suppose
that the observations made by the UAVs can be used by
such data assimilation techniques to provide an updated fire
map. The monitoring plan should be revised to react to this
new situation.

The VNS approach is able to start from any valid plan. In
a replanning stage, we use as πinit the previously computed
plan πprev , and the VNS algorithm is constrained to improve
only future parts of it. First, projectff translates the future
waypoints to ignited locations (waypoints that can not be
translated are removed from the plan). Then, the current plan
is refined following the procedure described in IV-B.3 for
initial plans.

A replanning scenario is shown in Fig. 8. First, the planner
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generates the trajectory in blue based on the basis of the
predicted fire map in purple. Five minutes later, an update
of the predicted fire map is made (e.g. by incorporating data
gathered so far by the UAV). This update is shown in orange:
the fire actually propagates faster than initially predicted. The
planner adapts the remaining of the original plan from minute
six, yielding the red trajectory.

VI. CONCLUSION

We have presented a wildfire monitoring system based on
fleets of fixed-wing UAVs: we have modeled the problem
by introducing the dynamics of fire propagation and UAV
motion in the presence of wind. Then, we have introduced a
VNS-based planning algorithm capable of generating plans
using this realistic models. Finally, we have shown a small
selection of typical wildfire scenarios for which the planning
algorithm was able to generate a sound monitoring plan.

In the near future, the monitoring system will be integrated
with a real command and control software for UAVs [21],
enabling improved UAV simulation and field experiments.

Future work on the algorithmic side will consider ex-
ploiting 3D UAV motion, to overcome terrain constraints
in mountainous areas and to improve observations. We will
also explore approaches that apply an economy of means
principle: instead of allowing all the UAVs to exploit their
whole flight duration, the number of UAVs to deploy as well
as their take-off time should be defined in order to optimize
the ratio between resource usage and quality of the observed
fire map in the long term. Finally, integrating fire front
tracking capabilities to react to discrepancies between the
propagation prediction and observations will be considered.

The planning algorithm code and wildfire propagation
model are available online at https://github.com/
laas/fire-rs-saop.
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