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Abstract: The development of new ultra-fast sensors for pressure air blast monitoring requires 
taking into account the very short rise time of pressure occurring during explosion. Simulations 
show here that the dynamic mechanical behavior of membrane-based sensors depends significantly 
on this rise time when the fundamental mechanical resonant frequency of the membrane is higher 
than 10 MHz. 
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1. Introduction 

The real time and dynamic measurements of pressure during air blasts is very challenging due 
to the abrupt variation of pressure from the atmospheric pressure to the so-called overpressure peak 
Pmax (between few bars and several ten of bars) with very short rise time tm (< 100ns) (Figure 1). For 
accurate measurement of Pmax, sensors with high fundamental mechanical resonant frequency Fo are 
then required [1].  
When simulating a pressure sensor for which Fo << 1/tm, the rise-time is assumed to be close to zero. 
However, we show here that this assumption is no more valid when performing the mechanical 
simulation of a sensor for which Fo > 10 MHz.  

  
Figure 1. Typical dynamic pressure variation during an air blast experiment : (a) Illustration of the different 
phases and (b) example of pressure measurement at 1m from 1kgTNT by using a Tourmaline piezoelectric 
sensor. 
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2. Sensor description and simulation conditions 

As shown in Figure 2, the proposed sensor is based on a miniature rectangular silicon membrane 
(5µm*30µm*90µm) with four piezoresistive gauges located at its center [1].  
Simulations were performed using Abaqus software [2] for real membrane clamping conditions. 
Considering the gauges dimensions, the stresses in the gauge areas are close to ones calculated at the 
membrane center (error lower than 7% on the sensor response). Dynamic behavior of the sensor is 
then modelled by the differential stress ∆σ given by equation 1 at the center of the membrane, and 
normalized by the static pressure :  

Δ𝜎𝜎 =  𝜎𝜎𝑙𝑙 −  𝜎𝜎𝑡𝑡       (1) 

where 𝜎𝜎𝑙𝑙 (resp., 𝜎𝜎𝑡𝑡) is the stress applied to the gauge parallel (resp., to the gauge perpendicular) to 
the current in the gauge. 

   

Figure 2. a) Cross sectional view of the sensor; (b) Wheatstone bridge on the rectangular membrane.  

The fundamental mechanical resonant frequency Fo, obtained from harmonic module of Abaqus 
software, is of 32.7 MHz and consequently 1/Fo is close to 30ns. 

Due to the short reaction time tr of the sensor (< few µs, see Figure 5), we assume here that the 
pressure profile (shown on Figure 1) can be modelled by the Heaviside step function (the decrease of 
pressure is lower than 2% after 1µs).  

Moreover, assuming that the acoustic damping is predominant [3], the quality factor Q of the 
membrane is inversely related to the equivalent pressure Pe applied on both sides of the membrane as 
shown in equation 2. 
           𝑄𝑄 ≅ 95

P𝑒𝑒 (𝑏𝑏𝑏𝑏𝑏𝑏)
    (2) 

Abaqus simulations indicates that the pressure Pe is the average pressure applied between the two 
membrane sides. Table 1 reports the Q factor for typical applied pressure on one side of the membrane 
while the other side is in vacuum. We observe that the Q factor decreases rapidly and is lower than 20 
for the applied pressure greater than 10 bars. 

Table 1. Q factor versus absolute pressure from equation 2. 

Pressure (bar) 2 5 10 20 30 40 
Q 95 38 19 9.5 6.3 4.8 

For a shock wavefront normally incident upon the membrane surface, the dynamic mechanical 
response to a linear variation of pressure was obtained from the Second Order Transfer Function (SOTF) 
where the rise time differs from zero (Equation 3). This model is consistent with Abaqus simulations 
results, as it can be noticed from Figure 3. We can observe that the difference is lower than 4% after the 
rise time. Consequently, the effects on sensor reaction time can be neglected. 
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where 𝜉𝜉 is the damping factor,𝐴𝐴 = 𝜉𝜉𝜔𝜔0 ,𝐵𝐵 =
𝜉𝜉
𝜔𝜔0

 ,Ω = 𝜔𝜔0�1 − 𝜉𝜉2 ,𝜔𝜔0 = 1 𝐹𝐹𝑜𝑜⁄  

and    𝑈𝑈(𝑡𝑡) =  0   if 𝑡𝑡 < 0, 𝑈𝑈(𝑡𝑡) =  
𝑡𝑡
𝑡𝑡𝑚𝑚

 if   0 < 𝑡𝑡 < 𝑡𝑡𝑚𝑚 , 𝑈𝑈(𝑡𝑡) = 1  if  𝑡𝑡 > 𝑡𝑡𝑚𝑚 

  
Figure 3. Comparison of SOTF model and Abaqus simulation results for the dynamic response 

3. Results 

Figure 4 displays an example of the dynamic mechanical response of the membrane for rise 
time tm up to 100ns and for a Q factor of 19. The response is normalized by the static value. The 
reaction time tr of the sensor (±5% of the static response) is extracted from these figures for Q factor 
between 5 and 100 (Figure 5). The following observations can be made: 

i.  for tm < 1/ Fo, we retrieve the classical damped oscillation for which tr is mainly driven by the 
Q factor (tr ≅ Q / Fo); 

ii. as tm increases, the reaction time tr decreases and, due to the decreasing of the fundamental 
mode amplitude (Figure 6), we obtain tr ≅ tm when tm = 1/ Fo;  

iii. when tm = n/ Fo where n is a natural number, no oscillation occurs and tr is close to tm; 
iv. when tm > 1/ Fo, small oscillations appear during the rise time. 

 
The reduction of the reaction time related to the increase of the rise time is given in Figure 7 (reaction 
time for tm=0 is taken as reference). We can observe that for pressure rise time tm greater than 20ns, 
the sensor reaction time may be underestimated almost by 20% compared with the zero pressure rise-
time (tm=0) assumption. This error may reach 100% when tm is close to n/ Fo.  

  

Figure 4. Dynamic sensor response for different rise times 
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Figure 5. Sensor reaction time versus pressure rise time for different Q factor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Amplitude of fundamental mode 

versus tm (Abaqus simulations results) 
Figure 7. Relative sensor reaction time versus 

pressure rise time for different Q factors 

4. Conclusions 

The dynamic mechanical behavior of membrane-based piezoresitive sensors was modelled by a 
second order transfer function with non-zero pressure rise time. For miniaturized silicon membrane 
(5µm x 30µm x 90µm) the fundamental resonant frequency Fo is of 33 MHz. The results show that 
pressure rise time tm larger than 1/(3 Fo) plays a crucial role for the accurate estimation of the sensor 
reaction time. Consequently, when designing ultra-fast sensors for pressure air blast monitoring, the 
increase of frequency Fo for a given rise time is expected to provide a significant reduction of the 
sensor reaction time. 
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