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Abstract

This paper focuses on the problem of static anti-windup design for a class of multivariable nonlinear

systems subject to actuator saturation. The considered class regards all systems that are rational on the

states or that can be conveniently represented by a rational system with algebraic constraints considering

some variable changes. More precisely, a method is proposed to compute a static anti-windup gain which

ensures regional stability for the closed-loop system assuming that a dynamic output feedback controller

is previously designed to stabilize the nonlinear system. The results are based on a differential-algebraic

representation of rational systems. The control saturation effects are taken into account by the application

of a generalized sector bound condition. From these elements, LMI-based conditions are devised to

compute an anti-windup gain with the aim of enlarging the closed-loop region of attraction. Several

numerical examples are provided to illustrate the application of the proposed method.
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1 Introduction

The general principle of the anti-windup technique is the introduction of an extra feedback loop in a pre-

designed control system to mitigate the effects caused by saturation. Although there exist many different

strategies and design approaches, the majority of the results regards the synthesis of anti-windup compen-

sators for linear systems (see [1–6] and references therein). However, if the anti-windup compensator is

designed based on the linear approximation of the nonlinear dynamics, it can lead to a poor behavior when

implemented on the original nonlinear control system. Moreover, the computed region of attraction of the

closed-loop system considering the linear approximation may be highly modified by the nonlinear dynamics.

In general, one cannot ensure that a region of stability computed considering the linear approximation will

be valid for the actual nonlinear system. In spite of these facts, only few works have addressed the anti-

windup synthesis problem for nonlinear systems subject to saturating actuators. We can cite, for instance,

the references [7–9] which consider anti-windup synthesis for linear-parameter varying systems, [10] which

proposes anti-windup methods for Euler-Lagrange systems, and [11] which considers an adaptive control

design. We can also cite some works dealing with the anti-windup synthesis for systems with nonlinear

dynamic inversion (NDI) controllers, such as the references [12–16].

On the other hand, a key problem to characterize the stability of nonlinear systems is the determination

of a non conservative estimate of the system region of attraction. In general, the estimates are obtained from

Lyapunov level sets (see, for instance, the references [17–21]). In this context, considering an NDI-based

controller, the synthesis of a dynamic anti-windup compensator aiming at the enlargement of an estimate of

the region of attraction of the closed-loop system in the subspace of the plant variables has been proposed

in [22] for the class of quadratic systems. The considered architecture in this case, as in [12], can be seen

as a generalization of the coprime-factorization approach (or the model recovery anti-windup) used in linear

anti-windup [2,23]. This same problem has been tackled in [24], but considering rational systems and static

anti-windup compensation. In particular, the multivariable case is not addressed and the method is based on

a non-convex condition, although the problem solution is obtained from LMI relaxations. These drawbacks

have been in part overcome in [25], where convex stabilizing conditions are proposed. However, it should

be pointed out that in [24] and [25], only systems and controllers with linear outputs can be considered. It

turns out that these approaches cannot be applied in the case of NDI controllers, for instance.

In light of the above scenario, this paper aims at devising a numerical and tractable technique to design

static anti-windup compensators for a class of nonlinear systems subject to actuator saturation. The class of

systems considered in this paper covers all systems modeled by rational differential equations. The motivation

to investigate rational systems is their use to model several phenomena in real life applications, in particular

in systems biology, engineering, physics, and economics, and also in nonlinear system identification and

realization theory [26, 27], which has given rise to a large number of works on the stability analysis, control

and filter design for rational nonlinear systems [19, 28–35]. We emphasize that a large class of systems can
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be embedded in this setup such as quadratic and polynomial systems. Furthermore, the proposed technique

can deal with more complex nonlinearities by means of additional algebraic constraints and/or change of

variables (see, e.g., [32–34]). In particular, the method to be presented in the paper applies a differential

algebraic representation (DAR) of nonlinear systems letting to cast Lyapunov based stability conditions

in terms of a finite set of state-dependent linear matrix inequalities, which can be numerically solved at

the vertices of a given polytope of admissible states. To deal with the saturation nonlinearity, a modified

version of the generalized sector bound condition proposed in [6] is also considered. From these elements, we

derive regional stabilizing conditions directly in LMI form. In addition, an LMI-based optimization problem

is devised to compute an anti-windup gain in order to obtain a maximized region of asymptotic stability,

which implicitly leads to the maximization of the basin of attraction of the closed-loop system. This work is

a further development of our previous result proposed in [24], where the main differences and advantages are:

(a) the conditions are directly cast in terms of LMIs avoiding iterative relaxation schemes, and (b) it allows

to consider multivariable nonlinear control systems in a straightforward way. The paper can also be seen as

a generalization of our recent conference work [25], in the sense that systems and controllers with rational

outputs can now be treated, which allows to cope with the important case of NDI controllers, among others.

The paper is organized as follows. Section 2 introduces the problem to be addressed in the paper.

Section 3 provides preliminary results concerning the system representation, the Lyapunov theory, and the

generalized sector bound condition. The main result is presented in Section 4, where the computation of

the anti-windup gain is obtained by means of an optimization problem in Section 4.1. Several illustrative

examples are provided in Section 5 in order to demonstrate the potentialities of the proposed approach.

Section 6 ends the paper with some concluding remarks.

Notation: In is the n × n identity matrix and 0 may either denote the scalar zero or a matrix of zeros

with appropriate dimensions. For a real matrix H , H ′ denotes its transpose and H > 0 means that H is

symmetric and positive definite.H(i) and x(i) denotes the i
th line of matrix H and the ith element of vector

x, respectively. For a block matrix, the symbol ⋆ represents symmetric blocks outside the main diagonal

block. For a given polytope Φ, V(Φ) is the set of vertices of Φ. blockdiag(· · · ) is a block diagonal matrix

whose diagonal blocks are the ordered arguments. Matrix and vector dimensions are omitted whenever they

can be inferred from the context.

2 Problem Statement

Consider the following class of nonlinear control systems:

ẋ(t) = fx(x(t)) + g(x(t))sat(vc(t))

y(t) = hy(x(t))
(1)
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where x ∈ Bx ⊂ R
n denotes the state vector; y ∈ R

ny is the measured output; vc ∈ R
nv is the control input;

sat(·) is a classical saturation function, defined as follows:

sat(vc(i)(t)) = sign(vc(i)(t))min{|vc(i)(t)|, u0(i)}, i = 1, . . . , nv

with u0(i) > 0, i = 1, . . . , nv denoting the symmetric saturation level of the ith actuator. It is assumed that

fx : Rn 7→ R
n, g : Rn 7→ R

n × R
nv , hy : Rn 7→ R

ny are rational functions of x satisfying the conditions for

the existence and uniqueness of solution for all x ∈ Bx.

In addition, we assume that a dynamic output stabilizing controller

η̇(t) = fη(η(t), y(t))

vc(t) = hη(η(t), y(t))
(2)

has been designed to guarantee some performance requirements (such as exponential decay rate and damping

of the state time-response) and the stability of the closed-loop system (1)-(2) in the absence of control

saturation, where: η ∈ Bη ⊂ R
nc denotes the controller state; y(t) is the controller input; vc(t) is the

controller output; fη : Rnc × R
ny 7→ R

nc and hη : Rnc × R
ny 7→ R

nv are rational functions of η and y

satisfying the conditions for existence and solutions for all η ∈ Bη and x ∈ Bx.

In view of the undesirable effects of windup caused by input saturation, an anti-windup gain is added

to the controller. Thus, considering the dynamic controller and the anti-windup strategy, the closed-loop

system reads:

ẋ(t) = fx(x(t)) + g(x(t))sat(vc(t))

y(t) = hy(x(t))

η̇(t) = fη(η(t), y(t)) + Ec(sat(vc(t))− vc(t))

vc(t) = hη(η(t), y(t))

(3)

where Ec ∈ R
nc×nv is a constant matrix representing the anti-windup gain to be determined.

Considering the above setup, we aim at determining the anti-windup gain Ec such that the region of

attraction of the closed-loop system (3) is enlarged.

3 Preliminaries

This section presents some basic results needed to derive an LMI-based method to address the anti-windup

computation as stated in Section 2. Firstly, we present the Differential Algebraic Representation (DAR)

of nonlinear systems. Then we briefly recall some results of the Lyapunov Theory. Finally, we present an

extension of the generalized sector condition proposed in [6] to cope with the case where the actuator input

is computed as a rational function of both the plant and controller states. This condition will be useful for

dealing with the saturation nonlinearity in the sequel.
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3.1 Differential Algebraic Representation – DAR

Firstly, define a decentralized deadzone nonlinearity

ψ(vc(t))
△
= vc(t)− sat(vc(t)) , (4)

and rewrite system (3) as follows:

ẋ(t) = fx(x(t)) + g(x(t))vc(t)− g(x(t))ψ(vc(t))

y(t) = hy(x(t))

η̇(t) = fη(η(t), y(t)) − Ecψ(vc(t))

vc(t) = hη(η(t), y(t)) .

(5)

It is worth noticing that, since hy and hη are rational functions, the resulting closed-loop system (5) is in-

deed rational in the state variables x and η. Hence, defining an augmented state vector ξ(t) = [x(t)′ η(t)′]′ ∈

Bξ ⊂ R
nξ , Bξ = {ξ ∈ R

nξ ; x ∈ Bx and η ∈ Bη}, with nξ = n+ nc, it is always possible to find a Differential

Algebraic Representation (DAR) for (5), as follows:

ξ̇(t) = Aaξ(t) +Abz(t) + (Ac −WEc)ψ(vc(t))

0 = Ωaξ(t) + Ωbz(t) + Ωcψ(vc(t))
(6)

where W =





0n×nc

Inc



; z ∈ R
nz is an auxiliary nonlinear vector function with respect to (w.r.t.) ξ and

linear w.r.t. ψ, containing rational and polynomial terms (having terms of order equal or larger than two);

Aa ∈ R
nξ×nξ , Ab ∈ R

nξ×nz , Ac ∈ R
nξ×nv , Ωa ∈ R

nz×nξ , Ωb ∈ R
nz×nz and Ωc ∈ R

nz×nv , are affine matrix

functions of ξ.

Similarly, it is always possible to re-write vc(t) in the following form since hη is a rational function of ξ:

vc(t) = K1ξ(t) +K2ρ(t)

0 = Ξ1ξ(t) + Ξ2ρ(t)
(7)

where ρ ∈ R
nρ is an auxiliary nonlinear vector function of (x, η) containing rational and polynomial terms

(having terms of order equal or larger than two) of hη, and K1 ∈ R
nv×nξ , K2 ∈ R

nv×nρ , Ξ1 ∈ R
nρ×nξ and

Ξ2 ∈ R
nρ×nρ are affine matrix functions of ξ.

Regarding the closed-loop system (5) (or (6)-(7)), we assume that:

(A1) the origin (ξ = 0) is a (locally) asymptotically stable equilibrium point; and

(A2) the domain Bξ is a given polytope containing the origin in its interior.

Hence, the polytope Bξ can be described by a set of scalar inequalities as follows:

Bξ = {ξ ∈ R
nξ : q′rξ ≤ 1, r = 1, . . . , ne} , (8)

where qr ∈ R
nξ , r = 1, . . . , ne, are given vectors defining the ne faces of Bξ. For convenience, Bξ can be

alternatively described by the convex hull of its vertices, where the notation V(Bξ) denotes the set of vertices
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of Bξ. Indeed, suppose that Bξ has Nv vertices, i.e. V(Bξ) = {v1, v2, . . . , vNv
}, it follows that any ξ ∈ Bξ

can be computed as a convex combination of these vertices, that is:

∀ξ ∈ Bξ, ξ =

Nv
∑

i=1

λivi

with λi ≥ 0 and
∑Nv

i=1 λi = 1.

To guarantee that the DAR (6)-(7) is well posed (i.e., the uniqueness of the solution ξ(t) is ensured), we

further consider that:

(A3) the matrix functions Ωb and Ξ2, affine on ξ, have full rank for all ξ ∈ Bξ.

Notice from A3 that the auxiliary vectors z(t) and ρ(t) can be eliminated, respectively, from (6) and (7)

leading to the original system representation in (5) by means of

z(t) = −Ω−1
b (Ωaξ(t) + Ωcψ(vc(t))) and ρ(t) = −Ξ−1

2 Ξ1ξ(t) (9)

It turns out that a broad class of nonlinear systems can be embedded in the DAR as defined in (6) and

(7), such as the whole class of (nonsingular) rational control systems which are linear w.r.t. the control

input u = sat
(

vc(t)
)

. Moreover, more complex nonlinearities can be dealt with by applying some change

of variables or by adding algebraic conditions. See, for instance, some examples in references [19, 32–34].

Moreover, it has has been shown in [34] that the DAR includes the linear fractional representation (LFR)

of nonlinear systems introduced in [28] and thus we may apply the LFR modeling tools (see, e.g., [29]) to

derive a DAR model for (nonsingular) rational control systems.

Remark 1 Although the DAR representation presents some similarity to quasi-LPV models (see, for in-

stance, [36] and references therein) some key differences should be highlighted. In the quasi-LPV approach

the nonlinearities are seen as bounded time-varying parameters. However, once the representation is ob-

tained, these parameters are treated as completely independent of the state dynamics, which is potentially

conservative for assessing the stability of nonlinear systems. On the other hand, in the DAR approach, the

variables z (and ρ), which concentrate the nonlinearities, are directly coupled with the true state through an

algebraic equation. Moreover, the set Bξ, is considered directly to check stability by convexity arguments,

while in the LPV approach, this set should be re-defined according to the definition of the varying parameter.

In order to illustrate these differences, consider the following simple polynomial system:

ξ̇(t) =
(

ξ(t)2 − 10
)

ξ(t) , ξ(t) ∈ Bξ := {ξ : |ξ| ≤ α} (10)

If we consider the quasi-LPV framework, the above system may be represented in terms of a parameter

varying function

θ(t) = ξ(t)2 , θ(t) ∈ Bθ := {θ : 0 ≤ θ ≤ α2}

yielding the following representation for the system in (10)

ξ̇(t) =
(

θ(t)− 10
)

ξ(t) , θ(t) ∈ Bθ . (11)
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On the other hand, a DAR for the system in (10) can be obtained by defining z(t) = ξ(t)2 leading to the

following representation:






ξ̇(t) = −10ξ(t) + z(t)

0 = Ωaξ(t) + Ωbz(t)
, ξ(t) ∈ Bξ (12)

where Ωa = ξ and Ωb = −1. Notice, for large values of α, that the representation in (11) is likely to be more

conservative than the DAR in (12).

3.2 Lyapunov Theory Results

In this section, we recall a basic result from the Lyapunov theory [17].

Lemma 1 Consider a nonlinear system ξ̇ = a(ξ) where a : Bξ 7→ Bξ, Bξ ⊂ R
nξ , is a locally Lipschitz function

such that a(0) = 0. Suppose there exist positive scalars ǫ1, ǫ2 and ǫ3, and a continuously differentiable

function V : Bξ 7→ R satisfying the following conditions:

ǫ1ξ
′ξ ≤ V (ξ) ≤ ǫ2ξ

′ξ, ∀ ξ ∈ Bξ , (13)

V̇ (ξ) ≤ −ǫ3ξ
′ξ, ∀ ξ ∈ Bξ , (14)

R , {ξ ∈ R
nξ : V (ξ) ≤ c} ⊂ Bξ , (15)

then, V (ξ) is a Lyapunov function in Bξ. Moreover, for all ξ(0) ∈ R the trajectory ξ(t) belongs to R and

approaches the origin as t→ ∞.

To assess the local stability of system (6), in this work we consider a quadratic Lyapunov function:

V (ξ) = ξ′Pξ , P = P ′ > 0 (16)

with P ∈ R
nξ×nξ , and the following normalized level set

R = {ξ ∈ R
n : ξ′Pξ ≤ 1} . (17)

In view of Lemma 1, if V (ξ) as above defined satisfies the conditions (13)-(15), for all x ∈ Bξ and R ⊂ Bξ,

then R is an invariant and contractive set contained in the region of attraction of the nonlinear system and

can be seen as an estimate of it [17].

3.3 Generalized Sector Bound Condition

Let G1 ∈ R
nv×nξ and G2 ∈ R

nv×nρ be affine matrix functions of ξ. Define now the following set

S
△
= {ξ ∈ R

nξ : |(K1(i) −G1(i))ξ + (K2(i) −G2(i))ρ| ≤ u0(i), i = 1, . . . , nv} (18)

Note that ρ is a function of ξ and thus S defines a set of vectors in the ξ domain.

From the deadzone nonlinearity ψ(vc) defined in (4) and the set S as above defined, the following Lemma

can be stated as a generalization of the Lemma 1 presented in [6] (see also [37]).
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Lemma 2 If ξ ∈ S then the relation

ψ(vc)
′T [ψ(vc)−G1ξ −G2ρ] ≤ 0 (19)

is verified for any diagonal and positive definite matrix T ∈ R
nv×nv .

Proof. Recall that vc = K1ξ+K2ρ and define r = G1ξ+G2ρ. Considering ξ ∈ S, it follows that (vc(i)−r(i)−

u0(i)) < 0 and (vc(i)− r(i)+u0(i)) > 0, i = 1 . . . , nv. If vc(i) > u0(i), it follows that ψ(vc)(i) = vc(i)−u0(i) > 0

and then ψ(vc)(i)(vc(i) − r(i) − u0(i)) < 0. If vc(i) < −u0(i), it follows that ψ(vc)(i) = vc(i) + u0(i) < 0 and

then ψ(vc)(i)(vc(i) − r(i) + u0(i)) < 0. Finally, if −u0(i) ≤ vc(i) ≤ u0(i), it follows that ψ(vc)(i) = 0. From all

this cases, we can conclude that (19) is verified for any diagonal and positive definite matrix T ∈ R
nv×nv .

�

For deadzone nonlinearities, the relation (19) can be viewed as a generalized sector condition which

encompasses the classical one used, for instance, in [38] and [39]. The generalized sector condition is known

to be less conservative than the classical one when assessing the stability of systems subject to actuator

saturation [6]. Furthermore, it allows to convexify the problem of synthesizing local stabilizing anti-windup

compensators (see [37]). In the present form, it should be noticed that matrices G1 and G2 can be affine in

ξ. As it will be seen further, these matrices will be considered as free variables in the synthesis optimization

problem.

4 Main Result

In this section, an LMI framework to address the anti-windup synthesis problem stated in Section 2 is

presented.

In this case, by considering the quadratic Lyapunov function defined in (16), it follows that:

V̇ (ξ) = ξ̇(t)′Pξ(t) + ξ(t)′P ξ̇(t) . (20)

Considering the auxiliary vector ζ0 = [ξ̇(t)′ ξ(t)′]′ , we can rewrite (20) as V̇ (ξ) = ζ′0Λ1ζ0 with

Λ1 =





0 P

P 0



.

In view of Lemma 2, if ξ ∈ S, then the relation ψ(vc)
′T [ψ(vc)−G1ξ−G2ρ] ≤ 0 is verified for any matrix

T diagonal and positive definite. Hence, if

ζ′0Λ1ζ0 − 2ψ(vc)
′T [ψ(vc)−G1ξ −G2ρ] < 0, ∀ξ ∈ Bξ ∩ S (21)

is verified, then V̇ (ξ) < 0 for all ξ ∈ S ∩ Bξ.

Considering the auxiliary vector ζ = [ξ̇(t)′ ξ(t)′ z(t)′ ρ(t)′ ψ(vc(t))
′]′ we can rewrite (21) as

ζ′Λ2ζ < 0 (22)
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with

Λ2 =

























0 P 0 0 0

P 0 0 0 G′
1T

0 0 0 0 0

0 0 0 0 G′
2T

0 TG1 0 TG2 −2T

























.

Define now the following scalars:

β1 = ξ̇(t)′M1(−ξ̇(t) +Aaξ(t) +Abz(t) + (Ac −WEc)ψ(vc(t)))

β2 = ξ(t)′M2(−ξ̇(t) +Aaξ(t) +Abz(t) + (Ac −WEc)ψ(vc(t)))

β3 = z(t)′M3(Ωaξ(t) + Ωbz(t) + Ωcψ(vc(t)))

β4 = ρ(t)′M4(Ξ1ξ(t) + Ξ2ρ(t))

(23)

In view of (6) and (7), it follows that the equations

0 = β1 + β′

1 , 0 = β2 + β′

2 , 0 = β3 + β′

3 , 0 = β4 + β′

4 (24)

are satisfied, for any matrices M1 ∈ R
nξ×nξ , M2 ∈ R

nξ×nξ , M3 ∈ R
nz×nz and M4 ∈ R

nρ×nρ .

From (24), if

ζ′Λ2ζ + β1 + β′
1 + β2 + β′

2 + β3 + β′
3 − β4 − β′

4 < 0 (25)

holds, then (22) is satisfied. Observe that we can rewrite (25) as follows

ζ′Λ3(ξ)ζ < 0 (26)

where

Λ3(ξ) =

























−M1 −M ′
1 P −M ′

2 +M1Aa M1Ab 0 M1Ac −M1WEc

⋆ M2Aa +A′
aM

′
2 M2Ab +Ω′

aM
′
3 −Ξ′

1M
′
4 M2Ac −M2WEc +G′

1T

⋆ ⋆ M3Ωb +Ω′

bM
′
3 0 M3Ωc

⋆ ⋆ ⋆ −M4Ξ2 − Ξ2M
′
4 G′

2T

⋆ ⋆ ⋆ ⋆ −2T

























.

Let us assume that M1, M3 and M4 are nonsingular and that M2 = M ′
2 > 0. Define now the following

matrices Q1 =M−1
1 , Q2 =M−1

2 , Q3 =M−1
3 , Q4 =M−1

4 , F = T−1 and

Π0 = blockdiag{Q1, Q2, Q3, Q4, F} (27)

Pre- and post-multiplying the condition Λ3(ξ) < 0 by Π0 and Π′
0, we have

























−Q1 −Q′
1 Q1PQ2 −Q1 +AaQ2 AbQ

′
3 0 AcF −WEcF

⋆ AaQ2 +Q2A
′
a AbQ

′
3 +Q2Ω

′
a −Q2Ξ

′
1 AcF −WEcF +Q2G

′
1

⋆ ⋆ ΩbQ
′
3 +Q3Ω

′
b 0 ΩcF

⋆ ⋆ ⋆ −Ξ2Q
′
4 −Q4Ξ

′
2 Q4G

′
2

⋆ ⋆ ⋆ ⋆ −2F

























< 0 .
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Observe that the above inequality is not an LMI due to the term Q1PQ2. However, in this case, we can

consider P = M2 and it follows that PQ2 = Inξ
. Besides, for the terms Q2G

′ and EcF , we consider the

following change of variables: V ′
1 = Q2G

′
1, V

′
2 = Q4G

′
2 and EF = EcF . In this case, if

Λ4(ξ) < 0 , (28)

with

Λ4(ξ) =

























−Q1 −Q′
1 AaQ2 AbQ

′
3 0 AcF −WEF

⋆ AaQ2 +Q2A
′
a AbQ

′
3 +Q2Ω

′
a −Q2Ξ

′
1 AcF −WEF + V ′

1

⋆ ⋆ ΩbQ
′
3 +Q3Ω

′
b 0 ΩcF

⋆ ⋆ ⋆ −Ξ2Q
′
4 −Q4Ξ

′
2 V ′

2

⋆ ⋆ ⋆ ⋆ −2F

























,

holds, then (22) is satisfied.

In light of the above, we state the following result.

Theorem 1 Consider system (5) satisfying A1-A2 and its DAR representation (6)-(7) satisfying A3. If

there exist constant matrices Q1, Q2 = Q′
2 > 0, Q3, Q4, EF , V1 and V2 of appropriate dimensions and a

positive diagonal matrix F , satisfying the following matrix inequalities for all ξ ∈ V(Bξ):

Λ4(ξ) < 0 , (29)





Q2 Q2qr

q′rQ2 1



 > 0, r = 1, . . . , ne (30)











Q2 Q2Ξ
′
1 Q2K

′

1(i) − V ′

1(i)

⋆ Ξ2Q
′
4 +Q4Ξ

′
2 Q4K

′

2(i) − V ′

2(i)

⋆ ⋆ u20(i)











> 0, i = 1, . . . , nv (31)

then the anti-windup gain Ec = EFF
−1 is such that for all ξ(0) ∈ R, with P = Q−1

2 , the respective closed-loop

trajectories ξ(t) belong to R, and approach the origin as t→ ∞, where R is as given in (17).

Proof. First recall that matrices Aa, Ab, Ac, Ωa, Ωb, Ωc, K1, K2, Ξ1 and Ξ2 are affine in ξ. If the

inequalities (29)-(31) are feasible for each ξ ∈ V(Bξ), then they are also satisfied for all ξ ∈ Bξ from similar

convexity arguments of parameter-dependent LMIs [36].

Note that, since Ωb and Ξ2 are supposed to be nonsingular (from A3), the terms ΩbQ
′
3+Q3Ω

′
b < 0 (from

(29)) and Ξ2Q
′
4+Q4Ξ2 > 0 (from (31)) ensure that Q3 and Q4 are nonsingular. Moreover, since (from (29))

Q1 + Q′
1 > 0 and (by hypothesis) Q2 > 0, it follows that matrix Π0 defined in (27) is invertible. Hence if

Λ4(ξ) < 0, it follows that Λ3(ξ) < 0. Hence, in view of (24) we conclude that (21) holds with Q−1
2 = P > 0.

Hence, if R ⊂ S ∩Bξ and considering V (ξ) = ξ′Pξ, it follows that V̇ (ξ) < 0, ∀ξ ∈ R, which ensures that for

all ξ(0) ∈ R the result closed-loop trajectories ξ(t) belong to R and approach the origin as t→ ∞.
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On the other hand, pre- and post-multiplying (30) by Π1 = blockdiag{Q−1
2 , 1} and Π′

1, respectively, we

obtain:




P qr

q′r 1



 ≥ 0, ∀r = 1, . . . , ne. (32)

which ensures that R is included in the region Bξ defined in (8) [40].

Moreover, pre- and post-multiplying (31) by Π2 = blockdiag{Q−1
2 , Q−1

4 , 1} and Π′
2, respectively, we

obtain:










P Ξ′
1M

′
4 K ′

1(i) −G′

1(i)

⋆ M4Ξ2 + Ξ′
2M

′
4 K ′

2(i) −G′

2(i)

⋆ ⋆ u0(i)
2











≥ 0 , ∀i = 1, . . . , nv . (33)

Applying now the Schur’s complement to (33) and in the sequel pre- and post-multiplying the obtained

matrix inequality respectively by the vector [ ξ′ ρ′ ] and its transpose, it follows that:

(

(K1(i) −G1(i))ξ + (K2(i) −G2(i))ρ
)2

u0(i)2
≤ ξ′Pξ + 2ρ′M4(Ξ1ξ + Ξ2ρ), ∀i = 1, . . . , nv

Hence, taking into account that Ξ1ξ + Ξ2ρ = 0 and if ξ′Pξ ≤ 1, it follows that:

|(K1(i) −G1(i))ξ + (K2(i) −G2(i))ρ| ≤ u0(i), ∀i = 1, . . . , nv

which ensures that R ⊂ S.

Hence we conclude that (30) and (31) ensure that R ⊂ Bξ ∩ S, which concludes the proof. �

Remark 2 In the particular case where vc depends linearly or bilinearly (quadratically) on x and η, it follows

that ρ = 0 in (7) and thus we can consider K2 = 0, G2 = 0, Ξ1 = 0 and Ξ2 = 0.

In this case, relation (30) should be replaced by





Q2 Q2K
′

1(i) − V ′

1(i)

⋆ u0(i)
2



 ≥ 0 , ∀i = 1, . . . , nv . (34)

Moreover, the 4th line and the 4th column in (29) should be eliminated.

4.1 Optimization Problems

The result given in Theorem 1 can be applied for computing an anti-windup gain in order to attempt a

maximization of the region of attraction of the closed-loop system. In fact, this goal is implicitly achieved if

we maximize the region R associated to the gain to be computed.

To this end, since R is an ellipsoidal domain, the following optimization problem can be considered:

min trace(H) :





H I

I Q2



 > 0, (29), (30), (31), ∀ξ ∈ V(Bξ) (35)

11



Note that the minimization of trace(H) is a criterion that leads to the minimization of trace(Q−1
2 ) =

trace(P ) an thus an implicit maximization of the size of R. Other classical size criteria of ellipsoidal sets

such as volume maximization, minor axis maximization and the maximization in certain directions (see, e.g.,

Chapter 2 in [37] and references therein) can also be applied. It should be noticed that (29), (30) and (31)

are LMIs for ξ ∈ V(Bξ). Hence, problem (35) is convex and can be solved by standard LMI solvers.

Remark 3 The region Bξ corresponds to a region where the feasibility of the state dependent LMIs of

Theorem 1 should be verified. It is a priori fixed by the designer. In practice, it can be chosen as an hyper-

rectangle, which allows a straightforward description as (8) and the vertices characterization. Of course, the

assumption regarding the existence and uniqueness of the solutions in Bξ must be respected.

On the other hand, the size of the estimate R is highly dependent on the size of the polytope Bξ. In

consequence, if Bξ is small then the estimate R, which is contained in Bξ, can be conservative. The combined

maximization of R and Bξ is a nonconvex problem, which is hard to be solved. A simple solution is to

parameterize Bξ as a hypercube, i.e.,

Bξ = {ξ : |ξ(i)| ≤ α, i = 1, . . . , nξ}

and then starting from a sufficiently small α we can increase the value of α until the LMI conditions of

Theorem 1 are not feasible. Alternatively, we may apply an iterative procedure consisting of two optimization

steps. More precisely, if we parameterize Bξ as below:

Bξ := {ξ : |ξ(i)| ≤ αi, i = 1, . . . , nξ} ,

we solve (35) for given (sufficiently small) α1, . . . , αnξ
. Then, for given matrices Q2, Q3, Q4 and F , we

maximize Bξ over α1, . . . , αnξ
and free matrices Q1, EF , V1 and V2. Hence, we iterate between these two

steps until there is no significant change in the size of R.

Remark 4 The computational effort (number of decision variables and number of LMIs) for solving The-

orem 1 or the optimization problem in (35) depends on the number of states n, the number of control

states nc, the number of control inputs nv, the size nz of the auxiliary vector z(t), the size nρ of the aux-

iliary vector ρ(t) and the polytope geometry (number of vertices and edges of Bξ). For a hyper-rectangle

Bξ, the number of LMIs is given by nLMI = 2nξ(1 + 2nξ + nv) and the number of decision variables is

ndv = n2
ξ + nξ(nξ + 1)/2 + n2

ρ + n2
z + nv(nξ + nρ + nc + 1), where nξ = n+ nc.

5 Numerical Examples

Example 1 Consider the nonlinear closed-loop system treated in [24]:

ẋ(t) = (x2(t)− 1)x(t) + sat(vc(t))

y(t) = x(t),
(36)

12



with u0 = 1, and the controller

η̇(t) = −x(t)

vc(t) = η(t)− 2y(t).
(37)

Considering the DAR given in (6) with z = x2, we get for (36)-(37) the following:

Aa =





−3 1

−1 0



 , Ab =





x

0



 , Ac =





−1

0



 ,

Ωa =
[

x 0
]

, Ωb = −1 ,Ωc = 0 , K1 =
[

−2 1
]

.

Note that in this case (see Remark 2), ρ = 0 and thus K2 = 0, Ξ1 = 0 and Ξ2 = 0.

Consider Bξ :=
{

ξ ∈ R
2 : |ξ1| ≤ α1, |ξ2| ≤ α2

}

, where α1 = 1.3 and α2 = 2.4. Based on optimization

problem stated in (35), we have first determined the estimate R1 of the region of attraction of the closed-loop

system without anti-windup compensation, i.e. forcing Ec = 0. Figure 1 shows the obtained estimate R1 and

the actual region of attraction, which is clearly bounded by a limit cycle. In this case the matrix P is given

by:

P =





0.9826 −0.2750

−0.2750 0.3211



 .

Figure 1: Example 1 - Estimate of the region of attraction R1 without anti-windup.

Applying now the optimization problem (35) and considering Ec 6= 0, we obtain:

P =





0.8514 −0.2547

−0.2547 0.2498



 and Ec = 5.2464 .

Figure 2 shows the new estimate of the region of attraction for the above value of Ec, which is denoted by

R2. The resulting region of attraction in this case can also be observed in the figure. Note that the introduction

of the anti-windup compensation makes the limit cycle disappear and now the region of attraction is clearly

bigger and unbounded in some directions.
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Figure 2: Example 1 - Estimate of the region of attraction R2 with anti-windup.

For comparison purposes, we present both estimates of the region of attraction in Figure 3, where R1 is

in dashed line and R2 is in solid line. The region where the control does not saturate is denoted by Rns.

Figure 3: Example 1 - Comparison of R1 and R2.

Considering now the initial condition ξ(0) = [−0.6 1.16]′, Figure 4 shows the time evolution of the output

(y) and the control signal (sat(vc)) in 3 cases, namely: present approach, approach from [24] and without

the anti-windup strategy. Note that, with anti-windup strategy the control signal remains less time saturated

and the transient performance is improved. Although the performance optimization is not the focus neither

in [24] nor in the present work, we can note that a better performance is obtained with the anti-windup

computed from the present approach.

It should also be pointed out that conditions in [24] are BMIs and an iterative algorithm is proposed to

obtain the estimate of the region of attraction, which leads to a greater computational burden. Moreover, this

algorithm is strongly dependent on the initialization and in general only suboptimal solutions can be achieved.
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Figure 4: Example 1 - Time evolution of the output y and the control signal with the present approach

(solid), the approach in [24] (dotted) and without AW (dashed).

Example 2 Consider the closed-loop system borrowed from [22]:

ẋ1(t) = x1(t) + 2x1(t)
2 + x1(t)x2(t) + sat(vc(t))

ẋ2(t) = x1(t)

y(t) = x1(t) + 0.5x2(t)

(38)

with u0 = 0.6 and the NDI controller

η̇1(t) = x1(t) + 0.5x2(t)− 1.480η1(t) + 2.450η2(t)

η̇2(t) = 2.450η1(t)

vc(t) = −2x1(t)
2 − x1(t)x2(t)− 4.4x1(t)− 2.2x2(t)− 15.148η1(t)− 21.449η2(t).

(39)

Considering the DAR given in (6), we get for (38)-(39) the following:

Aa =

















−3.4 −2.2 −15.148 −21.449

1 0 0 0

1 0.5 −1.480 2.450

0 0 2.450 0

















, Ac =

















−1

0

0

0

















,

and

K1 =
[

−4.4− 2x1 −2.2− x1 −15.148 −21.449
]

.

Since the open-loop system and the output of the controller are quadratic in x and η, in this case Ab, Ωa,

Ωb, Ωc, K2, Ξ1 and Ξ2 are equal to zero matrices of appropriate dimensions.

Consider Bξ :=
{

ξ ∈ R
4 : |ξ1| ≤ α1, |ξ2| ≤ α2, |ξ3| ≤ α3, |ξ4| ≤ α4,

}

, where α1 = 0.35 and α2 = α3 =

α4 = 0.6. Based on optimization problem stated in (35), we have first determined the estimate R1 of the

region of attraction of the closed-loop system without anti-windup compensation, i.e. forcing Ec = 0. In this
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case the matrix P is given by:

P =

















56.3 23.3 113.2 154.1

23.3 20.8 76.7 105.4

113.2 76.7 611.2 834.3

154.1 105.4 834.3 1155.4

















,

with trace(P ) = 1843.71.

Applying now the optimization problem (35) and considering Ec 6= 0, we obtain a region R2, defined from

P =

















20.0139 8.4749 36.9308 49.1887

8.4749 6.6146 30.3210 40.6876

36.9308 30.3210 220.9461 301.6380

49.1887 40.6876 301.6380 412.5945

















.

with trace(P ) = 660.17 and Ec =





−5.0000

3.4285



. Observe that the trace of P is significantly reduced by

using the anti-windup technique, which implicitly means that the region of attraction is enlarged with the

anti-windup compensation.

Consider now the initial condition ξ(0) =
[

0.2235 0 0 0
]′

. It should be noticed that ξ(0) ∈ R2, but

ξ(0) does not belong to R1. Figure 5 shows the response of the output y and the control signal sat(vc) for

this initial condition considering the cases with (solid line) and without anti-windup strategy (dashed line).

It can be seen that without anti-windup compensation the closed-loop trajectory diverges.

Figure 5: Example 2 - Time evolution of the output y and the control signal vc with AW (solid) and without

AW (dashed).

Let us now discuss our results with respect to those proposed in [22], which concerns the design of n-

order dynamic anti-windup controllers (with an additional state xa), and aims at providing an estimate of the
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domain of attraction in the subspace of the plant state x. In the current paper, we are concerned with a static

anti-windup, and we consider the whole augmented state for the estimation of the region of attraction. Then,

in order to compare both approaches, we plot in Figure 6 the cut of the estimates of the region of attraction

in the subespace defined by the state x (i.e considering xc = 0 and, for the dynamic anti-windup case, also

xa = 0). Although the Lyapunov function used in [22] is more complex (i.e. it presents bi-quadratic terms in

x, xc and xa), it can be shown that the cut of the obtained estimate of the region of attraction is included in

the ellipoidal set plotted in dashed line. It can be observed that the region associated to our approach clearly

includes the dashed ellipsoid, which shows that the set of plant initial conditions for which the stability is

guaranteed ensured is larger than the one provided by [22].

Figure 6: Example 2 - Cut of the stability regions on the subspace defined by the plant states: present

approach (solid) and approach from [22] (dashed).

Although the performance optimization is not the focus neither in [22] nor in our paper, in Figure 7

a comparison between the time-responses considering an initial condition ξ(0) =
[

0.2235 0 0 0

]′

is

depicted. For the dynamic anti-windup compensator computed in [22] we considered xa(0) = 0. We can note

that the response with our approach is slightly better. Moreover, it should be pointed out that in our case

the anti-windup structure (i.e. a simple gain) is much simpler than the n-order dynamic nonlinear structure

proposed in [22].

Example 3 Consider the following multivariable nonlinear system and assume that the inputs are subject

to saturation, with u0 = [1 1]′:

ẋ1(t) = (x1(t) + 2)x1
2(t) + 10x2(t) + 10sat(vc2(t))

ẋ2(t) = −100x1(t)− 30x2(t) + 10sat(vc1(t))

y1(t) = 20x1(t)

y2(t) = 20x2(t).

(40)
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Figure 7: Example 2 - Time evolution of the output y: present approach (solid) and approach from [22]

(dashed).

From the linearized model of system (40), we designed a locally stabilizing multivariable proportional-

integral (PI) controller given by:

η̇(t) = Aηx(t) +Bηy(t)

vc(t) = Cηη(t) +Dηη(t) ,
(41)

where η(t) = [η1(t)
′ η2(t)

′]′, vc(t) = [vc1(t)
′ vc2(t)

′]′,

Aη = 02 , Bη = I2 , Cη =





−0.4686 −0.3703

−0.2959 0.4149



 , Dη =





0.0728 0.0516

−0.0227 0.0176



 .

Considering z = x1
2, the following DAR for (40)-(41) can be obtained:

Aa =

















−4.5400 13.5200 −2.9590 4.1490

−85.4400 −19.6800 −4.6860 −3.7030

20.0000 0 0 0

0 20.0000 0 0

















, Ab =

















x1 + 2

0

0

0

















, Ac =

















−10

−10

0

0

















,

Ωa =
[

x1 0 0 0
]

, Ωb = −1

and K1 =





1.4560 1.0320 −0.4686 −0.3703

−0.4540 0.3520 −0.2959 0.4149



 ,

In this case, ρ = 0 and thus K2 = 0, Ξ1 = 0 and Ξ2 = 0. Moreover, since the matrices of the DAR depend

only on the state x1, we can consider Bξ :=
{

ξ ∈ R
5 : |x1| ≤ α1

}

. For α1 = 3.0, Table 1 shows the results

of the optimization problem (35), considering the case without and with anti-windup compensation. From

the matrices P and the respective traces, we can conclude that the estimate R of the region of attraction is

significantly enlarged with the application of the anti-windup compensation.
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Ec P trace(P )





0 0

0 0





















1.9355 0.2987 0.1368 −0.1035

0.2987 0.2615 −0.0038 0.0397

0.1368 −0.0038 0.1829 −0.0101

−0.1035 0.0397 −0.0101 0.1119

















2.4917





−4.3832 −126.3203

−24.5150 383.6112





















0.1682 0.0247 0.0101 0.0007

0.0247 0.0245 −0.0032 0.0058

0.0101 −0.0032 0.0080 −0.0019

0.0007 0.0058 −0.0019 0.0052

















0.2059

Table 1: Example 3 - Results of the optimization problem for Ec = 0 and Ec 6= 0.

Figure 8 shows the time evolution of the outputs and the control signals obtained from the initial condi-

tion ξ(0) =
[

−0.1548 −1.0109 −3.2397 13.0463
]′

considering the cases with and without anti-windup

strategy. It should be noticed that ξ(0) belongs to the region R obtained with anti-windup, but it does not

belong to the one obtained without ant-windup. We can observe that with the anti-windup compensation

(solid-line), the control remains less time in saturation and the convergence of the closed-loop trajectories to

the origin is significantly faster.

Figure 8: Example 3 - Time evolution of the outputs y and the control signals vc with AW (solid) and

without AW (dashed).
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6 Concluding Remarks

This paper has proposed an approach to compute anti-windup gains for a class of multivariable nonlinear

systems subject to actuator saturation. The proposed design conditions relies on a differential algebraic

representation of rational systems, which can model a broad class of nonlinear systems. To deal with the

saturation, we have considered a modified version of the generalized sector bound condition. From these

elements, an LMI-based method has been devised to compute anti-windup gains aiming at the maximization

of the estimates of the region of attraction of the closed-loop system. Several numerical examples have

illustrated the application of the proposed approach and the effective improvement on the size of the region

of attraction of the closed-loop system achieved by means of an appropriate anti-windup compensation.
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