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An event-triggered observer based control strategy for SISO

systems

D. Sbarbaro, S. Tarbouriech, and J. M. Gomes da Silva Jr.

Abstract—This work addresses the problem of de-
vising a simple event-triggering strategy for observ-
able and controllable SISO systems. The solution
considers an observer based controller and an event-
triggering strategy taking into account solely local
variables. Sufficient conditions to ensure the global
stability of the event-triggering strategy are derived
in terms of linear matrix inequalities (LMIs). Two
simulation examples illustrate the application of the
proposed method to both stable and unstable systems.

I. Introduction

Nowdays the implementation of modern control sys-
tem requires the use of digital communication networks
using both wired and wireless technologies. In this con-
text aperiodic event- and self-triggering strategies have
been proposed to deal with issues such as: commu-
nication, energy and computation constraints [1]. In
particular, in many distributed applications the point
of measurement is geographically separated from the
location of the control processing. The sensor information
is therefore sent by a wireless network, where the energy
consumption can be a critical issue, since these devices
are in general feed by batteries. Indeed, there are peaks of
energy consumption for transmission/reception of data.
Hence, reduce the sampling activity, i.e., the instants
where the measurement information is transmitted is
of great importance. On the other hand, in classical
networks, it can be of interest to reduce the number of
messages sent through the network, alleviating in this
way the traffic and problems with delays and package
losses.

Self-triggering strategies choose the sampling instant
based on the available measurements and on predictions
of the plant response. On the other hand, event-triggering
controllers consider only the current measurements in or-
der to define the sampling instant. Self-triggering strate-
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gies for observer based controllers have been proposed in
[2] based on a cascade interconnection of a discrete-time
observer and a controller designed for state feedback.
This approach has also been extended to deal with
interconnected systems [3].

For event-triggered strategies, [4] proposes the use of
a state observer in the event generator and an upper
bound on the estimation error for designing an event
triggering mechanism to guarantee a stable closed-loop
system. A more general approach is proposed by [5],
where three architectures for dynamic output feedback
controllers are presented. The event-triggering conditions
depend only on the norms of the local variables and are
obtained using Lyapunov arguments. Dynamic output
feedback controllers are also addressed in [6], where the
asymptotic stability of the resulting closed-loop system
is guaranteed by a condition in terms of an LMI (Linear
Matrix Inequality) and in [7] these results are extended
to deal with uncertain systems.

In this paper, we consider a Lyapunov approach, sim-
ilarly to [8] and [9], to deal with the design of the event-
triggereing strategy for observer based state feedback
controllers. In this context, as the plant evolves contin-
uously, whereas the control signal is updated depending
on discrete-time events, event-triggered control systems
can be cast as hybrid or impulsive systems. Nevertheless,
instead of considering the classical hybrid framework to
study mixed continuous and discrete dynamics as defined
in [10], we use an alternative direction as proposed in
[11]. The approach we follow presupposes that a state
feedback and an observer are designed, considering the
separation principle. Then, an event-triggering strategy
is proposed based on the decrease of a Lyapunov func-
tion. A key feature of the approach is that it only requires
available measurable information. Moreover, the stability
of the closed-loop sampled data system under the event-
triggering sampling strategy is formally proven based on
the Lyapunov theory.

This paper is organized as follows: Section 2 states the
problem to be addressed. Section 3 presents the observer
based state feedback controller design in a continuous-
time context. Section 4 is then dedicated to the event-
triggering strategy. Section 5 illustrates the implementa-
tion of this strategy to control both stable and unstable
systems. Finally, Section 6 provides some final remarks
and hints for future works.

Notation. For any matrix A. A′ denotes the trans-
pose. He{A} = A+A′. For two symmetric matrices of the



same dimensions, A and B, A > B means that A−B is
positive definite. I and 0 denote respectively the identity
and the null matrix of appropriate dimensions.

II. Problem Statement

Consider the following continuous-time linear plant:

ẋp(t) = Axp(t) + Bu(t)
yp(t) = Cxp(t)

(1)

where xp ∈ #n, u ∈ #, yp ∈ # are the plant state,
input and output, respectively. Matrices A, B and C are
constant matrices of appropriate dimensions. In addition,
the pair (A, B) is controllable and the pair (A, C) is
observable.

Let us consider an observer based state feedback con-
troller to drive the output to a given nonzero constant
set-point r:

ẋo(t) = Axo(t) + Bu(t) + Ko(y(t) − yo(t))
yo(t) = Cxo(t),
u(t) = Kcxo(t) + Krr.

(2)

where xo ∈ #n and yo ∈ # are the state and output of the
observer, respectively. Furthermore, Kr ∈ # is a feedfor-
ward gain, Ko ∈ #n and Kc ∈ #n are the observer and
controller gains respectively. Design conditions regarding
the three gains will be given in the next section.

In this paper, we are interested in looking at the event-
triggered implementation of the controller represented
by (2). In particular, we consider a sensor node with
the capability to estimate the state of the system and
a controller based on the estimated state. The sensor
and controller are in different nodes of the network as
depicted in Figure 1. The block ST represents the event-
triggered sampling strategy.

 




 

























Fig. 1. Observer based controller.

The estimated state is sampled in discrete instants of
time and the control action is supposed to be constant
between two subsequent sampling instants tk and tk+1.
Note however, that differently from classical digital con-
trol approaches, the sampling interval [tk , tk+1) is not

constant. The system dynamics in the interval [tk , tk+1)
can therefore be described as follows:

ẋp(t) = Axp(t) + Bu(tk)
ẋo(t) = Axo(t) + Bu(tk) + KoCx̃(t)
u(tk) = Kcxo(tk) + Krr, ∀t ∈ [tk , tk+1)

(3)

where x̃(t) = xp(t) − xo(t) ∈ #n represents the state
estimation error. The main aim of this work is to devise
an event-triggered strategy to sample and to update
the control signal applied to the plant based solely on
available signals, that is, using only the signals u(t), xo(t)
and yp(t).

With this aim, two steps should be followed. Firstly,
the design of the observer and a state feedback control
law should be carried out considering a continuous-time
behavior of the closed-loop system and the achievement
of some performance requirements. From this step a
Lyapunov function, which certificates the asymptotic
stability of the closed-loop system, is determined. The
second step is the definition of the event-triggered strat-
egy, which will be based on the Lyapunov function
determined in the first step.

These steps are described in the following sections.

III. Controller Design

In this section we consider the continuous-time system
described by (1)-(2). The control design is carried out
according to the separation principle. The observer gain
Ko is designed to render A + KoC Hurwitz. Thus the
equilibrium point x̃eq = 0 of the state estimation error
dynamic:

˙̃x(t) = (A + KoC)x̃(t) (4)

is globally asymptotically stable; i.e. limt→∞ x̃(t) = 0,
and the estimation output error

ẽ(t) = Cx̃(t) (5)

also converges to zero; i.e. limt→∞ ẽ(t) = 0.
The dynamic of the observer state with the state

feedback controller u(t) = Kcxo(t) + Krr is given by:

ẋo(t) = (A + BKc)xo(t) + BKrr + Koẽ(t) (6)

For a given constant reference signal r, the equilibrium
point (xp,eq , xo,eq) of (4) and (6) satisfies

xo,eq = xp,eq

(A + BKc)xo,eq + BKrr = 0
ueq = Kcxo,eq + Krr

(7)

This equilibrium point is then uniquely determined by r
provided that (A + BKc) is Hurwitz as follows:

xo,eq = −(A + BKc)
−1BKrr. (8)

The feedforward gain Kr can be designed as Kr =
−(C(A + BKc)−1B)−1 so that yp,eq = r. The inverse of
C(A+BKc)−1B is well defined if there are no zeros at the
origin for the closed-loop system. The dynamics of the



error between the observer state xo(t) and its equilibrium
point value, x̄o(t) = xo(t) − xo,eq, is given by

˙̄xo(t) = (A + BKc)x̄o(t) + Koẽ(t) (9)

where ẽ(t) can be interpreted as an input. The controller
gain Kc is designed so that A + BKc is Hurwitz and
therefore one can render (9) input-to-state stable with
respect to ẽ. In other words, if ẽ is bounded then the
state, x̄o, will also be bounded [12]. The following the-
orem characterizes the stability conditions and provides
a Lyapunov function for the composite system, obtained
from the equations (4), (5) and (9), in terms of a single
LMI.

Theorem 1: Consider given matrices Ko, Kc, Qc =
Q′

c > 0, Qo = Q′

o > 0, if there exist matrices Po =
P ′

o > 0, Pc = P ′

c > 0 such that Ω < 0, where

Ω =

He{

[

Pc(A + BKc) + Qc

2
PcKoC

0 Po(A + KoC) + Qo

2

]

},

(10)
then the equilibrium point of the system composed by
(4), (5) and (9) is asymptotically stable.

Proof: Consider the following candidate Lyapunov
function:

V = x̄′

oPcx̄o + x̃′Pox̃ (11)

with Pc = P ′

c > 0 and Po = P ′

o > 0. Then, the time-
derivative of (11) along the trajectories given by (4), (5)
and (9) is

V̇ = x̄′

oHe{Pc(A + BKc)}x̄o + x̃′He{Po(A + KoC)}x̃
+x̄′

oPcKoCx̃ + x̃′C′K ′

oPcx̄o

(12)
Note that Ω defined in (10) allows to write:

[

x̄o

x̃

]′

Ω

[

x̄o

x̃

]

= V̇ + x̄′

oQcx̄o + x̃′Qox̃. (13)

Hence if Ω < 0 one gets

V̇ < −(x̄′

oQcx̄o + x̃′Qox̃) < 0. (14)

Thus V is a Lyapunov function for the system described
by (4), (5) and (9). Hence, one can conclude that the
equilibrium point (xp,eq , xo,eq) of the system composed
by (4), (5) and (9) is asymptotically stable.

It is important to note that the Lyapunov function V
given in (11), cannot be directly used to design event-
triggering strategies, since the state estimation error is
not available. In order to find useful conditions, that can
be directly used in the design of implementable event-
triggering strategies, we explore the fact that the closed-
loop system, described by equations (4), (5) and (9), has
a cascade structure. Thus, the following theorem provides
a simplified stability condition along with a Lyapunov
function.

Theorem 2: Consider the system composed by (4), (5)
and (9) with fixed matrices Ko and Kc, and matrices
Qo = Q′

o > 0, Qc = Q′

c > 0, Qe = Q′

e > 0, if there exist

Pc = P ′

c > 0 and Po = P ′

o > 0 satisfying the following
conditions

He{Po(A + KoC)} + Qoe < 0 (15)
[

He{Pc(A + BKc)} + Qc PcKo

K ′

oPc −Qe

]

< 0 (16)

with Qoe = Qo + C′QeC, then the equilibrium point;
i.e. the origin, of the composite system is asymptotically
stable.

Proof: Let V1 = x̃′Pox̃ a Lyapunov candidate
function for system (4). Its time-derivative along the
trajectories of (4) is given by:

V̇1 = x̃′He{Po(A + KoC)}x̃. (17)

By using condition (15) one gets

V̇1 + x̃′Qoex̃ < 0. (18)

Thus V1 is a Lyapunov function for system (4).
Let V2 = x̄′

oPcx̄o a quadratic function associated to
system (9). Its time-derivative along the trajectories of
(9) is given by:

V̇2 = x̄′

oHe{Pc(A + BKc)}x̄o + x̄′

oPcKoẽ + (19)

ẽ′K ′

oPcx̄o.

By using condition (16) it follows that

V̇2 + x̄′

oQcx̄o − ẽ′Qeẽ < 0. (20)

Let us now consider the composite quadratic function
V = V1 + V2. Using (18) and (20), V̇ can be bounded as
follows

V̇ = V̇1 + V̇2 < ẽ′Qeẽ − x̃′Qoex̃ − x̄′

oQcx̄o. (21)

Thus, by replacing Qoe = Qo + C′QeC, one obtains

V̇ < −(x̄′

oQcx̄o + x̃′Qox̃) < 0. (22)

Hence the quadratic function V = V1 + V2 is a
Lyapunov function of the composite system given by (4),
(5) and (9). Then, one can conclude that the equilibrium
point; i.e. the origin, of the composite system (4), (5) and
(9) is asymptotically stable.

IV. Event-triggered strategy

In this section we propose an event-triggered imple-
mentation of the observer based state feedback controller
issued from Theorem 2.

Considering variables x̄o, u and ẽ, the observer equa-
tion in (9) , for t ∈ [tk , tk+1), can be rewritten as follows:

˙̄xo(t) = Ax̄o(t) + Būs(t) + Koẽ(t) (23)

with ūs(t) = u(tk)−ueq, where from (7) recall that ueq =
Kcxo,eq + Krr.

Define now the vector

ξ(t) = [x̄o(t)
′ ūs(t) ẽ(t)]′ ∈ #n+2 (24)



and the matrix

M =





PcA + A′Pc + Qc PcB PcKo

B′Pc 0 0
K ′

oPc 0 −Qe



 . (25)

The event-triggered sampling strategy can therefore be
described by using the following algorithm to define the
sampling event:

Algorithm 1:
if ξ′(t)Mξ(t) > 0 then sample, i.e:

tk+1 = t
k ← k + 1
ūs(t) = u(t) − ueq

otherwise:
ūs(t) = u(tk) − ueq

The following theorem relies upon Theorem 2 to ensure
the asymptotic stability of the closed-loop sampled-data
system considering the event-strategy proposed in Algo-
rithm 1.

Theorem 3: Consider the system composed by (4), (5)
and (23), matrices Po and Pc satisfying conditions of
Theorem 2 and the event-triggered sampling strategy
given in Algorithm 1, where M is defined as in (25). Then
it follows lim

t→∞

x̄o(t) = 0 and lim
t→∞

x̃(t) = 0, or equivalently,

the closed-loop system is asymptotically stable.
Proof: Let V (x̄o, x̃) = V1(x̃)+V2(x̄o) be a candidate

Lyapunov function, where V2(x̄o) = x̄′

oPcx̄o, V1(x̃) =
x̃′Pox̃, and matrices Po and Pc satisfying (15) and (16)
respectively. Consider the following notation:

• V̇s = V̇1(x̃) + V̇2s(x̄o, ūs, ẽ) for denoting the time-
derivative of V along the trajectories of system (4),
(5), (23).

• V̇ = V̇1(x̃) + V̇2(x̄o, ẽ) for denoting the time-
derivative of V along the trajectories of system (4),
(5), (9).

By using (15) we have

V̇1(x̃) < −x̃′Qoex̃, ∀t. (26)

where Qoe = Qo + C′QeC > 0. From the definition of
matrix M and vector ξ, it follows:

ξ(t)′Mξ(t) = V̇2s(x̄o, ūs, ẽ) + φ(x̄o, ẽ) (27)

where φ(x̄o, ẽ) = x̄′

oQcx̄o−ẽ′Qeẽ. If ξ(t)′Mξ(t) ! 0, ∀t ∈
[tk−1 , tk), then one gets

V̇2s(x̄o, ūs, ẽ) ! −φ(x̄o, ẽ), ∀t ∈ [tk−1 , tk) (28)

and therefore from (26) and (28)

V̇s < −x̄′

oQcx̄o − x̃′Qox̃ < 0
∀t ∈ [tk−1 , tk).

(29)

Let us consider now the sampling instant t = tk.
At this instant, the control and the sensor values are
instantaneously updated and it follows that:

ūs(tk) = u(tk) − ueq = Kcx̄o(tk)

Ax̄o(tk)+Būs(tk)+Koẽ(tk) = (A+BKc)x̄o(tk)+Koẽ(tk)

and

V̇2s(x̄o(tk), ūs(tk), ẽ(tk)) = V̇2(x̄o(tk), ẽ(tk)). (30)

Suppose now that (16) is verified and from the proof of
Theorem 2, it follows that:

V̇2s(x̄o(tk), ūs(tk), ẽ(tk)) + φ(x̄o(tk), ẽ(tk)) < 0. (31)

Thus, we conclude that

ξ(tk)′Mξ(tk) < 0 (32)

which means that the interval between two sampling
instants is not empty. From this fact and from (4) and
(9), it follows that the state converges asymptotically to
the origin under the sampling strategy.
Note that the considered Lyapunov function is continu-
ous at the sampling instants, so that the indicated prop-
erties are enough to conclude on asymptotic stability.

V. Numerical examples

Two simple simulation examples illustrate the strategy
proposed in this work.

Example 1: The first example considers an open-loop
stable system described by the following state space
matrices:

A =

[

0 1
−2 −4

]

, B =

[

0
1

]

, C =
[

1 0
]

. (33)

The observer and controller parameters are defined as
follows:

Ko = −
[

1 1
]′

, Kc = −
[

1 2
]

, Kr = 3. (34)

Given matrices Qc and Qe

Qc =

[

1 0
0 1

]

, Qe = 10, (35)

the following values of matrices Po and Pc are obtained
by solving the LMIs (16) and (15):

Po =

[

3.2778 −1.5
−1.5 0.8333

]

Pc =

[

1.3832 −0.6386
−0.6386 0.4049

] (36)

The simulation considers different initial conditions for
the observer and the system and at time t = 10[s] an
unit step change in the reference. The behavior of the
controller is summarized in figure 2; where the sampling
events are represented by a boolean variable se; i.e.
se = 1 if a sampling event occurs. As seen in figure 2
the strategy samples only when is necessary; i.e. once the
system reaches the steady state no sampling is required.
Figure 3 shows the evolution of the Lyapunov function
and the switching condition. Notice that at every sam-
pling event, the ξ(t)′Mξ(t) is forced to be negative.

Example 2: The second example considers an unstable
system having a pole in the right hand side of the
complex plane. This type of structure arises for instance
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Fig. 2. Output of the continuous plant yp(t) (blue) and the esti-
mated one yo(t) (red), control signal u(t), control error r(t)−yp(t)
and sampling events.

in modeling levitation systems. The parameters of the
state space model are:

A =

[

0 1
4 0

]

, B =

[

1
0

]

, C =
[

1 0
]

. (37)

The observer and controller parameters are defined by
the following values

Ko = −
[

3.5 7
]′

, Kc = −
[

6 3
]

, Kr = 2. (38)

Given matrices

Qc =

[

1 0
0 1

]

, Qe = 1000 (39)

and solving the LMIs (16) and (15) the following values
for Po and Pc are obtained:

Po =

[

1506 −1141
−1141 1869

]

Pc =

[

30.87 9.27
9.27 33.41

] (40)

As in the previous example, the simulation starts with
a reference equal to zero and different initial conditions
for the system and the observer, at time t = 10[s] an unit
step change in the reference is simulated. As seen in figure
4, compared to the stable case of the previous example,
the controller is able to stabilize the system by generating
more sampling events, since in between sampling events
the system is in fact in open-loop. Figure 5 shows the
evolution of the Lyapunov function and the switching
condition.
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Fig. 3. Lyapunov function V (t) and switching condition.

VI. Final Remarks

In this paper a systematic method for designing event-
triggering strategies for observer-based controllers has
been presented. The design of the observer and the con-
troller parameters follows the separation principle. The
event-triggering design method is based on Lyapunov and
ISS arguments providing simple triggering strategies that
only use information of available signals. Hence, since
a Lyapunov-based approach is considered, the stability
under the event-triggered sampling strategy is formally
guaranteed. The proposed strategy has been illustrated
by considering both stable an unstable systems, showing
that the stability of the closed-loop system is ensured.
Since the strategy is formulated using state space mod-
els, its extension to multi-input multi-ouput systems is
straightforward for zero reference signals. For non zero
references, however, the system must be square and the
closed-loop system must not have transmission zeros at
the origin in order to compute the feedforward gain Kr.
The resulting event strategy will sample all the input and
output signals at once.

In addition, the current work lets several directions
of research open. Among them, it should be interesting
to use additional constraints in order to enrich the
stability conditions to decrease their conservatism, as,
for example, some constraint about the sampling error.
Furthermore, it should be challenging to consider the
magnitude limitation of the actuator or of the sensor
explicitly in the event-triggering method with the objec-
tive to characterize the domain of attraction around the
equilibrium point (see [13] and [14] for some interesting
directions on this).
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