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Stability Analysis of Sampled-data Control Systems under

Magnitude and Rate Saturating Actuators∗

A. H. K. Palmeira1 and J. M. Gomes da Silva Jr.2 and S. Tarbouriech3 and I. M. F. Ghiggi4

Abstract—This paper addresses the problem of
stability analysis of sampled-data control of linear
systems in the presence of input magnitude and rate
saturation. A position-type feedback modeling for
the actuator is considered. Based on the use of a
discrete-time quadratic Lyapunov function, a looped-
functional and generalized sector relations (to cope
with nested saturation functions), LMI conditions are
derived to assess local (regional) and global stability of
the sampled-data closed-loop systems under aperiodic
sampling strategies.

I. Introduction

Actuator saturation is an ubiquitous feature in con-
trol systems. Due to physical or security limitations,
the actuators are constrained to provide signals with
both magnitude and rate (the derivative) inside certain
intervals. The effective magnitude or rate saturation of
the control signal is source of instability and performance
degradation. Motivated by that, a large amount of works
have been devoted to the study of the impact of control
saturation on the behavior of closed-loop systems. Most
of these works deal only with the problem of magnitude
saturation (see for instance [1], [2], [3] and references
therein). On the other hand, the rate of the control
signal is also critical and deserves to be taken into
account explicitly in many applications. This is the case
in the aeronautic field, where the rate limitations in
hydraulic actuators can cause the so-called pilot-induced-
oscillations (PIO), which can lead to an effective disaster
[4], [5]. Other examples are electromechanical actuators
(such as valve positioners) and pneumatic actuators,
which clearly present dynamic limitations.
Regarding the problem of stability analysis and sta-

bilization of systems presenting magnitude (position)
and rate saturation, many works can be cited. Basically,
two approaches are followed. The first one considers the
design of the controller (possibly nonlinear) in order
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to generate a signal respecting the magnitude and rate
bounds of the actuator [6], [7], [8]. The second approach
considers a first-order model to represent the dynamics of
the actuator, the so-called position-type feedback model.
In this case, the saturation in rate appears as the satu-
ration of the actuator state and when the time-constant
of the first-order model tends to zero the “ideal” rate
limiter is recovered [9]. Considering this approach we
can cite works dealing with global [9], semi-global [10]
and local (regional) stability [11]. Moreover, considering
simultaneously rate and magnitude saturation leads to a
system presenting two nested saturations. General results
concerning systems with nested saturations can therefore
be applied to consider the global or the regional stability
or stabilization problems (see for instance [12], [13],
[14]). It should be noted that the aforementioned ref-
erences consider both the plant and the actuator model
in continuous-time. Some counterpart results regarding
discrete-time models can be found, for instance, in [8],
[15].
On the other hand, regarding the case of sampled-data

control in the presence of magnitude saturating actuators
we can cite for instance [16] and [17]. However to the
knowledge of the authors, there is a lack of works for-
mally dealing with the problem of sampled-data control
in the presence of rate saturation. In particular, it should
be noticed that since the position-type feedback modeling
is nonlinear (it presents a state saturation), the classical
discretization strategies considering periodic sampling
and the use of zero-order holders cannot be applied.
Furthermore, the use of discretized models can be highly
imprecise in this case. Another important aspect, which
is quite related to the new paradigm of networked control
[18], regards the possibility of aperiodic sampling.
This work aims somehow at filling this gap by pro-

viding a method to analyze the stability of sampled-
data control-loops in the presence of magnitude and
rate saturating actuators. We consider the position-type
feedback modeling for the actuator and the possibility
of having aperiodic sampling. In this context, conditions
based on the use of a discrete-time Lyapunov function
and a looped-functional [19] are derived to assess the
stability of the closed-loop sampled-data system. The
nested saturation nonlinearities resulting from the actu-
ator modeling are taking into account by the application
of generalized sector conditions as in [13]. The proposed
conditions are in a quasi-LMI form (that is, if a scalar
is fixed, LMI conditions are recovered) and can be easily



incorporated in convex optimization problems aiming at
maximizing estimates of the region of attraction of the
origin or the maximum inter-sampling time for which the
stability is ensured regionally or, when possible, globally.
Notation. In this paper, the sets N, R

n, R
n×n and

K denote respectively the set of positive scalars, n-
dimensional vectors, n× n matrices of real elements and
the set of continuous functions from an interval [0,Tk] to
R

n. The superscript ′T ′ stands for matrix transposition.
A(i) denote the ith row of matrix A, A(i, j) is its element
in position (i, j), He{A}= A+AT . The symbols I and 0
represent the identity and zero matrices of appropriate
dimensions. The notation A > (or <)0 means that A is
a symmetric and positive (or negative) definite matrix.
The symbol ⋆ stands for symmetric blocks in a matrix.
|| · || denotes the Euclidean norm.

II. Problem Statement

The plant to be controlled is a linear continuous-time
system described in state space as follows:

ẋp(t) = Axp(t)+Bν(t), (1)

where xp ∈R
np and ν ∈R

m represent the vectors of plant
state and input, respectively, and A and B are constant
matrices of appropriate dimensions. In order to model
the actuator constraints in position and rate, for each
actuator we consider a first-order model [11] given by:

ẋa(i)(t) = satr(i)(−λ(i)xa(i)(t)+λ(i)satp(i)(u(i)(t))), (2)

for i= 1, ...,m. u∈R
m and xa ∈R

m represent the input and
the actuator state, respectively. The saturation functions
are defined as follows

satp(i)(ω1(i)) = sign(ω1(i))min{
∣

∣ω1(i)

∣

∣ , ūp(i)},

satr(i)(ω2(i)) = sign(ω2(i))min{
∣

∣ω2(i)

∣

∣ , ūr(i)},

where ūp(i) and ūr(i) are the symmetrical position and rate
bounds, respectively.
We consider that the control law is a sampled-data

state feedback. The state is sampled at instant t = tk and
the value of the control is kept constant, by means of
zero-order hold (ZOH), until the next sampling time, t =
tk+1. In other words, u(t) is given as follows:

u(t) = u(tk) =
[

Kp Ka
]

[

xp(tk)
xa(tk)

]

, tk ≤ t < tk+1, (3)

where tk is the sampling instant, and k ∈ N is an in-
creasing sequence of positive scalars. We suppose that
the difference between two successive sampling instants,
defined by Tk = tk+1 − tk, satisfies 0 ≤ τ1 ≤ Tk ≤ τ2.
Thus, the closed-loop system, issued from the connec-

tion between (1), (2) and (3), with ν(t) = xa(t), can be
described by:

ẋp(t) = Axp(t)+Bxa(t),
ẋa(t) = satr(−Λxa(t)+Λsatp(Kpxp(tk)+Kaxa(tk))),

for tk ≤ t < tk+1.

(4)
where Λ ∈R

m×m is a diagonal matrix with Λ(i,i) = λ(i).

The model described by (4) can be rewritten using the
generic model of systems with nested saturations [13], as
follows:

ẋ(t) = A2x(t)+B2sat2(A1x(t)+B1sat1(u(t))),
u(t) = u(tk) =Cx(tk), tk ≤ t < tk+1,

(5)

with the plant and actuator states represented by the
augmented state vector x(t) =

[

xp(t)T xa(t)T
]T
, x ∈ R

n,
sat1(·) = satp(·), with the bound ū1 = ūp, sat2(·) = satr(·),
with ū2 = ūr, and

A2 =

[

A B
0 0

]

, B2 =

[

0
I

]

, C =
[

Kp Ka
]

,

A1 =
[

0 −Λ
]

, B1 = Λ.
(6)

Define now χk(τ) = x(tk + τ),τ ∈ [0,Tk]. Then, the
closed-loop dynamics in the interval [0,Tk] can be rep-
resented by:

χ̇k(τ) = A2χk(τ)+B2sat2(A1χk(τ)+B1sat1(Cχk(0))). (7)

The set of all initial conditions (χ0(0) ∈ R
n), such

that, the corresponding trajectories of the system (7)
converge asymptotically to the origin corresponds to the
so-called region of attraction of the origin (Ra).Due to
the difficulty to determine analytically Ra, a problem of
interest is to compute an estimate (D) of this region, such
that, D ⊂Ra ⊆R

n, taking into account both the actuator
constraints and the fact that the interval between two
successive sampling instants can vary.
The goal of this paper is to assess the local or global

asymptotic stability of the origin of the sampled-data
system (5) taking into account the actuator constraints
and aperiodic sampling intervals Tk ∈ [τ1,τ2]. Then we
focus on the following problems.

P1. Given the state feedback gains Kp, Ka and the
bounds τ1 and τ2 on Tk, maximize an estimate of
region Ra.

P2. Given the state feedback gains Kp, Ka, a set of ad-
missible initial conditions (X0) and τ1, maximize the
upper bound on the interval between two successive
sampling instants, τ2, such that the corresponding
trajectories of the system converge asymptotically
to the origin, provided that x(0) ∈ X0.

When the open-loop system is asymptotically stable,
we will consider global stability assessment. In the global
case, Ra corresponds to the whole state space.

III. Preliminaries

Using the notation χk(τ), the following vector-valued
dead-zone functions can be defined from the magnitude
and rate saturation:

ψ1(χk) = ψk1 = sat1(Cχk(0))−Cχk(0),
ψ2(χk) = ψk2 = sat2(A1χk(τ)+B1sat1(Cχk(0)))

−(A1χk(τ)+B1(ψk1 +Cχk(0))).
(8)

Then, ∀τ ∈ [0,Tk], the closed-loop system (5) can be
rewritten, with the matrices defined in (6), as follows:

χ̇k(τ) = (A2 +B2A1)χk(τ)+B2B1Cχk(0)
+B2B1ψk1 +B2ψk2 .

(9)



Regarding dead-zone functions, we recall now the fol-
lowing Lemma, that provides a generalized sector condi-
tion.
Lemma 1: [2] Define the set S (ū) = {ω ∈ R

m,υ ∈
R

m; |ω(i) − υ(i)| ≤ ū(i), for i = 1, ...,m}. If ω and υ are
elements of set S (ū), then the dead-zone nonlinearity
ψ(ω), defined as ψ(ω) = sat(ω)−ω , satisfies

ψ(ω)TU(ψ(ω)+υ)≤ 0,

for any diagonal and positive definite matrix U ∈ R
m×m.

In order to apply Lemma 1 to the dead-zone functions
ψk1 and ψk2 , consider matrices G1, G21 and G22 ∈ R

m×n

and G23 ∈R
m×m, and define the following sets:

S (ū1) = {χk(0) ∈ R
n; |(C−G1)(i)χk(0)| ≤ ū1(i),

for i = 1, ...,m},
(10)

S (ū2) = {(χk(0),χk(τ),ψk1 ) ∈ R
n ×R

n ×R
m;

|(A1 −G21)(i)χk(τ)+ (B1C−G22)(i)χk(0)
+(B1 −G23)(i)ψk1 | ≤ ū2(i), for i = 1, ...,m}.

(11)
Then, if χk(0)∈S (ū1), and (χk(0),χk(τ),ψk1)∈S (ū2),

then the following inequalities are satisfied for any diag-
onal and positive definite matrices U1 and U2 ∈ R

m×m:

ψT
k1

U1(ψk1 +G1χk(0))≤ 0, (12)

ψT
k2

U2(ψk2 +G21χk(τ)+G22χk(0)+G23ψk1)≤ 0. (13)

Based on conditions (12) and (13), from a discrete-time
and positive definite function V (χk) and a continuous-
time looped-functional W (τ,χk), we state now a Theorem
that allows to conclude about the regional stability of the
closed-loop system (5) in a level set of the function V (χk).
This result is basically an extension of Theorem 1 in [17],
to cope with position and rate saturation.
Theorem 1: Consider a function V (χk) :Rn →R

+, such
that

V (χk)> 0,∀χk 6= 0, (14)

and a continuous-time functional V0 : [0,τ2]×K → R,
which satisfies for all χk ∈K

V0(Tk,χk) =V0(0,χk) = 0
∀τ ∈ (0,Tk), V0(τ,χk)> 0.

(15)

Define nowW (τ,χk)=V (χk)+V0(τ,χk) and let Ẇ (τ,χk)
be the time-derivative of W (τ,χk) with respect to τ, along
the trajectories of the system (9), for τ ∈ [0,Tk] and 0 <

τ1 ≤ Tk ≤ τ2. If there exist matrices G1, G21, G22 ∈R
m×n,

G23 ∈ R
m×m, diagonal and positive definite matrices U1

and U2 ∈ R
m×m, such that, the following inequalities are

satisfied
∥

∥(C(i)−G1(i))χk(0)
∥

∥

2
≤ ū2

1(i)V (χk(0)), (16)

∥

∥

∥

∥

∥

∥

[

Θ1(i) Θ2(i) Θ3(i)
]





χk(τ)
χk(0)
ψk1





∥

∥

∥

∥

∥

∥

2

≤ ū2
2(i)V (χk(τ)),

(17)

Ẇ (τ,χk)− 2ψT
k1

U1[ψk1 +G1χk(0)]− 2ψT
k2

U2[ψk2

+G21χk(τ)+G22χk(0)+G23ψk1 ]< 0,
(18)

for i= 1, ...,m and with Θ1 =A1−G21, Θ2 =B1C−G22 and
Θ3 = B1−G23. Then for any initial condition x(0) = χ0(0)
in the set

D = {χ0 ∈R
n;V (χ0)≤ 1}, (19)

it follows that:

a) ∆V(χk) =V (χk(Tk))−V(χk(0))< 0,
b) the corresponding trajectories of the sampled-data

system (5) with Tk ∈ [τ1,τ2] converge asymptotically
to the origin.
Proof: See appendix.

In the case the open-loop system (1) is asymptotically
stable, the following Corollary provides a condition to
assess the global asymptotically stability of the origin.
Corollary 1: Consider a function V (χk) : Rn → R

+,
such that, V (χk) > 0,∀χk 6= 0, and a continuous-time
functional V0 : [0,τ2]×K→R, which satisfies for all χk ∈
K, ∀Tk ∈ [τ1,τ2], V0(Tk,χk) =V0(0,χk) = 0.
Define nowW (τ,χk)=V (χk)+V0(τ,χk) and let Ẇ (τ,χk)

be the time-derivative of W (τ,χk)with respect to τ, along
the trajectories of the system (9), for τ ∈ [0,Tk] and 0 <

τ1 ≤ Tk ≤ τ2. If there exist diagonal and positive definite
matrices U1 and U2 ∈ R

m×m, such that the following
inequality is satisfied

Ẇ (τ,χk)− 2ψT
k1

U1[ψk1 +Cχk(0)]− 2ψT
k2

U2[ψk2

+A1χk(τ)+B1Cχk(0)+B1ψk1 ]< 0,
(20)

Then, it follows that the origin of the system (5) is
globally asymptotically stable, for Tk ∈ [τ1,τ2].

IV. Asymptotic stability of saturated and

sampled-data systems

In this section, LMI conditions for regional and global
asymptotic stability analysis of the sampled-data system
(5) are derived from Theorem 1 and Corollary 1, consid-
ering appropriate choices for V (χk) and V0(τ,χk).
Theorem 2: Consider the sampled-data system (5)

with Tk ∈ [τ1,τ2], 0 < τ1 ≤ τ2. If there exist symmetric and
positive definite matrices P̃, S̃1 and R̃ ∈ R

n×n, diagonal
and positive definite matrices Ũ1 and Ũ2 ∈ R

m×m, a
symmetric and positive definite matrix X̃1 ∈R

(m+n)×(m+n),
matrices Ỹ ∈ R

n×n, G̃1 and G̃21 ∈ R
m×n, Ñ ∈ R

(3n+2m)×n

and a positive scalar ε, that satisfy the following inequal-
ities, for j = 1,2 and i = 1, ...,m:

Π̃1 + τ jΠ̃2 + τ jΠ̃3 < 0, (21)
[

Π̃1 − τ jΠ̃3 τ jÑ
⋆ −τ jR̃

]

< 0, (22)

[

P̃ (CỸ − G̃1)
T
(i)

⋆ ū2
1(i)

]

≥ 0, (23)

[

P̃ (A1Ỹ − G̃21)
T
(i)

⋆ ū2
2(i)

]

≥ 0, (24)



with

Π̃1 = He{MT
1 P̃M3 −MT

4 G̃1M2 −MT
5 G̃21M1

−MT
5 B1CỸM2 −MT

5 B1Ũ1M4 − ÑM12

+(εMT
1 +MT

3 )((A2 +B2A1)ỸM1

+B2B1CỸM2 − ỸM3 +B2B1Ũ1M4

+B2Ũ2M5)}− 2MT
4 Ũ1M4

−2MT
5 Ũ2M5 −MT

12S̃1M12,

Π̃2 = He{MT
3 S̃1M12}+MT

3 R̃M3,

Π̃3 = MT
24X̃1M24,

(25)

and auxiliary matrices of appropriate dimensions

M1 = [I 0 0 0 0], M2 = [0 I 0 0 0],
M3 = [0 0 I 0 0], M4 = [0 0 0 I 0],
M5 = [0 0 0 0 I], M12 = M1 −M2,

M24 = [MT
2 MT

4 ]
T .

(26)

Then, for any initial condition x(0) = χ0(0) belonging
to the set

E (P) = {x ∈ R
n;xT Px ≤ 1}, (27)

where P= Ỹ−T P̃Ỹ−1, the corresponding trajectories of the
sampled-data system (5) converge asymptotically to the
origin.

Proof: See appendix.
Based on the result stated in Corollary 1, the follow-

ing Corollary provides a condition to assess the global
asymptotically stability of the origin of the sampled-data
system (5).
Corollary 2: Consider the sampled-data system (5)

with Tk ∈ [τ1,τ2], 0 < τ1 ≤ τ2. If there exist symmetric
and positive definite matrices P̃, S̃1 and R̃ ∈ R

n×n, di-
agonal and positive definite matrices Ũ1 and Ũ2 ∈R

m×m,
symmetric and positive definite matrix X̃1 ∈R

(m+n)×(m+n),
matrices Ñ ∈ R

(3n+2m)×n and Ỹ ∈ R
n×n and a positive

scalar ε, such that, the matrix inequalities (21), (22) are
satisfied, with G̃1 = CỸ and G̃21 = A1Ỹ , then, the origin
is globally asymptotically stable.

V. Numerical and Optimization Issues

Based on the conditions given in Theorem 2 and
Corollary 2, we propose now optimization problems to
solve Problems P1 and P2 stated in Section II. We first
recall the following result.
Lemma 2: [17] Let P be a positive definite matrix and

define P̃ = MT PM, with M being a non-singular matrix.
If

[

P0 I
I M+MT − P̃

]

> 0, (28)

then, P < P0.

A. Maximization of the estimate of Ra

Note that the set E (P) provided by the satisfaction of
the conditions in Theorem 2 is, by definition, included
in Ra and can be used as an estimate of it. Then, from
Problem P1, given Tk ∈ [τ1,τ2] and considering some size
criterion, the goal is to maximize the set E (P). With
this aim, we can for instance maximize the minor axis

of E (P). This can be accomplished from the following
optimization problem

min δ
subject to
(21), (22), (23), (24),
[

δ I I
I Ỹ + Ỹ T − P̃

]

> 0.

(29)

From Lemma 2 and since P = Ỹ−T P̃Ỹ−1, the last
inequality in (29) implies that P< δ I. Then, the maximal
eigenvalue of P is smaller than δ . Hence, the minimiza-
tion of δ ensures the maximization of the minor axis of
E (P). Note that, for τ1 and τ2 given, constraints in (29)
are LMIs for a fixed ε. Then the optimal solution of (29)
can be obtained by solving LMI-based problems on a grid
in ε.

B. Maximization of the sampling interval

From Problem P2, we consider a region of admissible
initial conditions for the sampled-data system (5) given
in the following form

E (P0) = {x ∈ R
n;xT P0x ≤ 1}, with P0 = PT

0 > 0. (30)

Then for τ1 given, the goal is to find the maximum
value of τ2, for which the stability is ensured for Tk ∈
[τ1,τ2]. This can be accomplished from the following
optimization problem

max τ2

subject to
(21), (22), (23), (24),
[

P0 I
I Ỹ + Ỹ T − P̃

]

> 0.

(31)

Note that, from Lemma 2, the last inequality implies
that P < P0 and E (P0) ⊆ E (P). Hence, considering τ1

given, the optimization problem (31) can be solved as a
feasibility LMI problem by iteratively increasing τ2 and
testing the feasibility of LMIs, for a fixed ε.
On the other hand, if the open-loop system is asymp-

totically stable, we can attempt to find the maximal
bound τ2 on the sampling interval for which the global
stability of the sampled-data system (5) is ensured. The
following optimization problem can be used in this case

max τ2

subject to
(21), (22)

(32)

with G̃1 =CỸ and G̃21 = A1Ỹ .

VI. Illustrative example

Consider the numerical example borrowed from [11],
where system (4) is described by the following matrices

A =

[

0 1
10 −0.1

]

B =

[

0
1

]

Λ = 20

C =
[

−6.4276 −2 0.4598
]

.

(33)

with the bounds of magnitude and rate saturation being
ū1 = 1 and ū2 = 10. By considering Tk ∈ [0.01,0.06] and



the optimization problem (29), for ε = 3, we obtain an
estimate of the region of the attraction defined with

P =





567.3811 176.6072 28.8366
176.6072 54.9722 8.9760
28.8366 8.9760 2.1313



 . (34)

Considering the initial condition x(0) =
[

0.16 −0.74 1.2
]T

∈ E (P) and an aperiodic sampling
with Tk ∈ [0.01,0.06], simulation results are shown in
Figures 1 and 2. Figure 1 depicts the signals satp(u) and
ẋa, Figure 2 presents the plant states, the actuator state
xa and satp(u).

Fig. 1. Signals satp(u) (in red) and ẋa (in blue), for x(0) = [0.16 −
0.74 1.2]T

Fig. 2. Plant states (in black), actuator state (in blue) and satp(u)
(in red), for x(0) = [0.16 −0.74 1.2]T

Table I shows the trade-off between the size of the
sampling interval Tk = [τ1,τ2] and the size of the esti-
mate of the region of attraction E (P) obtained from the
optimization problem (29). We consider a fixed value for
τ1 (τ1 = 0.01) and different values for τ2. As τ2 increases,
i.e., larger is the interval [τ1,τ2], larger values for δ are
obtained, i.e., smaller is E (P). Note that the case of
constant sampling periods (τ1 = τ2) leads to a larger set
when compared to the cases of aperiodic sampling.

VII. Conclusion

In this paper conditions for the stability analysis of
sampled-data linear control systems with actuators pre-
senting both magnitude and rate saturation have been
proposed. The control signal has been assumed to be
constant between two successive sampling instants and

TABLE I

Values of δ and trace of P, with fixed τ1 = 0.01 for

different values of τ2.

τ2 δ × (102) trace(P) × (102)

1× τ1 4.82 4.81
2× τ1 4.93 4.91
3× τ1 5.06 5.04
4× τ1 5.26 5.22
5× τ1 6.24 5.85
6× τ1 8.04 6.36

the continuous behavior of the plant and the nonlinear
actuator model have been explicitly considered.

These conditions being LMIs for a fixed scalar ε,
convex optimization problems are proposed to compute
an estimate of the region of attraction or, given a set
of admissible initial conditions, compute the maximal
admissible inter-sampling time for which the convergence
of the trajectories to the origin is ensured.

Appendix

A. Proof of Theorem 1

Suppose χ0(0) ∈ D, then from (16) and (17), for i = 1, ...,m, it follows
that:

χ0(0)T (C(i)−G1(i))
T (C(i)−G1(i))χ0(0)≤ ū2

1(i)




χ0(0)
χ0(0)
ψ01





T






ΘT
1(i)

ΘT
2(i)

ΘT
3(i)







[

Θ1(i) Θ2(i) Θ3(i)
]





χ0(0)
χ0(0)
ψ01



≤ ū2
2(i).

It means that χ0(0) ∈ S (ū1) and (χ0(0),χ0(0),ψ01 ) ∈ S (ū2). Hence, we
conclude from (12), (13) and (18) that Ẇ (0,χ0(0)) < 0. Taking into
account that V0(τ ,χk) > 0, for τ ∈ (0,Tk) and V0(0,χk) = V0(Tk,χk) = 0, it
follows that V (χk)≤W (τ ,χk). This fact along with Ẇ (0,χ0)< 0, leads to:

V(χ0(ρ))≤W(ρ ,χ0(ρ))<W(0,χ0(0)) = V (χ0(0))+V0(0,χ0(0)), for ρ → 0+.

Since from (15), V0(0,χ0(0)) = 0, then we conclude that V (χ0(ρ)) <
V (χ0(0)), i.e., χ0(ρ)∈ D. Repeating now the reasoning, we conclude that
V (χ0(τ))<V (χ0(0)),∀τ ∈ [0,Tk ], i.e., (χ0(τ),χ0(0),ψ01 )∈S (ū2), ∀τ ∈ [0,Tk ], and
we conclude that Ẇ(τ ,χ0(τ))< 0,∀τ ∈ [0,Tk ].

Recalling that

Ẇ (τ ,χ0(τ)) = d
dτ (V (χ0(τ))+V0(τ ,χ0(τ)))< 0,

and integrating Ẇ (τ ,χ0(τ)) over the interval [0,Tk ] it follows that

V (χ0(Tk))−V (χ0(0))< 0.

Since χk+1(0) = χk(Tk), this procedure can now be repeated and we
conclude that V (χk) is decreasing at the sampling instants, i.e, V (χk) is a
discrete-time Lyapunov function for the system (5).

B. Proof of Theorem 2

Consider a quadratic candidate Lyapunov function V (χk(τ)) =
χk(τ)T Pχk(τ), χk ∈R

n, the matrix P = PT > 0, and a candidate continuous-
time functional V0(τ ,χk) defined for all τ ∈ [0,Tk ], as follows

V0(τ ,χk) = (Tk − τ){[χk(τ)−χk(0)]T S1[χk(τ)−χk(0)]+ τ
[

χk(0)
ψk1

]T

X1

[

χk(0)
ψk1

]

+
∫ τ

0 χ̇T
k (θ)Rχ̇k(θ)dθ},

with symmetric and positive definite matrices X1 ∈R
(m+n)×(m+n), S1 and R∈

R
n×n. Note that, V0(τ ,χk) satisfies conditions of Theorem 1, i.e., V0(0,χk) =

V (Tk,χk) = 0. Since for τ = 0, we have [χk(τ)−χk(0)] = 0, the integral term
is equal to zero, and for τ = Tk, (Tk − τ) = 0.

From V (χk) and V0(τ ,χk), define now W(τ ,χk) = V (χk) + V0(τ ,χk) as
in Theorem 1. Since X1,S1,R > 0, V0(τ ,χk) > 0 for any τ ∈ (0,Tk), then,
V (χk(τ))≤W (τ ,χk).



Define now Γ(τ ,χk) = Ẇ (τ ,χk) − 2ψT
k1

U1[ψk1 + G1χk(0)] − 2ψT
k2

U2[ψk2 +

G21χk(τ)+G22χk(0)+G23ψk1 ], with G22 = B1C and G23 = B1. It follows that

Γ(τ ,χk) = 2χT
k (τ)Pχ̇k(τ)−2ψT

k1
U1[ψk1 +G1χk(0)]

−2ψT
k2

U2[ψk2 +G21χk(τ)+B1Cχk(0)+B1ψk1 ]

+(Tk − τ){χ̇k(τ)T [Rχ̇k(τ)+2S1(χk(τ)−χk(0))]
−[χk(τ)−χk(0)]T S1[χk(τ)−χk(0)]}

+(Tk −2τ)
[

χk(0)
ψk1

]T

X1

[

χk(0)
ψk1

]

−
∫ τ

0 χ̇T
k (θ)Rχ̇k(θ)dθ .

(35)

We show now that the satisfaction of (21) and (22) im-
plies that Γ(τ ,χk) < 0. Consider the following vector ξk(τ) = ξk =
[

χk(τ)T χk(0)T χ̇k(τ)T ψT
k1

ψT
k2

]T
, and positive definite matrices

N ∈ R
(3n+2m)×n and R ∈ R

n×n. Hence for the integral term of (35), the
following inequality holds

∫ τ
0 χ̇T

k (θ)Rχ̇k(θ)dθ −2ξ T
k (τ)N[χk(τ)−χk(0)]+ τξ T

k (τ)NR−1NT ξk(τ)≥ 0.
(36)

On the other hand, from (9), it follows that 2(χT
k (τ)YT

1 +
χ̇T

k (τ)YT
2 ){−χ̇k(τ)+ (A2 + A1B2)χk(τ)+B2B1Cχk(0)+ B2B1ψk1 + B2ψk2} = 0, for

any matrices Y1 and Y2 ∈R
n×n. Hence, using ξk and the auxiliary matrices

from (26) one gets

ξ T
k {2(MT

1 Y T
1 +MT

3 Y T
2 )M0}ξk = 0, (37)

with M0 =
[

A2 +B2A1 B2B1C −I B2B1 B2
]

. Using (36), (37) and the
auxiliary matrices defined in (26), it follows that

Γ(τ ,χk) ≤ ξ T
k [Π1 +(Tk − τ)Π2 +(Tk −2τ)Π3]ξk + τξ T

k NR−1NT ξk , (38)

with Π1 = He{MT
1 PM3 − MT

4 U1M4 − MT
4 U1G1M2 − MT

5 U2M5 − MT
5 U2G21M1 −

MT
5 U2B1CM2 − MT

5 U2B1M4 − NM12 + (MT
1 Y T

1 + MT
3 Y T

2 )M0} − MT
12S1M12, Π2 =

MT
3 RM3 +He{MT

3 S1M12} and Π3 = MT
24X1M24.

Consider now the contribution corresponding to terms of the form
χ̇T

k (τ)(.)χ̇k(τ) in the right hand side of (38), which is given by

M3[Π1 +(Tk − τ)Π2 +(Tk −2τ)Π3 + τNR−1NT ]MT
3

=−Y2 −Y T
2 +(Tk − τ)R+ τN3R−1NT

3 ,

where N3 ∈ R
n×n is a component of N. For a negative contribution of

the term χ̇T
k (τ)(.)χ̇k(τ), Y2 should be a non-singular matrix. Then we can

define the matrices Ỹ =Y−1
2 , Ũ1 =U−1

1 , Ũ2 =U−1
2 and Ξ = diag{Ỹ ,Ỹ ,Ỹ ,Ũ1,Ũ2}

and the relation Y1 = εY2, for a positive scalar ε. Thus by considering
ξ̃k = Ξ−1ξk, the inequality (38) is rewritten as

Γ(τ ,χk)≤ ξ̃ T
k [ΞT Π1Ξ+(Tk − τ)ΞT Π2Ξ+(Tk −2τ)ΞT Π3Ξ+ τΞT NR−1NT Ξ]ξ̃k.

(39)
From the auxiliary matrices defined in (26), we have

M1Ξ = Ỹ M1 M2Ξ = ỸM2 M3Ξ = Ỹ M3

M4Ξ = Ũ1M4 M5Ξ = Ũ2M5 M12Ξ = Ỹ M12
M24Ξ =

[

Ỹ 0
0 Ũ1

]

M24

M0Ξ = (A2 +B2A1)ỸM1 +B2B1CỸM2 −Ỹ M3 +B2B1Ũ1M4 +B2Ũ2M5.

Considering now the following change of variables

P̃ = Ỹ T PỸ , S̃1 = Ỹ T S1Ỹ , R̃ = Ỹ T RỸ ,

G̃21 = G21Ỹ , Ñ = ΞT NỸ , G̃1 = G1Ỹ ,
X̃1 =

[

Ỹ 0
0 Ũ1

]T

X1

[

Ỹ 0
0 Ũ1

]

,

and applying in (39), with Π̃1, Π̃2 and Π̃3 defined as in (25), it follows
that

Γ(τ ,χk)≤ ξ̃k
T
[Π̃1 +(Tk − τ)Π̃2 +(Tk −2τ)Π̃3 + τÑ ˜R−1ÑT ]ξ̃k.

Hence if

Π̃1 +(Tk − τ)Π̃2 +(Tk −2τ)Π̃3 + τÑR̃−1ÑT ≤ 0, (40)

∀τ ∈ [0,Tk ], it follows that Γ(τ ,χk)< 0.
By convexity, (40) is satisfied ∀τ ∈ [0,Tk ] and Tk ∈ [τ1,τ2], if the following

inequalities are verified

Π̃1 + τ jΠ̃2 + τ jΠ̃3 < 0, (41)

Π̃1 − τ jΠ̃3 + τ jÑR̃−1ÑT
< 0. (42)

for j = 1,2. Note that (21) is directly (41) and, by applying the Schur’s
complement, (22) is equivalent to (42). Thus, we conclude that (21) and
(22) ensure that Γ(τ ,χk)< 0, which corresponds to (18) in Theorem 1.

Now from Theorem 1, in order to conclude that the trajectories
converge to origin asymptotically provided x(0) ∈ E (P), we need to show
that relations (16) and (17) are satisfied. By right and left-multiplying
(23) and (24) by diag{Ỹ−1, I}, it follows that

χk(0)T{P− 1
ū2

1(i)
(C(i)−G1(i))

T (C(i)−G1(i))}χk(0)≥ 0,

i.e. χk(0)T (C(i)−G1(i))
T (C(i)−G1(i))χk(0)≤V (χk(0))ū2

1(i), and

χk(τ)T{P− 1
ū2

2(i)
(A1(i)−G21(i))

T (A1(i)−G21(i))}χk(τ)≥ 0,

i.e. χk(τ)T (A1(i)−G21(i))
T (A1(i)−G21(i))χk(τ)≤ V (χk(τ))ū2

2(i), where, in partic-

ular, we considered G22 = B1C and G23 = B1 in the condition (13). That
concludes the proof.
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