
HAL Id: hal-01856229
https://laas.hal.science/hal-01856229

Submitted on 10 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stabilisation of discrete-time systems with finite-level
uniform and logarithmic quantisers

Gustavo Cruz Campos, João Manoel Gomes da Silva Jr, Sophie Tarbouriech,
Carlos Eduardo Pereira

To cite this version:
Gustavo Cruz Campos, João Manoel Gomes da Silva Jr, Sophie Tarbouriech, Carlos Eduardo Pereira.
Stabilisation of discrete-time systems with finite-level uniform and logarithmic quantisers. IET Control
Theory and Applications, 2018, 12 (8), pp.1125 - 1132. �10.1049/iet-cta.2017.1092�. �hal-01856229�

https://laas.hal.science/hal-01856229
https://hal.archives-ouvertes.fr


Stabilisation of discrete-time systems with
finite-level uniform and logarithmic quantisers

Gustavo Cruz Campos1, Joao Manoel Gomes da Silva Jr.1 , Sophie Tarbouriech2, Carlos Eduardo
Pereira1

1DELAE, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

E-mail: jmgomes@ufrgs.br

Abstract: This study deals with the stabilisation of discrete-time linear systems subject to static finite-level quantisation on the
control inputs. Two kinds of quantisers are considered: uniform and logarithmic. The modelling of the finite-level quantisation is
obtained by the application of deadzone and saturation maps to an infinite-level quantiser. From this model, conditions for the
synthesis of state feedback control laws guaranteeing the convergence of the trajectories to an attractor around the origin
provided that the initial state belongs to a certain admissible set are proposed. These conditions can thus be incorporated in
linear matrix inequality-based optimisation schemes to compute the stabilising gain while minimising the size of the attractor.

to guarantee the convergence of the trajectories to a positively
invariant set. On the other hand, quantiser overflow can be seen as
an input saturation. It is well known that the global attractivity of
the trajectories in the presence of bounded controls cannot be
achieved if the open-loop system is exponentially unstable [14].
Hence, in this case, it is important to characterise sets of admissible
initial conditions, which are included in the basin of attraction of
the attractor. Considering single-input systems and a finite-level
logarithmic quantiser, these problems are addressed in [15, 16],
where a sector bound approach is applied to derive linear matrix
inequality (LMI)-based conditions for estimating a set of initial
conditions and an attractor, such that all the state trajectories
starting in the first set will converge to the second in a finite time.
In those works, the control law is supposed to be given, i.e. only
the stability analysis problem is addressed. Moreover, the set of
admissible states is constrained to be included in the region where
the saturation of the quantiser is not active. Finite-level uniform
quantisers are considered for instance in [2, 17]. In these works,
based on sector-based relations, conditions to design stabilising
state feedback control laws aiming at the minimisation of the
attractor set are derived. In [2] the set of admissible initial states,
for which the convergence to the attractor is ensured, is also
characterised. It should, however, be pointed out that these papers
deal only with continuous-time systems.

This work addresses the synthesis of stabilising control laws for
multi-input discrete-time linear systems subject to finite-level static
uniform and logarithmic quantisers. It can be seen as a
comprehensive version of the conference paper [18], where only
the stability analysis has been addressed. Furthermore, we extend
the approach to deal with different quantisation parameters in each
input channel. Based on the modelling of the finite-quantisation
through deadzone and saturation maps, a unified framework to deal
with both uniform and logarithmic quantisations is proposed.
Although the approach also applies to stable systems, we
particularly focus on the case in which the plant is exponentially
unstable. In this paper, considering explicitly the non-linear effects
induced by the quantisation, the deadzone as well as the saturation,
conditions to compute a state feedback gain to ensure that the
trajectories of the non-linear closed-loop system converge
asymptotically to an attractor around the origin, provided that the
initial condition belongs to an admissible set, are proposed.
Differently from references [15, 16], we consider the effective non-
linear effect of the saturation and a formal proof regarding the

1 Introduction
Quantisation of signals is inherent to a digital implementation of 
control systems and can be considered as a hard non-linearity in the 
loop. Its effects may lead to undesirable phenomena such as limit 
cycles, multiple equilibria or chaotic behaviour, even if the 
controller is supposed to be a stabilising one [1, 2]. Considering the 
increasing implementation of Networked Control Systems (NCS), 
researches on quantisation regained the attention of the control 
community. In particular, since in NCS the control loop elements 
exchange information through communication channels with 
limited bandwidth, quantisation plays an important role in reducing 
the data traffic. However, the use of coarse quantisation may 
considerably degrade the behaviour of the controlled system.

With this motivation, the study of the effects of quantisation on 
control systems has attracted the attention of several researchers 
over the last years; see, e.g. [3–6]. It is also important to note that 
many of these studies have been proposed for continuous-time 
systems. In the context of discrete-time systems, one can cite some 
works dealing with the controller or observer design in the 
presence of uniform or logarithmic quantisers: see, e.g. [7, 8]. In 
particular, in [9], it has been shown that, for a quadratically 
stabilisable single-input system, a logarithmic quantiser is the 
optimal solution in terms of coarse quantisation density. However, 
it is also shown that the quantiser must have an infinite number of 
quantisation levels, which is not feasible in practice. Considering 
also infinite-level logarithmic quantisers, in [10] the authors have 
introduced the sector bound approach for quantised feedback 
systems giving simple formulae to the stabilisation problem 
considering state and output feedback controllers. The problem of 
finite-level quantisation can be addressed by using dynamic 
quantisers (see e.g. [11–13]). However, the implementation of such 
quantisers is in general much more complex than static ones and 
may not be possible in standard digital platforms.

When static finite-level quantisers are considered, an important 
issue regards the fact that the asymptotic convergence of the 
trajectories to the origin cannot be ensured for open-loop unstable 
systems. In this case, due to an implicit input deadzone, the 
trajectories will converge to either periodic or chaotic orbits around 
the origin. The idea, in this case, is to guarantee that the trajectories 
converge asymptotically to a set called attractor. Considering 
logarithmic quantisers, this problem is addressed in [9] for single-
input systems. In that reference, for a given optimal control law, 
the authors focus on providing bounds on the quantiser parameters



positive invariance of the attractor is provided. The proposed
conditions are cast in LMI-based optimisation problems to
compute the controller gain in order to minimise the size of the
attractor while guaranteeing the set of admissible initial states
includes some pre-specified region in the state space. A numerical
example to illustrate the methodology and to compare the solutions
with uniform and logarithmic quantisers is provided.

The paper is organised as follows. In Section 2, the generic
framework and the problem statement are presented. Section 3
addresses the case of uniform quantisation, while Section 4 deals
with the logarithmic case. Optimisation and computational issues
are discussed in Section 5. A numerical example and some
concluding remarks end the paper.

Notation: Throughout the paper, I denotes the identity matrix
and 0 denotes the null matrix (equivalently the null vector) of
appropriate dimensions. For a matrix A ∈ ℝn × n, A′, A(i), tr(A)
denote its transpose, its ith row and its trace, respectively. The
matrix diag(A1, A2, …, An) is the block-diagonal matrix having
A1, A2, …, An as diagonal blocks. In symmetric matrices, ∗ stands
for symmetric blocks. For a vectorx ∈ ℝn, x(i), x′, |x| denote its ith
component, its transpose and the component-wise absolute value
operator, respectively. sign(x) is the component-wise sign function,
with sign(0) = 0, and ⌊x⌋ the component-wise floor operator. For
two sets S1 and S2, S1∖S2 denotes the set S1 deprived of S2.

2 Problem statement
Consider the following discrete-time system:

x(k + 1) = Ax(k) + B dz(sat(q(u(k)))
x(0) = x0

(1)

where x ∈ ℝn, u ∈ ℝp, x0 ∈ ℝn are, respectively, the state, the input
of the system and the initial state. A, B are real matrices of suitable
dimensions and q:ℝp → ℝp is a component-wise infinite level
quantiser. In order to model the finite-level quantisation, we
consider a component-wise saturation function, sat:ℝp → ℝp and a
component-wise deadzone function dz:ℝp → ℝp, i.e. for v ∈ ℝp it
follows that:

sat(i)(v) := sign(v(i))min{u0(i), |v(i) | }, i = 1, …, p (2)

dz(i)(u) :=
0 if − ϵ(i) < v(i) < ϵ(i)

v(i) if |v(i) | ≥ ϵ(i)
, i = 1, …, p (3)

In this case, ±u0(i) represents the maximum/minimum quantisation
levels for the ith input channel, while ±ϵ(i) denote the limits for
which the ith input signal is coded as zero.

In order to stabilise system (1), we consider a state feedback
control law

u(k) = Kx(k) (4)

By defining now the functions ψ , ϕ and θ as follows:

ψ(v) := q(v) − v (5)

ϕ(v) := sat(v) − v (6)

θ(v) := dz(v) − v (7)

the closed-loop dynamics is given by the non-linear system

x(k + 1) = (A + BK)x(k) + Bψ(k) + Bϕ(k) + Bθ(k) (8)

where for simplicity we denote ψ(k) = ψ(u(k)),
ϕ(k) = ϕ(q(u(k)))) = ϕ(u(k) + ψ(u(k))) and θ(k) = θ(sat(q(u(k))) =
θ(u(k) + ψ(k) + ϕ(k)).

From (2)–(4), two sets of interest in the state space can be
defined

Sns = {x ∈ ℝn: |K(i)x | ≤ u0(i), i = 1, …, p} (9)

Sdz = {x ∈ ℝn: |K(i)x | ≤ ϵ(i), i = 1, …, p} (10)

The set Sns corresponds to the region where none of the inputs is
saturated in the maximal or minimal quantisation level, while Sdz
corresponds to the region where the actual control input injected
into the system is zero.

If x(k) ∈ Sns∖Sdz, the closed-loop dynamics reads

x(k + 1) = Ax(k) + q(u(k)) = (A + BK)x(k) + Bψ(k) (11)

i.e. only the non-linear effect of the infinite-level quantiser q(k) is
present.

On the other hand, note that if x(k) ∈ Sdz, the system is in open
loop. Hence, if the matrix A is not Schur–Cohn, the asymptotic
stabilisation of the origin for the closed-loop system cannot be
achieved even when the gain K is supposed to be a stabilising one
(i.e. when (A + BK) is Schur–Cohn). Actually, in this case, either a
limit cycle or a chaotic behaviour will be generated around the
origin. Hence the convergence to the origin should be replaced by
the convergence to an attractor set around the origin, as small as
possible (i.e. referred as practical stability in [9]). Moreover, if A is
not Schur–Cohn, under input saturation only local (regional)
stability can be achieved [14, 19].

In this work, we focus on the case in which matrix A is not
Schur–Cohn, i.e. the open-loop system is exponentially unstable.
Then, the problem we aim to solve can be stated as follows.

Problem 1: Given system (1), with saturation and deadzone limits
given, respectively, by vectors u0 ∈ ℝp and ϵ ∈ ℝp, and the control
law (4), determine a gain K, a set S0 ⊂ ℝn and a compact set
Su ⊂ ℝn containing the origin, such that

• S0 and Su are positively invariant sets with respect to the
closed-loop system (1)–(4) (or equivalently system (8)).

• For every initial condition x0 ∈ S0∖Su, the trajectories of the
closed-loop system (1)–(4) are bounded and converge in finite
time to Su (which is therefore an attractor of the trajectories).

• Su is as smaller as possible.

The sets in Problem 1 are depicted in Fig. 1. Note that the set S0
is implicitly included in the region of attraction of the attractor set
Su. As aforementioned, since A is assumed not to be Schur–Cohn,
the global convergence to the attractor is not possible to achieve
with bounded controls. On the other hand, the set Su is the region
where the trajectories are ultimately bounded and, if minimised can
be seen as an estimate of the periodic or chaotic orbit around the
origin. 

In the sequel, we address Problem 1 considering uniform and
logarithmic finite-level quantisations.

3 Uniform quantisation
The function q(u) corresponding to a uniform quantisation is
defined as follows:

q(i)(u) := ϵ(i)sign(u(i))
|u(i)|
ϵ(i)

i = 1, …, p (12)

where ϵ(i) is a positive real-scalar representing the quantisation step
of the ith control input. In this case, u0(i) = Niϵi, where Ni is the
number of positive levels between u0(i) and zero. Moreover, as it
can be seen in Fig. 2, the deadzone is implicitly included in the
definition of q. Hence, the equation describing the closed-loop
system (8), considering a finite-level uniform quantisation can be
simplified to the following one:

x(k + 1) = (A + BK)x(k) + Bψ(k) + Bϕ(k) (13)



with ψ(k) = ψ(u(k)), ϕ(k) = ϕ(q(u(k))) = ϕ(u(k) + ψ(u(k))). 
Before, proposing a result to address Problem 1, we recall some

auxiliary conditions regarding the sector bounded functions ψ  and
ϕ.

Lemma 1: (see [17] and [19] for details) For ψ(u) as defined in (5),
with q(u) defined by (12), and considering ϵ = [ϵ(1)⋯ϵ(p)]′, the
relations

ψ(u)′S1ψ(u) − ϵ′S1ϵ ≤ 0, (14)

ψ(u)′S2(ψ(u) + u) ≤ 0 (15)

are verified for any diagonal positive definite matrices S1,
S2 ∈ ℝp × p.
Actually, (14) corresponds to a generalisation of the condition in
[17] to cope with different quantisation parameters in each input.

Lemma 2: (see [17] and [19] for details) For ϕ(v) as defined in (6)
and a vector w ∈ ℝp, the relation

ϕ(v)′S3(ϕ(v) + v + w) ≤ 0 (16)

is verified for any diagonal positive matrix S3 ∈ ℝp × p, provided
that w ∈ S(u0) with

S(u0) = {w ∈ ℝp; |w(i) | ≤ u0(i), i = 1, …, p} (17)
Note that considering v = q(u), from (5), condition (16) reads

ϕ(v)′S3(ϕ(v) + ψ(u) + u + w) ≤ 0 (18)

By using Lemmas 1 and 2, the following proposition to solve
Problem 1 can be stated.

Proposition 1: If there exists a symmetric positive definite matrix
W ∈ ℝn × n, diagonal positive matrices S1, S2, R3 ∈ ℝp × p, matrices
Y, Z ∈ ℝp × n, positive scalars τ1, τ2 and a scalar α, 0 ≤ α ≤ 1,
satisfying the following conditions:

βW −Y′S2 −Y′ − Z′ W A′ + Y′B′
∗ −S1 − 2S2 −I B′
∗ ∗ −2R3 R3B′
∗ ∗ ∗ −W

< 0

with β = (τ2 − ατ1 − 1)

(19)

ϵ′S1ϵ + τ1 − τ2 ≤ 0 (20)

αW Z′(i)

Z(i) u0(i)
2 > 0, i = 1, …, p (21)

then, for K = YW−1, it follows that ∀x(0) ∈ S0∖Su the trajectories
of the system (13) converge in finite time to the set Su, with

Su = ℰ(P) = {x ∈ ℝn: x′Px ≤ 1}, P = W−1 (22)

S0 = ℰ(αP) = {x ∈ ℝn: x′αPx ≤ 1} (23)

Moreover, S0 and Su are positively invariant sets with respect to
(13).

Proof: Considering the quadratic Lyapunov function V(x) = x′Px,
with P = P′ > 0, we want to prove that

ΔV(x) = V(x(k + 1)) − V(x(k)) < − μ | | x(k) | |2 , (24)

with μ being a positive scalar, ∀x(k) ∈ S0∖Su.
In this case, it follows that S0 is a positively invariant set and
∀x(0) ∈ S0, the corresponding trajectory converges in finite time to
Su. Note that

S0∖Su = {x ∈ ℝn: (x′αPx − 1) ≤ 0 and (1 − x′Px) ≤ 0}

Now applying S-procedure along with Lemmas 1 and 2,
considering u = Kx and w = Gx, with G being a free matrix
variable, if

ΔV(x) − τ1(x′αPx − 1) − τ2(1 − x′Px) − ψ ′S1ψ + ϵ′S1ϵ

−2ψ ′S2(ψ + Kx) − 2ϕ′S3(ϕ + ψ + Kx + Gx) < − μ | | x(k) | |2
(25)

it follows that (24) is satisfied, provided that x ∈ S~ (u0), with

S~ (u0) = {x ∈ ℝn; |G(i)x | ≤ u0(i), i = 1, …, p} (26)

By using (13), it is possible to re-write (25) as follows:

[x′ ψ ′ ϕ′]Nu

x
ψ
ϕ

+ ϵ′S1ϵ + τ1 − τ2 < − μx′x (27)

with Nu defined as follows:

Fig. 1  Sets S0 and Su

Fig. 2  Uniform quantisation



Nu =
(τ2 − ατ1 − 1)P −K′S2 −K′S3 − G′S3

∗ −S1 − 2S2 −S3

∗ ∗ −2S3

+
(A + BK)′

B′
B′

P (A + BK) B B

(28)

It is straightforward to verify that (27) will be satisfied for some
μ > 0 if we guarantee (20) and Nu < 0. Applying Schur
complement, Nu < 0 is equivalent to

βP −K′S2 −K′S3 − G′S3 (A + BK)′
∗ −S1 − 2S2 −S3 B′
∗ ∗ −2S3 B′
∗ ∗ ∗ −P−1

< 0 (29)

Then by pre- and post-multiplying (29) by diag(P−1, I, S3
−1, I) and

with the change of variables P−1 = W , KW = Y , GP−1 = Z,
S3

−1 = R3, we obtain relation (19).
Furthermore, one has to prove that the set Su is positively
invariant. This is proven if we guarantee that
x(k + 1)′Px(k + 1) ≤ 1 whenever x(k)′Px(k) ≤ 1 (i.e. when
x(k) ∈ Su). It is possible to do that by verifying the following
inequality, for some positive scalar τ3:

x(k + 1)′Px(k + 1) − 1 − τ3(x(k)′Px(k) − 1) ≤ 0 (30)

On the other hand, inequality (30) is true if we are able to verify
that

τ3 − 1 ≤ − ϵ′S1ϵ (31)

and

x(k + 1)′Px(k + 1) − τ3x(k)′Px(k) − ψ(k)′S1ψ(k)
−2ψ(k)′S2(ψ(k) + Kx(k))
−2ϕ(k)′S3(ϕ(k) + ψ(k) + Kx(k) + Gx(k)) ≤ 0

(32)

provided that x ∈ S~ (u0).
Now by choosing −τ3 = τ2 − ατ1 − 1, it is straightforward to verify
that (32) is implied by (19). Furthermore, since α ≤ 1 and τ1, τ2 > 0,
it follows that:

ϵ′S1ϵ + τ3 − 1 = ϵ′S1ϵ + ατ1 − τ2 ≤ ϵ′S1ϵ + τ1 − τ2 (33)

Hence (20) implies (31). Then, if (19) and (20) are satisfied, (30) is
implicitly verified and thus Su is positively invariant with respect
to system (13).
Finally, the satisfaction of relation (21) implies that the ellipsoid
S0 = ℰ(αP) is included in the polyhedral set S~ (u0) defined in (26),
which ensures the validity of condition (18), with w = Gx,
∀x ∈ S0, which concludes the proof. □

4 Logarithmic quantisation
In the case of the logarithmic quantisation, each component of the
decentralised vector q(u) is defined as

q(i)(u) :=

λ(i)

ρ(i)
j , if u(i) > 0 and λ(i)

ρ(i)
j (1 + δ(i))

≤ u(i) < λ(i)

ρ(i)
j (1 − δ(i))

− λ(i)

ρ(i)
j , if u(i) < 0 and λ(i)

ρ(i)
j (1 + δ(i))

≤ − u(i) < λ(i)

ρ(i)
j (1 − δ(i))

,

i = 1, …, p, j ∈ ℤ

(34)

δ(i) = 1 − ρ(i)
1 + ρ(i)

, ρ(i) = 1 − δ(i)
1 + δ(i)

, 0 < ρ(i) < 1 (35)

The parameter ρ(i) is said to be the quantisation density (instead of
quantisation step as in the uniform quantisation). The function
q(i)(u) corresponding to an infinite-level quantiser is depicted in
Fig. 3. 

Recall now that, to obtain a finite-level quantiser, saturation and
deadzone effects are applied over the infinite-level quantiser q(u).
In this case, λ(i) is considered as the least positive quantisation
level. Actually, λ(i) is related to the deadzone limit through the
equation λ(i) = ϵ(i)(1 + δ(i)). Moreover, the saturation limit of each
quantised input is given by u0(i) = λ(i)/ρ(i)

Ni − 1, where Ni corresponds
to the number of quantisation levels between u0(i) and zero.

To solve Problem 1, we recall a sector condition verified by the
nonlinearity ψ  (it corresponds to a multi-input version of the one in
[15])

Lemma 3: For ψ(u) = q(u) − u with q(u) defined in (34) and (35),
and D = diag(δ(1), …, δ(p)), the relation

(ψ(u) + Du)′S1(ψ(u) − Du) ≤ 0 (36)

is verified for any diagonal positive definite matrix S1 ∈ ℝp × p.
For the non-linearity θ, one can use a similar condition to that

one stated in Lemma 1, as follows:

Lemma 4: For every θ(v) defined in (7), the relation

θ(v)′S3θ(v) − ϵ′S3ϵ ≤ 0 (37)

is verified for any diagonal positive definite matrix S3 ∈ ℝp × p.
By using Lemmas 2–4, the following proposition to solve

Problem 1 can be stated.

Proposition 2: If there exists a symmetric positive definite matrix
W ∈ ℝn × n, diagonal positive matrices R1, R2, S3 ∈ ℝp × p, matrices
Y, Z ∈ ℝp × n, positive scalars τ1, τ2 and a scalar α, 0 ≤ α ≤ 1,
satisfying the following conditions:

Fig. 3  Logarithmic quantisation



βW 0 −Y′ − Z′ 0 W A′ + Y′B′ Y′D
∗ −R1 −R1 0 R1B′ 0
∗ ∗ −2R2 0 R2B′ 0
∗ ∗ ∗ −S3 B′ 0
∗ ∗ ∗ ∗ −W 0
∗ ∗ ∗ ∗ ∗ −R1

< 0,

with β = (τ2 − ατ1 − 1)

(38)

ϵ′S3ϵ + τ1 − τ2 ≤ 0 (39)

αW Z′(i)

Z(i) u0(i)
2 > 0, i = 1, …, p (40)

then, for K = YW−1, it follows that ∀x(0) ∈ S0∖Su the trajectories
of the system (8) converge in finite time to the set Su, with Su and
S0 as defined in (22) and (23). Moreover, S0 and Su are positively
invariant sets with respect to (8).

Proof: Applying S-procedure along with Lemmas 2–4, if

ΔV(x) − τ1(x′αPx − 1) − τ2(1 − x′Px)
−(ψ + DKx)′S1(ψ − DKx) − 2ϕ′S2(ϕ + ψ + Kx + Gx)
−θ′S3θ + ϵ′S3ϵ < − μ | | x | |2

(41)

with μ being a positive scalar, then it follows that
ΔV(x) < − μ | | x | |2, ∀x ∈ S0∖Su is satisfied, provided that
x ∈ S~ (u0).
By using (8) and considering ξ = [x′ ψ ′ ϕ′ θ′]′, it is possible to
re-write (41) as follows:

ξ′Nlξ + ϵ′S3ϵ + τ1 − τ2 < − μx′x (42)

with Nl defined as follows:

Nl =

P(τ2 − ατ1 − 1) + K′DS1DK 0 −K′S2 − G′S2 0
∗ −S1 −S2 0
∗ ∗ −2S2 0
∗ ∗ ∗ −S3

+

(A + BK)′
B′
B′
B′

P (A + BK) B B B

(43)

It is straightforward to verify that (42) will be satisfied for some
μ > 0 if we guarantee (39) and Nl < 0. By applying Schur
complement twice, then by pre- and post-multiplying by
diag(P−1, S1

−1, S2
−1, I, I, I) and with the change of variables P−1 = W ,

KP−1 = Y , GP−1 = Z, S1
−1 = R1, S2

−1 = R2, we obtain relation (38).
To prove that the set Su is positively invariant, it suffices to verify
that, for some positive scalar τ3,

x(k + 1)′Px(k + 1) − 1 − τ3(x(k)′Px(k) − 1) ≤ 0 (44)

~

Recalling Problem 1, the goal is to compute K in order to obtain
an attractor set Su as small as possible. To achieve this objective,
one needs to find a suitable measure for the set Su and minimise it
subject to conditions of Propositions 1 and 2. In particular, it is
possible to implicitly minimise the volume of Su by minimising
tr(P−1), or equivalently, tr(W).

On the other hand, it is also important to guarantee that the set
S0 has a reasonable size or that it covers a given set of admissible
initial conditions X0. With this aim, we can consider X0 as a
polytope in the state space described by the convex hull of its
vertices, i.e. X0 = Conv{v1, …, vr}. In this case, an extra condition
to ensure that X0 ⊂ S0 is given as follows:

1 αvl′
∗ αW

> 0, l = 1, …, r (45)

Hence, in order to compute K to minimise the attractor while
ensuring a guaranteed region of attractivity, i.e. regional stability,
the following optimisation problems can be considered.

• Uniform quantisation

min tr(W)
s . t . :

S1 > 0; S2 > 0; (19) − (21); (45)
(46)

• Logarithmic quantisation

min tr(W)
s . t . :

(38) − (40); (45)
(47)

Notice that conditions W > 0 and R3 > 0 are implicitly ensured in
(46) by (19). On the other hand, conditions W > 0, R1 > 0, R2 > 0,
S3 > 0 are implicitly ensured in (47) by (38).

It is important to note that conditions (19) and (21), in the
uniform quantisation case, and conditions (38) and (40), in the
logarithmic quantisation case, are non-linear in the decision
variables (i.e. they are not LMIs), which prevents from solving
directly a convex optimisation problem. Nevertheless, it is possible
to overcome this problem by considering the variables τ1, τ2 and α
as tuning parameters. In the uniform quantisation case, S2 must be
fixed as well [20]. Moreover, to guarantee feasibility, it is
necessary that the following conditions are respected:

τ2 > τ1; τ2 < 1 + ατ1 (48)

Thus, the optimal value of (46) or (47) can be obtained by solving
LMI-based optimisation problems on a grid with respect to α, τ1, τ2
and S2 (in the uniform case). This can be efficiently addressed by
using, for instance, the Nelder–Mead simplex method
(implemented in MATLAB by the fminsearch function).

As aforementioned, in problems (46) and (47) we ensure that S0
is sufficiently large by imposing that X0 ⊂ S0. If we seek a larger
S0, we can enlarge the shape set X0. This can be done, for instance,
by using a scaling factor η for X0 in order to ensure ηX0 ⊂ S0,
which can be translated in the LMI constraint

η̄ αvl′
∗ αW

> 0, l = 1, …, r (49)

where η̄ = η−2. In this case, while tr(W) is minimised, the scalar α
is implicitly adjusted to fulfil (49). However, by increasing η a side
effect is that the optimal Su will also be probably increased since
both sets are defined from the same matrix P. There is, in fact, a
trade-off to manage. Moreover, note that for η too large the
conditions may be not feasible. This comes from the fact that, since
the open-loop system is exponentially unstable (by assumption),
the global stabilisation is indeed not possible.

Then, by choosing −τ3 = τ2 − ατ1 − 1, following the same 
reasoning is done in the proof of Proposition 1, it follows that (38) 
and (39) imply (44).
Finally, the satisfaction of relation (40) implies that the ellipsoid
S0 = ℰ(αP) is included in the polyhedral set S(u0) defined in (26), 
which concludes the proof. □

5 Computational issues
In this section, we discuss how to compute the stabilising control 
law by using the results stated in Propositions 1 and 2.



On the other hand, we can formulate a converse problem in
which the main objective is the maximisation of S0, while keeping
Su sufficiently small. For this, we can consider for instance a
polyhedral shape set Xu represented as

Xu = {x ∈ ℝn:H(i)x ≤ 1, i = 1, …, l} (50)

where H(i)′ ∈ ℝn. Thus, in order to ensure that Su is sufficiently
small we can force Su ⊂ Xu, which is ensured by the following set
of constraints:

W WH′(i)

H(i)W 1 > 0, i = 1, …, l (51)

In this case, in order to maximise S0 the following optimisation
problems can be considered:

• Uniform quantisation

min tr( − M)
s . t . :

W > αM; S1 > 0; S2 > 0; (19) − (21); (51)
(52)

• Logarithmic quantisation

min tr( − M)
s . t . :

W > αM; (38) − (40); (51)
(53)

Note that the constraint W > αM ensures that
tr(α−1W) > tr(M), i.e. the minimisation of tr( − M) implies the
maximisation of the tr(α−1W)).

6 Numerical example
Consider the following discrete-time system derived from the
continuous-time system treated in [21], with a sampling period
Ts = 0.01 s:

A =
0.9960 0.0169 0.0418
0.0451 1.0640 0.0544
0.0347 0.0730 1.0772

, B =
−0.0068 −0.0136
0.0001 −0.0450
0.0082 −0.0173

(54)

Our objective is to compare a uniform and a logarithmic quantiser
when designing a static state feedback controller that minimises the
size of the attractor. With this aim, we consider that both quantisers
use the same number of bits (i.e. presents the same number of
quantisation levels). Considering that the most significant bit is
reserved for the sign, the relation between the number of bits Nbits
and the number of positive levels of the quantiser N, for each input
channel, is given by

Ni = 2(Nbits, i − 1) − 1, i = 1, …, p (55)

The levels of saturation in the control channels are also considered
as being the same for both quantisers and are given by vector
u0 = [12.4 12.4]′.

Fixing all these parameters, in the uniform case, the
quantisation step in each channel can be calculated by ϵ(i) = u0(i)/Ni,
i = 1, …, p, with Ni being the number of quantisation levels in
control input i. In the logarithmic case, the quantisation density ρ(i)
is a degree of freedom, which will affect the smallest positive
quantised value λ(i) through the following relation:

λ(i) = u0(i)ρ(i)
(Ni − 1) (56)

Assuming Nbits = 6 for both channels (which yields
N1 = N2 = N = 31), the two quantisation cases are analysed in the
sequel. For this, we apply the optimisation problems (46) or (47)
with X0 = {v1}, with v1 = [2 2 2]′.

Considering the uniform quantiser, for N = 31 and u0 given
above, we obtain ϵ(1) = ϵ(2) = 0.4. A grid search allows to find the
best feasible values for the tuning parameters, respectively,
α = 0.0026, τ1 = 5.3059 × 10−11, τ2 = 0.0198 and
S2 = diag(6.3644 × 10−4, 0.0015). The solution to the optimisation
problem (46) in this case yields

K = 0.6137 −0.3853 −10.4675
9.2395 17.0548 14.6553

and

P =
15.6182 7.5034 −1.4831
7.5034 19.6851 −1.3810

−1.4831 −1.3810 51.5721

which has its trace equal to 86.88.
In the logarithmic quantiser case, also for N = 31 and u0 given

above, we choose ρ(1) = ρ(2) = 0.7391. Recalling that
λ(i) = ϵ(i)(1 + δ(i)), we obtain ϵ(1) = ϵ(2) = 0.0012. Comparing with the
deadzone limits of the uniform quantiser case, one can expect the
attractor size to be considerably smaller in the logarithmic case. A
grid search allows to find the best feasible values for the tuning
parameters, respectively, α = 4.2786 × 10−5, τ1 = 1.21 × 10−10 and
τ2 = 0.0014. The solution to the optimisation problem (47) in this
case yields

K = 0.6779 −0.5418 −7.0948
3.0219 5.7212 5.5884

and

P = 103 ×
2.2124 0.7294 −1.5139
0.7294 1.5591 −0.6808

−1.5139 −0.6808 5.0021

which has traced its equal to 8.7736 × 103.
Figs. 4–6 show, respectively, the evolution of the state for an

initial condition of x0 = [2 − 2 − 1]′ in the uniform and logarithmic
cases, and the ellipsoids Su obtained in both cases. 

Notice that in this case both analysis and simulation show the
superiority of logarithmic quantisers in terms of attractor size,
considering the same number of quantisation levels and the same
saturation limits. Nevertheless, as mentioned previously in this
section, the quantisation density ρ(i) is a degree of freedom of the
logarithmic quantiser and a good choice of this parameter must be
made. One would expect that the closer to one ρ(i) is, a smaller Su
would be obtained since quantisation would become denser and the
quantisation non-linearity q(i)(u) (see Fig. 3) would lie in a closer
sector (i.e. δ(i) would be close to zero). However, considering u0 and
the number of quantisation levels Ni fixed, relation (56) shows that
there is a trade-off between ρ(i) and λ(i) (which is proportional to ϵ(i),

Fig. 4  States evolution in the unif. quantisation case



Table 1 also shows that for ρ(i) = 0.8349, we obtain Su which is
similar in size to the one obtained in the uniform case. Finally, for
ρ(i) = 0.8935 the deadzone limit ϵci is approximately the same as
that one of the uniform quantisation, but Su is several times larger
than the one obtained in the uniform case. This indicates that,
depending on the quantisation density chosen for the logarithmic
quantiser, if we fix the saturation and the deadzone limits as well as
the number of quantisation levels, the uniform quantiser may
provide better results. 

In order to illustrate the trade-off regarding the size of S0 and
Su, as discussed in Section 5, we replace now (45) by (49) in
optimisation problems (46) and (47). Tables 2 and 3 show the
results obtained for different values of the scaling factor η = 1/ η~
for the uniform and logarithmic cases, respectively. Note that as η
increases, i.e. the larger is the shape set that must be included by
S0, the smaller is the value of tr(αP), which indicates that S0
increases. On the other hand, it can be observed that tr(P)
decreases, meaning that Su also increases as we increase η.
Moreover, as expected, for η too large (η > 1.3 in the uniform case
and η > 1.18 in the logarithmic one) no feasible solution (N.F.) can
be found since the global stability is not achievable because the
open-loop system is exponentially unstable. 

7 Conclusion
This paper has tackled the stabilisation of (unstable) multi-input
discrete-time linear systems involving input static finite
quantisation. A unified framework to handle uniform and
logarithmic quantisers has been proposed. The approach is based
on the modelling of the finite quantisation through the appropriate
application of deadzone and saturation operators. Based on the
properties of the three types of non-linearities (i.e. infinite
quantisation, deadzone and saturation), conditions to design a static
state feedback controller that guarantees the convergence to an
attractor set Su, provided the initial state belongs to a set S0, are
developed. These conditions are incorporated in optimisation
problems aiming at determining the stabilising feedback gain while
minimising the size of the attractor set and guaranteeing that the set
S0 covers a pre-defined region in the state space.

Although this work considered only input quantisation, the
approach can be extended to cope with state quantisation and also
be used to optimally tune the quantisers parameters when the gain
is given.
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