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Stabilisation of discrete-time systems with finite-level uniform and logarithmic quantisers

This study deals with the stabilisation of discrete-time linear systems subject to static finite-level quantisation on the control inputs. Two kinds of quantisers are considered: uniform and logarithmic. The modelling of the finite-level quantisation is obtained by the application of deadzone and saturation maps to an infinite-level quantiser. From this model, conditions for the synthesis of state feedback control laws guaranteeing the convergence of the trajectories to an attractor around the origin provided that the initial state belongs to a certain admissible set are proposed. These conditions can thus be incorporated in linear matrix inequality-based optimisation schemes to compute the stabilising gain while minimising the size of the attractor.

. In these works, based on sector-based relations, conditions to design stabilising state feedback control laws aiming at the minimisation of the attractor set are derived. In [2] the set of admissible initial states, for which the convergence to the attractor is ensured, is also characterised. It should, however, be pointed out that these papers deal only with continuous-time systems.

, we consider the effective nonlinear effect of the saturation and a formal proof regarding the

Introduction

Quantisation of signals is inherent to a digital implementation of control systems and can be considered as a hard non-linearity in the loop. Its effects may lead to undesirable phenomena such as limit cycles, multiple equilibria or chaotic behaviour, even if the controller is supposed to be a stabilising one [START_REF] Delchamps | Stabilizing a linear system with quantized state feedback[END_REF][START_REF] Tarbouriech | Control design for quantized linear systems with saturations[END_REF]. Considering the increasing implementation of Networked Control Systems (NCS), researches on quantisation regained the attention of the control community. In particular, since in NCS the control loop elements exchange information through communication channels with limited bandwidth, quantisation plays an important role in reducing the data traffic. However, the use of coarse quantisation may considerably degrade the behaviour of the controlled system.

With this motivation, the study of the effects of quantisation on control systems has attracted the attention of several researchers over the last years; see, e.g. [START_REF] Brockett | Quantized feedback stabilization of linear systems[END_REF][START_REF] Fridman | Control under quantization, saturation and delay: an LMI approach[END_REF][START_REF] Liberzon | Hybrid feedback stabilization of systems with quantized signals[END_REF][START_REF] Wang | Coding scheme based on spherical polar coordinate for control over packet erasure channel[END_REF]. It is also important to note that many of these studies have been proposed for continuous-time systems. In the context of discrete-time systems, one can cite some works dealing with the controller or observer design in the presence of uniform or logarithmic quantisers: see, e.g. [START_REF] Picasso | Stabilization of discrete-time quantized linear systems: an H ∞ /l 1 approach[END_REF][START_REF] Xia | Stability analysis of discrete-time systems with quantized feedback and measurements[END_REF]. In particular, in [START_REF] Elia | Stabilization of linear systems with limited information[END_REF], it has been shown that, for a quadratically stabilisable single-input system, a logarithmic quantiser is the optimal solution in terms of coarse quantisation density. However, it is also shown that the quantiser must have an infinite number of quantisation levels, which is not feasible in practice. Considering also infinite-level logarithmic quantisers, in [START_REF] Fu | The sector bound approach to quantized feedback control[END_REF] the authors have introduced the sector bound approach for quantised feedback systems giving simple formulae to the stabilisation problem considering state and output feedback controllers. The problem of finite-level quantisation can be addressed by using dynamic quantisers (see e.g. [START_REF] Fu | Finite-level quantized feedback control for linear systems[END_REF][START_REF] Azuma | Optimal dynamic quantizer for discrete-valued input control[END_REF][START_REF] Sawada | Synthesis of dynamic quantizers for quantized feedback systems within invariant set analysis framework[END_REF]). However, the implementation of such quantisers is in general much more complex than static ones and may not be possible in standard digital platforms.

When static finite-level quantisers are considered, an important issue regards the fact that the asymptotic convergence of the trajectories to the origin cannot be ensured for open-loop unstable systems. In this case, due to an implicit input deadzone, the trajectories will converge to either periodic or chaotic orbits around the origin. The idea, in this case, is to guarantee that the trajectories converge asymptotically to a set called attractor. Considering logarithmic quantisers, this problem is addressed in [START_REF] Elia | Stabilization of linear systems with limited information[END_REF] for singleinput systems. In that reference, for a given optimal control law, the authors focus on providing bounds on the quantiser parameters positive invariance of the attractor is provided. The proposed conditions are cast in LMI-based optimisation problems to compute the controller gain in order to minimise the size of the attractor while guaranteeing the set of admissible initial states includes some pre-specified region in the state space. A numerical example to illustrate the methodology and to compare the solutions with uniform and logarithmic quantisers is provided.

The paper is organised as follows. In Section 2, the generic framework and the problem statement are presented. Section 3 addresses the case of uniform quantisation, while Section 4 deals with the logarithmic case. Optimisation and computational issues are discussed in Section 5. A numerical example and some concluding remarks end the paper.

Notation: Throughout the paper, I denotes the identity matrix and 0 denotes the null matrix (equivalently the null vector) of appropriate dimensions. For a matrix A ∈ ℝ n × n , A′, A (i) , tr(A) denote its transpose, its ith row and its trace, respectively. The matrix diag(A 1 , A 2 , …, A n ) is the block-diagonal matrix having A 1 , A 2 , …, A n as diagonal blocks. In symmetric matrices, * stands for symmetric blocks. For a vectorx ∈ ℝ n , x (i) , x′, |x| denote its ith component, its transpose and the component-wise absolute value operator, respectively. sign(x) is the component-wise sign function, with sign(0) = 0, and ⌊x⌋ the component-wise floor operator. For two sets S 1 and S 2 , S 1 ∖S 2 denotes the set S 1 deprived of S 2 .

Problem statement

Consider the following discrete-time system:

x(k + 1) = Ax(k) + B dz(sat(q(u(k))) x(0) = x 0 (1) 
where x ∈ ℝ n , u ∈ ℝ p , x 0 ∈ ℝ n are, respectively, the state, the input of the system and the initial state. A, B are real matrices of suitable dimensions and q: ℝ p → ℝ p is a component-wise infinite level quantiser. In order to model the finite-level quantisation, we consider a component-wise saturation function, sat: ℝ p → ℝ p and a component-wise deadzone function dz: ℝ p → ℝ p , i.e. for v ∈ ℝ p it follows that:

sat (i) (v) := sign(v (i) )min{u 0(i) , | v (i) | }, i = 1, …, p (2) 
dz (i) (u) := 0 if -ϵ (i) < v (i) < ϵ (i) v (i) if | v (i) | ≥ ϵ (i) , i = 1, …, p (3) 
In this case, ±u 0(i) represents the maximum/minimum quantisation levels for the ith input channel, while ±ϵ (i) denote the limits for which the ith input signal is coded as zero.

In order to stabilise system (1), we consider a state feedback control law

u(k) = Kx(k) ( 4 
)
By defining now the functions ψ, ϕ and θ as follows:

ψ(v) := q(v) -v (5) ϕ(v) := sat(v) -v (6) θ(v) := dz(v) -v (7)
the closed-loop dynamics is given by the non-linear system

x(k + 1) = (A + BK)x(k) + Bψ(k) + Bϕ(k) + Bθ(k) ( 8 
)
where for simplicity we denote

ψ(k) = ψ(u(k)), ϕ(k) = ϕ(q(u(k)))) = ϕ(u(k) + ψ(u(k))) and θ(k) = θ(sat(q(u(k))) = θ(u(k) + ψ(k) + ϕ(k)).
From ( 2)-( 4), two sets of interest in the state space can be defined

S ns = {x ∈ ℝ n : | K (i) x | ≤ u 0(i) , i = 1, …, p} (9) 
S dz = {x ∈ ℝ n : | K (i) x | ≤ ϵ (i) , i = 1, …, p} (10) 
The set S ns corresponds to the region where none of the inputs is saturated in the maximal or minimal quantisation level, while S dz corresponds to the region where the actual control input injected into the system is zero. If x(k) ∈ S ns ∖S dz , the closed-loop dynamics reads

x(k + 1) = Ax(k) + q(u(k)) = (A + BK)x(k) + Bψ(k) (11) 
i.e. only the non-linear effect of the infinite-level quantiser q(k) is present.

On the other hand, note that if x(k) ∈ S dz , the system is in open loop. Hence, if the matrix A is not Schur-Cohn, the asymptotic stabilisation of the origin for the closed-loop system cannot be achieved even when the gain K is supposed to be a stabilising one (i.e. when (A + BK) is Schur-Cohn). Actually, in this case, either a limit cycle or a chaotic behaviour will be generated around the origin. Hence the convergence to the origin should be replaced by the convergence to an attractor set around the origin, as small as possible (i.e. referred as practical stability in [START_REF] Elia | Stabilization of linear systems with limited information[END_REF]). Moreover, if A is not Schur-Cohn, under input saturation only local (regional) stability can be achieved [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF][START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF].

In this work, we focus on the case in which matrix A is not Schur-Cohn, i.e. the open-loop system is exponentially unstable. Then, the problem we aim to solve can be stated as follows.

Problem 1: Given system (1), with saturation and deadzone limits given, respectively, by vectors u 0 ∈ ℝ p and ϵ ∈ ℝ p , and the control law (4), determine a gain K, a set S 0 ⊂ ℝ n and a compact set S u ⊂ ℝ n containing the origin, such that • S 0 and S u are positively invariant sets with respect to the closed-loop system (1)-( 4) (or equivalently system (8)). • For every initial condition x 0 ∈ S 0 ∖S u , the trajectories of the closed-loop system (1)-( 4) are bounded and converge in finite time to S u (which is therefore an attractor of the trajectories). • S u is as smaller as possible.

The sets in Problem 1 are depicted in Fig. 1. Note that the set S 0 is implicitly included in the region of attraction of the attractor set S u . As aforementioned, since A is assumed not to be Schur-Cohn, the global convergence to the attractor is not possible to achieve with bounded controls. On the other hand, the set S u is the region where the trajectories are ultimately bounded and, if minimised can be seen as an estimate of the periodic or chaotic orbit around the origin.

In the sequel, we address Problem 1 considering uniform and logarithmic finite-level quantisations.

Uniform quantisation

The function q(u) corresponding to a uniform quantisation is defined as follows:

q (i) (u) := ϵ (i) sign(u (i) ) |u (i) | ϵ (i) i = 1, …, p (12) 
where ϵ (i) is a positive real-scalar representing the quantisation step of the ith control input. In this case, u 0(i) = N i ϵ i , where N i is the number of positive levels between u 0(i) and zero. Moreover, as it can be seen in Fig. 2, the deadzone is implicitly included in the definition of q. Hence, the equation describing the closed-loop system (8), considering a finite-level uniform quantisation can be simplified to the following one:

x(k + 1) = (A + BK)x(k) + Bψ(k) + Bϕ(k) (13) with ψ(k) = ψ(u(k)), ϕ(k) = ϕ(q(u(k))) = ϕ(u(k) + ψ(u(k))).
Before, proposing a result to address Problem 1, we recall some auxiliary conditions regarding the sector bounded functions ψ and ϕ.

Lemma 1: (see [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF] and [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF] for details) For ψ(u) as defined in (5), with q(u) defined by [START_REF] Azuma | Optimal dynamic quantizer for discrete-valued input control[END_REF], and considering ϵ = [ϵ (1) ⋯ϵ (p) ]′, the relations

ψ(u)′S 1 ψ(u) -ϵ′S 1 ϵ ≤ 0, (14) 
ψ(u)′S 2 (ψ(u) + u) ≤ 0 (15) 
are verified for any diagonal positive definite matrices S 1 , S 2 ∈ ℝ p × p . Actually, ( 14) corresponds to a generalisation of the condition in [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF] to cope with different quantisation parameters in each input.

Lemma 2: (see [START_REF] Ferrante | Stabilization of continuous-time linear systems subject to input quantization[END_REF] and [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF] for details) For ϕ(v) as defined in (6) and a vector w ∈ ℝ p , the relation

ϕ(v)′S 3 (ϕ(v) + v + w) ≤ 0 (16) 
is verified for any diagonal positive matrix S 3 ∈ ℝ p × p , provided that w ∈ S(u 0 ) with

S(u 0 ) = {w ∈ ℝ p ; | w (i) | ≤ u 0(i) , i = 1, …, p} (17) 
Note that considering v = q(u), from (5), condition [START_REF] Maestrelli | Stability analysis of input and output finite level quantized discrete-time linear control systems[END_REF] reads

ϕ(v)′S 3 (ϕ(v) + ψ(u) + u + w) ≤ 0 (18) 
By using Lemmas 1 and 2, the following proposition to solve Problem 1 can be stated.

Proposition 1: If there exists a symmetric positive definite matrix

W ∈ ℝ n × n , diagonal positive matrices S 1 , S 2 , R 3 ∈ ℝ p × p , matrices
Y, Z ∈ ℝ p × n , positive scalars τ 1 , τ 2 and a scalar α, 0 ≤ α ≤ 1, satisfying the following conditions:

βW -Y′S 2 -Y′ -Z′ W A′ + Y′B′ * -S 1 -2S 2 -I B′ * * -2R 3 R 3 B′ * * * -W < 0 with β = (τ 2 -ατ 1 -1) (19 
)

ϵ′S 1 ϵ + τ 1 -τ 2 ≤ 0 ( 20 
)
αW Z′ (i)

Z (i) u 0(i) 2 > 0, i = 1, …, p (21) 
then, for K = YW -1 , it follows that ∀x(0) ∈ S 0 ∖S u the trajectories of the system (13) converge in finite time to the set S u , with

S u = ℰ(P) = {x ∈ ℝ n : x′Px ≤ 1}, P = W -1 (22) S 0 = ℰ(αP) = {x ∈ ℝ n : x′αPx ≤ 1} (23) 
Moreover, S 0 and S u are positively invariant sets with respect to [START_REF] Sawada | Synthesis of dynamic quantizers for quantized feedback systems within invariant set analysis framework[END_REF].

Proof: Considering the quadratic Lyapunov function V(x) = x′Px, with P = P′ > 0, we want to prove that

ΔV(x) = V(x(k + 1)) -V(x(k)) < -μ | | x(k) | | 2 , ( 24 
)
with μ being a positive scalar, ∀x(k) ∈ S 0 ∖S u .

In this case, it follows that S 0 is a positively invariant set and ∀x(0) ∈ S 0 , the corresponding trajectory converges in finite time to S u . Note that

S 0 ∖S u = {x ∈ ℝ n : (x′αPx -1) ≤ 0 and (1 -x′Px) ≤ 0}
Now applying S-procedure along with Lemmas 1 and 2, considering u = Kx and w = Gx, with G being a free matrix variable, if

ΔV(x) -τ 1 (x′αPx -1) -τ 2 (1 -x′Px) -ψ′S 1 ψ + ϵ′S 1 ϵ -2ψ′S 2 (ψ + Kx) -2ϕ′S 3 (ϕ + ψ + Kx + Gx) < -μ | | x(k) | | 2 (25) 
it follows that (24) is satisfied, provided that x ∈ S ~(u 0 ), with

S ~(u 0 ) = {x ∈ ℝ n ; | G (i) x | ≤ u 0(i) , i = 1, …, p} (26) 
By using [START_REF] Sawada | Synthesis of dynamic quantizers for quantized feedback systems within invariant set analysis framework[END_REF], it is possible to re-write (25) as follows:

[x′ ψ′ ϕ′]N u x ψ ϕ + ϵ′S 1 ϵ + τ 1 -τ 2 < -μx′x (27)
with N u defined as follows: 

N u = (τ 2 -ατ 1 -1)P -K′S 2 -K′S 3 -G′S 3 * -S 1 -2S 2 -S 3 * * -2S 3 + (A + BK)′ B′ B′ P (A + BK) B B ( 28 
)
It is straightforward to verify that (27) will be satisfied for some μ > 0 if we guarantee [START_REF] Ferrante | Observer-based control for linear systems with quantized output[END_REF] and

N u < 0. Applying Schur complement, N u < 0 is equivalent to βP -K′S 2 -K′S 3 -G′S 3 (A + BK)′ * -S 1 -2S 2 -S 3 B′ * * -2S 3 B′ * * * -P -1 < 0 (29) 
Then by pre-and post-multiplying (29) by diag(P -1 , I, S 3 -1 , I) and with the change of variables P -1 = W, KW = Y, GP -1 = Z, S 3 -1 = R 3 , we obtain relation [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF]. Furthermore, one has to prove that the set S u is positively invariant. This is proven if we guarantee that x(k + 1)′Px(k + 1) ≤ 1 whenever x(k)′Px(k) ≤ 1 (i.e. when x(k) ∈ S u ). It is possible to do that by verifying the following inequality, for some positive scalar τ 3 :

x(k + 1)′Px(k + 1) -1 -τ 3 (x(k)′Px(k) -1) ≤ 0 (30) 
On the other hand, inequality (30) is true if we are able to verify that

τ 3 -1 ≤ -ϵ′S 1 ϵ (31)
and

x(k + 1)′Px(k + 1) -τ 3 x(k)′Px(k) -ψ(k)′S 1 ψ(k) -2ψ(k)′S 2 (ψ(k) + Kx(k)) -2ϕ(k)′S 3 (ϕ(k) + ψ(k) + Kx(k) + Gx(k)) ≤ 0 (32) 
provided that x ∈ S ~(u 0 ). Now by choosing -τ 3 = τ 2 -ατ 1 -1, it is straightforward to verify that (32) is implied by [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF]. Furthermore, since α ≤ 1 and τ 1 , τ 2 > 0, it follows that:

ϵ′S 1 ϵ + τ 3 -1 = ϵ′S 1 ϵ + ατ 1 -τ 2 ≤ ϵ′S 1 ϵ + τ 1 -τ 2 (33) 
Hence ( 20) implies (31). Then, if [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF] and ( 20) are satisfied, (30) is implicitly verified and thus S u is positively invariant with respect to system [START_REF] Sawada | Synthesis of dynamic quantizers for quantized feedback systems within invariant set analysis framework[END_REF].

Finally, the satisfaction of relation [START_REF] Amato | Stabilization of bilinear systems via linear state feedback control[END_REF] implies that the ellipsoid S 0 = ℰ(αP) is included in the polyhedral set S ~(u 0 ) defined in (26), which ensures the validity of condition [START_REF] Campos | Stability of discrete-time control systems with uniform and logarithmic quantizers[END_REF], with w = Gx, ∀x ∈ S 0 , which concludes the proof. □

Logarithmic quantisation

In the case of the logarithmic quantisation, each component of the decentralised vector q(u) is defined as

q (i) (u) := λ (i) ρ (i) j , if u (i) > 0 and λ (i) ρ (i) j (1 + δ (i) ) ≤ u (i) < λ (i) ρ (i) j (1 -δ (i) ) - λ (i) ρ (i) j , if u (i) < 0 and λ (i) ρ (i) j (1 + δ (i) ) ≤ -u (i) < λ (i) ρ (i) j (1 -δ (i) ) , i = 1, …, p, j ∈ ℤ ( 34 
)
δ (i) = 1 -ρ (i) 1 + ρ (i) , ρ (i) = 1 -δ (i) 1 + δ (i) , 0 < ρ (i) < 1 (35) 
The parameter ρ (i) is said to be the quantisation density (instead of quantisation step as in the uniform quantisation). The function q (i) (u) corresponding to an infinite-level quantiser is depicted in Fig. 3. Recall now that, to obtain a finite-level quantiser, saturation and deadzone effects are applied over the infinite-level quantiser q(u). In this case, λ (i) is considered as the least positive quantisation level. Actually, λ (i) is related to the deadzone limit through the equation λ (i) = ϵ (i) (1 + δ (i) ). Moreover, the saturation limit of each quantised input is given by u 0(i) = λ (i) / ρ (i)

N i -1 , where N i corresponds to the number of quantisation levels between u 0(i) and zero.

To solve Problem 1, we recall a sector condition verified by the nonlinearity ψ (it corresponds to a multi-input version of the one in [START_REF] De Souza | Stability analysis of finite-level quantized discrete-time linear control systems[END_REF]) Lemma 3: For ψ(u) = q(u) -u with q(u) defined in (34) and (35), and D = diag(δ (1) , …, δ (p) ), the relation

(ψ(u) + Du)′S 1 (ψ(u) -Du) ≤ 0 (36) 
is verified for any diagonal positive definite matrix S 1 ∈ ℝ p × p . For the non-linearity θ, one can use a similar condition to that one stated in Lemma 1, as follows: Lemma 4: For every θ(v) defined in [START_REF] Picasso | Stabilization of discrete-time quantized linear systems: an H ∞ /l 1 approach[END_REF], the relation

θ(v)′S 3 θ(v) -ϵ′S 3 ϵ ≤ 0 (37)
is verified for any diagonal positive definite matrix S 3 ∈ ℝ p × p . By using Lemmas 2-4, the following proposition to solve Problem 1 can be stated.

Proposition 2: If there exists a symmetric positive definite matrix

W ∈ ℝ n × n , diagonal positive matrices R 1 , R 2 , S 3 ∈ ℝ p × p , matrices Y, Z ∈ ℝ p × n
, positive scalars τ 1 , τ 2 and a scalar α, 0 ≤ α ≤ 1, satisfying the following conditions: 

-Y′ -Z′ 0 W A′ + Y′B′ Y′D * -R 1 -R 1 0 R 1 B′ 0 * * -2R 2 0 R 2 B′ 0 * * * -S 3 B′ 0 * * * * -W 0 * * * * * -R 1 < 0, with β = (τ 2 -ατ 1 -1) (38 
)

ϵ′S 3 ϵ + τ 1 -τ 2 ≤ 0 (39)
αW Z′ (i)

Z (i) u 0(i) 2 > 0, i = 1, …, p (40) 
then, for K = YW -1 , it follows that ∀x(0) ∈ S 0 ∖S u the trajectories of the system (8) converge in finite time to the set S u , with S u and S 0 as defined in ( 22) and ( 23). Moreover, S 0 and S u are positively invariant sets with respect to [START_REF] Xia | Stability analysis of discrete-time systems with quantized feedback and measurements[END_REF].

Proof: Applying S-procedure along with Lemmas 2-4, if

ΔV(x) -τ 1 (x′αPx -1) -τ 2 (1 -x′Px) -(ψ + DKx)′S 1 (ψ -DKx) -2ϕ′S 2 (ϕ + ψ + Kx + Gx) -θ′S 3 θ + ϵ′S 3 ϵ < -μ | | x | | 2 (41) 
with μ being a positive scalar, then it follows that

ΔV(x) < -μ | | x | | 2 , ∀x ∈ S 0 ∖S u is satisfied, provided that x ∈ S ~(u 0 ).
By using [START_REF] Xia | Stability analysis of discrete-time systems with quantized feedback and measurements[END_REF] and considering ξ = [x′ ψ′ ϕ′ θ′]′, it is possible to re-write (41) as follows:

ξ′N l ξ + ϵ′S 3 ϵ + τ 1 -τ 2 < -μx′x (42) 
with N l defined as follows:

N l = P(τ 2 -ατ 1 -1) + K′DS 1 DK 0 -K′S 2 -G′S 2 0 * -S 1 -S 2 0 * * -2S 2 0 * * * -S 3 + (A + BK)′ B′ B′ B′ P (A + BK) B B B ( 43 
)
It is straightforward to verify that (42) will be satisfied for some μ > 0 if we guarantee (39) and N l < 0. By applying Schur complement twice, then by pre-and post-multiplying by diag(P -1 , S 1 -1 , S 2 -1 , I, I, I) and with the change of variables

P -1 = W, KP -1 = Y, GP -1 = Z, S 1 -1 = R 1 , S 2 -1 = R 2 ,

we obtain relation (38).

To prove that the set S u is positively invariant, it suffices to verify that, for some positive scalar τ 3 ,

x(k + 1)′Px(k + 1) -1 -τ 3 (x(k)′Px(k) -1) ≤ 0 ( 44 
)
~Recalling Problem 1, the goal is to compute K in order to obtain an attractor set S u as small as possible. To achieve this objective, one needs to find a suitable measure for the set S u and minimise it subject to conditions of Propositions 1 and 2. In particular, it is possible to implicitly minimise the volume of S u by minimising tr(P -1 ), or equivalently, tr(W).

On the other hand, it is also important to guarantee that the set S 0 has a reasonable size or that it covers a given set of admissible initial conditions X 0 . With this aim, we can consider X 0 as a polytope in the state space described by the convex hull of its vertices, i.e. X 0 = Conv{v 1 , …, v r }. In this case, an extra condition to ensure that X 0 ⊂ S 0 is given as follows:

1 αv l ′ * αW > 0, l = 1, …, r (45) 
Hence, in order to compute K to minimise the attractor while ensuring a guaranteed region of attractivity, i.e. regional stability, the following optimisation problems can be considered. Notice that conditions W > 0 and R 3 > 0 are implicitly ensured in (46) by [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF]. On the other hand, conditions W > 0, R 1 > 0, R 2 > 0, S 3 > 0 are implicitly ensured in (47) by (38).

It is important to note that conditions ( 19) and ( 21), in the uniform quantisation case, and conditions (38) and (40), in the logarithmic quantisation case, are non-linear in the decision variables (i.e. they are not LMIs), which prevents from solving directly a convex optimisation problem. Nevertheless, it is possible to overcome this problem by considering the variables τ 1 , τ 2 and α as tuning parameters. In the uniform quantisation case, S 2 must be fixed as well [START_REF] Ferrante | Observer-based control for linear systems with quantized output[END_REF]. Moreover, to guarantee feasibility, it is necessary that the following conditions are respected:

τ 2 > τ 1 ; τ 2 < 1 + ατ 1 (48)
Thus, the optimal value of ( 46) or (47) can be obtained by solving LMI-based optimisation problems on a grid with respect to α, τ 1 , τ 2 and S 2 (in the uniform case). This can be efficiently addressed by using, for instance, the Nelder-Mead simplex method (implemented in MATLAB by the fminsearch function). As aforementioned, in problems ( 46) and (47) we ensure that S 0 is sufficiently large by imposing that X 0 ⊂ S 0 . If we seek a larger S 0 , we can enlarge the shape set X 0 . This can be done, for instance, by using a scaling factor η for X 0 in order to ensure ηX 0 ⊂ S 0 , which can be translated in the LMI constraint

η ¯αv l ′ * αW > 0, l = 1, …, r (49) 
where η ¯= η -2 . In this case, while tr(W) is minimised, the scalar α is implicitly adjusted to fulfil (49). However, by increasing η a side effect is that the optimal S u will also be probably increased since both sets are defined from the same matrix P. There is, in fact, a trade-off to manage. Moreover, note that for η too large the conditions may be not feasible. This comes from the fact that, since the open-loop system is exponentially unstable (by assumption), the global stabilisation is indeed not possible.

Then, by choosing -τ 3 = τ 2 -ατ 1 -1, following the same reasoning is done in the proof of Proposition 1, it follows that (38) and (39) imply (44). Finally, the satisfaction of relation (40) implies that the ellipsoid S 0 = ℰ(αP) is included in the polyhedral set S(u 0 ) defined in (26), which concludes the proof. □

Computational issues

In this section, we discuss how to compute the stabilising control law by using the results stated in Propositions 1 and 2.

On the other hand, we can formulate a converse problem in which the main objective is the maximisation of S 0 , while keeping S u sufficiently small. For this, we can consider for instance a polyhedral shape set X u represented as

X u = {x ∈ ℝ n : H (i) x ≤ 1, i = 1, …, l} (50) 
where H (i) ′ ∈ ℝ n . Thus, in order to ensure that S u is sufficiently small we can force S u ⊂ X u , which is ensured by the following set of constraints:

W WH′ (i)
H (i) W 1 > 0, i = 1, …, l (51) 
In this case, in order to maximise S 0 the following optimisation problems can be considered: 21 

• Uniform quantisation min tr( -M) s . t . : W > αM; S 1 > 0; S 2 > 0; (19) -(

Numerical example

Consider the following discrete-time system derived from the continuous-time system treated in [START_REF] Amato | Stabilization of bilinear systems via linear state feedback control[END_REF], with a sampling period T s = 0.01 s: 

A = 0.
Our objective is to compare a uniform and a logarithmic quantiser when designing a static state feedback controller that minimises the size of the attractor. With this aim, we consider that both quantisers use the same number of bits (i.e. presents the same number of quantisation levels). Considering that the most significant bit is reserved for the sign, the relation between the number of bits N bits and the number of positive levels of the quantiser N, for each input channel, is given by

N i = 2 (N bits, i -1) -1, i = 1, …, p (55) 
The levels of saturation in the control channels are also considered as being the same for both quantisers and are given by vector u 0 = [12. 4 12.4]′. Fixing all these parameters, in the uniform case, the quantisation step in each channel can be calculated by ϵ (i) = u 0(i) /N i , i = 1, …, p, with N i being the number of quantisation levels in control input i. In the logarithmic case, the quantisation density ρ (i) is a degree of freedom, which will affect the smallest positive quantised value λ (i) through the following relation:

λ (i) = u 0(i) ρ (i) (N i -1) (56) 
Assuming N bits = 6 for both channels (which yields N 1 = N 2 = N = 31), the two quantisation cases are analysed in the sequel. For this, we apply the optimisation problems ( 46 Notice that in this case both analysis and simulation show the superiority of logarithmic quantisers in terms of attractor size, considering the same number of quantisation levels and the same saturation limits. Nevertheless, as mentioned previously in this section, the quantisation density ρ (i) is a degree of freedom of the logarithmic quantiser and a good choice of this parameter must be made. One would expect that the closer to one ρ (i) is, a smaller S u would be obtained since quantisation would become denser and the quantisation non-linearity q (i) (u) (see Fig. 3) would lie in a closer sector (i.e. δ (i) would be close to zero). However, considering u 0 and the number of quantisation levels N i fixed, relation (56) shows that there is a trade-off between ρ (i) and λ (i) (which is proportional to ϵ (i) , Table 1 also shows that for ρ (i) = 0.8349, we obtain S u which is similar in size to the one obtained in the uniform case. Finally, for ρ (i) = 0.8935 the deadzone limit ϵ ci is approximately the same as that one of the uniform quantisation, but S u is several times larger than the one obtained in the uniform case. This indicates that, depending on the quantisation density chosen for the logarithmic quantiser, if we fix the saturation and the deadzone limits as well as the number of quantisation levels, the uniform quantiser may provide better results.

In order to illustrate the trade-off regarding the size of S 0 and S u , as discussed in Section 5, we replace now (45) by ( 49) in optimisation problems (46) and (47). Tables 2 and3 show the results obtained for different values of the scaling factor η = 1/ η for the uniform and logarithmic cases, respectively. Note that as η increases, i.e. the larger is the shape set that must be included by S 0 , the smaller is the value of tr(αP), which indicates that S 0 increases. On the other hand, it can be observed that tr(P) decreases, meaning that S u also increases as we increase η. Moreover, as expected, for η too large (η > 1.3 in the uniform case and η > 1.18 in the logarithmic one) no feasible solution (N.F.) can be found since the global stability is not achievable because the open-loop system is exponentially unstable.

Conclusion

This paper has tackled the stabilisation of (unstable) multi-input discrete-time linear systems involving input static finite quantisation. A unified framework to handle uniform and logarithmic quantisers has been proposed. The approach is based on the modelling of the finite quantisation through the appropriate application of deadzone and saturation operators. Based on the properties of the three types of non-linearities (i.e. infinite quantisation, deadzone and saturation), conditions to design a static state feedback controller that guarantees the convergence to an attractor set S u , provided the initial state belongs to a set S 0 , are developed. These conditions are incorporated in optimisation problems aiming at determining the stabilising feedback gain while minimising the size of the attractor set and guaranteeing that the set S 0 covers a pre-defined region in the state space.

Although this work considered only input quantisation, the approach can be extended to cope with state quantisation and also be used to optimally tune the quantisers parameters when the gain is given. another parameter that influences the size of S u ). In this example, the best choice for ρ = ρ (1) = ρ (2) was found numerically. Table 1 shows the results of the optimisation problem (47) that would have been obtained with different values of ρ (i) = ρ, i = 1, 2. Notice that, when ρ (i) > 0.7391, ϵ (i) becomes larger and, as expected, S u becomes larger too (i.e. tr(P) is smaller). On the other hand, when ρ (i) < 0.7391, ϵ ci becomes smaller but, since the quality of quantisation is worse (actually the sector where the q (i) (u) lies is more opened, i.e. more uncertainty is considered), S u grows.
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  ensures that tr(α -1 W) > tr(M), i.e. the minimisation of tr( -M) implies the maximisation of the tr(α -1 W)).

  ) or (47) with X 0 = {v 1 }, with v 1 = [2 2 2]′.Considering the uniform quantiser, for N = 31 and u 0 given above, we obtain ϵ (1) = ϵ (2) = 0.4. A grid search allows to find the best feasible values for the tuning parameters, respectively, α = 0.0026, τ 1 = 5.3059 × 10 -11 , τ 2 = 0.0198 and S 2 = diag(6.3644 × 10 -4 , 0.0015). The solution to the optimisation problem (46) in this case yields K = 0.6137 -0.3853 -10.4675 9.2395 17.0548 14.6553 and P = 15.6182 7.5034 -1.4831 7.5034 19.6851 -1.3810 -1.4831 -1.3810 51.5721which has its trace equal to 86.88.In the logarithmic quantiser case, also for N = 31 and u 0 given above, we choose ρ (1) = ρ (2) = 0.7391. Recalling that λ (i) = ϵ (i) (1 + δ (i) ), we obtain ϵ (1) = ϵ (2) = 0.0012. Comparing with the deadzone limits of the uniform quantiser case, one can expect the attractor size to be considerably smaller in the logarithmic case. A grid search allows to find the best feasible values for the tuning parameters, respectively, α = 4.2786 × 10 -5 , τ 1 = 1.21 × 10 -10 and τ 2 = 0.0014. The solution to the optimisation problem (47) in this case yields 5139 -0.6808 5.0021 which has traced its equal to 8.7736 × 10 3 .Figs.4-6show, respectively, the evolution of the state for an initial condition of x 0 = [2 -2 -1]′ in the uniform and logarithmic cases, and the ellipsoids S u obtained in both cases.
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Table 1

 1 Results obtained for different values of ρ (i) -

	logarithmic quantisation ρ (i) δ (i)	λ (i)	ϵ (i)	tr(P)
	0.4706	0.36	1.87 × 10 -9	1.38 × 10 -9	2569.9
	0.5385	0.3	1.07 × 10 -7	8.22 × 10 -8	5830.8
	0.7391	0.15	1.43 × 10 -3	1.24 × 10 -3	8773.6
	0.7857	0.12	8.94 × 10 -3	7.98 × 10 -3	2958.0
	0.8182	0.10	3.01 × 10 -2	2.74 × 10 -2	289.0
	0.8349	0.09	5.52 × 10 -2	5.06 × 10 -2	83.7
	0.8935	0.056	4.22 × 10 -1	4.00 × 10 -1	1.45

Table 2

 2 Influence of η over the sizes of S u and S 0 -uniform

	quantisation η	tr(W)	tr(P)	tr(αP)
	0.5	0.0299	1369.70	3.3106
	0.8	0.0685	231.77	0.6230
	1.0	0.1602	86.88	0.2259
	1.2	21.1349	2.34	0.0744
	1.3	N.F.	N.F.	N.F.

Table 3

 3 Influence of η over the sizes of S u and S 0 -

	logarithmic quantisation η tr(W)	tr(P)	tr(αP)
	0.5	1.31 × 10 -4	2.88 × 10 5	5.5860
	0.8	3.77 × 10 -4	5.22 × 10 4	1.0100
	1.0	0.0017	8.77 × 10 3	0.3754
	1.17	2.9110	36.72	0.0705
	1.18	N.F.	N.F.	N.F.
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