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Necessary and sufficient condition for local exponential synchronization of
nonlinear systems

Vincent Andrieu, Bayu Jayawardhana, Sophie Tarbouriech

Abstract— Based on recent works on transverse exponential
stability, some necessary and sufficient conditions for the
existence of a (locally) exponential synchronizer are established.
We show that the existence of a structured synchronizer is
equivalent to the existence of a stabilizer for the individual
linearized systems (on the synchronization manifold) by a linear
state feedback. This, in turns, is also equivalent to the existence
of a symmetric covariant tensor field which satisfies a kind of
Lyapunov inequality. Based on this property, we provide the
construction of such synchronizer.

I. INTRODUCTION

Controlled synchronization, as a coordinated control prob-
lem of a group of autonomous systems, has been regarded as
one of important group behaviors. It has found its relevance
in many engineering applications, such as, the distributed
control of (mobile) robotic systems, the control and recon-
figuration of devices in the context of internet-of-things, and
the synchronization of autonomous vehicles.

For linear systems, the solvability of this problem and,
as well as, the design of controller thereof, have been
thoroughly studied in literature. To name a few, we refer
to the classical work on the nonlinear Goodwin oscillators
[9], to the synchronization of linear systems in [17], [15]
and to the recent works in nonlinear systems [13], [8], [7],
[6], [14]. For linear systems, the solvability of synchroniza-
tion problem reduces to the solvability of stabilization of
individual systems by either an output or state feedback. It
has recently been established in [17] that for linear systems,
the solvability of the output synchronization problem is
equivalent to the existence of an internal model, which is
a well-known concept in the output regulation theory.

The generalization to nonlinear systems has appeared
recently in literature (see, for example, [13], [8], [7], [6],
[14], [11]). In these works, based on the concept of passivity
theory (or, the weakened notions of co-coercive systems),
some sufficient conditions are studied that can be used
to construct a synchronizer that solves the synchronization
problem. For such a class of systems, the synchronizer is
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constructed based on the relative output/state measurement,
as in the linear systems case. In [10], small-gain theorem is
used to construct a synchronization control law for L2-stable
systems. If we restrict ourselves to the class of incremental
ISS, as discussed in [4], the synchronizer can again be based
on the relative output/state measurement.

In general, with the lack of characterization of controlled
synchronization for general nonlinear systems, it is difficult
to conclude on the generality of the synchronizer as proposed
in the aforementioned works. Using recent results on the
transverse exponential contraction, we establish in this paper
some necessary and sufficient conditions for the solvability of
a (locally) exponential synchronization. It extends the work
in [2] where only two interconnected systems are discussed.
We show that a very important tool to achieve synchronizing
is to construct a symmetric covariant tensor field of order two
which Lie derivative has to satisfy some specific properties.

The paper is organized as follows. Section II defines
the synchronization problem studied here. Section III is
devoted to establish necessary and sufficient conditions to
the synchronization problem. Finally Section IV gives the
conclusions.
Notations. The vector of all ones with a dimension N is
denoted by 1N . We denote the identity matrix of dimension
n by Idn.

II. PROBLEM DEFINITION

A. System description and communication topology

In this note, we consider the problem of synchronizing
N identical nonlinear systems with N ≥ 2. For every i =
1, . . . , N , the i-th system Σi is described by

ẋi = f(xi) + g(xi)ui , i = 1, . . . , N (1)

where xi ∈ Rn, ui ∈ Rp and the functions f and g are
assumed to be C2. In this setting, all systems has the same
drift vector field f and the same control vector field g :
Rn → Rn×p, but not the same controls in Rp. For simplicity
of notation, we denote the complete state variables by x =[
x>1 , . . . , x

>
N

]>
which is in RNn.

The synchronization manifold D, where the state variables
of different systems agree with each other, is defined by

D = {(x1, . . . , xN ) ∈ RNn | x1 = x2 · · · = xN}.

For every x in RNn, we denote the Euclidean distance to the
set D by |x|D.

The communication graph G, which is used for synchro-
nizing the state through distributed control ui, i = 1, . . . N ,



is assumed to be an undirected graph and is defined by
G = (V, E), where V is the set of N nodes (where the i-th
node is associated to the system Σi) and E ⊂ V ×V is a set
of M edges that define the pairs of communicating systems.
Moreover we assume that the graph G is connected.

Let us, for every edge k in G connecting node i to node
j, label one end (e.g., the node i) by a positive sign and the
other end (e.g., the node j) by a negative sign. The incidence
matrix D that corresponds to G is an N ×M matrix such
that

di,k =

 +1 if node i is the positive end of edge k
−1 if node i is the negative end of edge k
0 otherwise

Using D, the Laplacian matrix L can be given by L = DD>

whose kernel, by the connectedness of G, is spanned by 1N .
We will need the following lemma on the property of L in
our main result.

Lemma 1: Let L =

[
L11 L1,2:n

L>1,2:n L2:n,2:n

]
be a non-zero

balanced Laplacian matrix associated to an undirected graph
G where L11 is a scalar. Then, the eigenvalues of the
(N − 1) × (N − 1) matrix L̄ := L2:n,2:n − 1N−1L1,2:n

are the same as the non-zero eigenvalues of L with the same
multiplicity. Moreover, if the graph is connected then −L̄ is
Hurwitz.
The proof of Lemma 1 can be found in Appendix A.

B. Synchronization problem formulation

Using the description of the interconnected systems via
G, the state synchronization control problem is defined as
follows.

Definition 1: The control laws ui = φi(x), i = 1 . . . , N
solve the local uniform exponential synchronization problem
of (1) if the following conditions hold:

1) For all non-communicating pair (i, j) (i.e., (i, j) /∈ E),
∂φi

∂xj
(x) =

∂φj

∂xi
(x) = 0;

2) For all x ∈ D, φ(x) = 0 (i.e., φ is zero on D); and
3) The manifold D of the closed-loop system

ẋi = f(xi) + g(xi)φi(x), i = 1, . . . , N (2)

is uniformly exponentially stable, i.e., there exist pos-
itive constants r, k and λ > 0 such that for all x in
RNn satisfying |x|D < r,

|X(x, t)|D ≤ k exp(−λt) |x|D, (3)

where X(x, t) denotes the solution initiated from x,
holds for all t in the time domain of existence of
solution.

When r = ∞, it is called the global uniform exponential
synchronization problem. 4

In this definition, the condition 1) implies that the solution
ui is a distributed control law that requires only a local state
measurement from its neighbors in the graph G.

An important feature of our study is that we focus on
exponential stabilization of the synchronizing manifold. This

allows us to rely on the study developed in [2] in which
an infinitesimal characterization of exponential stability of
a transverse manifold is given. As it will be shown in the
following section this allows us to formalize some necessary
and sufficient conditions in terms of matrix functions for a
synchronizing control law to exist.

III. NECESSARY AND SUFFICIENT CONDITION

A. Necessary conditions

In [2], a first attempt has been made to give necessary
conditions for the existence of an exponentially synchro-
nizing control law for only two agents. In [3], the same
problem has been addressed for N agents but without any
communication constraints (all agents can communicate with
all others). In both cases, it is shown that assuming some
bounds on derivatives of the vector fields the following two
properties are necessary conditions.

IS Infinitesimal stabilizability. The couple (f, g) is such
that the n-dimensional manifold {z̃ = 0} of the
transversally linear system

˙̃z =
∂f

∂z
(z)z̃ + g(z)ũ (4a)

ż = f(z) (4b)

with z̃ in Rn and z in Rn is stabilizable by a state
feedback that is linear in z̃ (i.e., ũ = h(z)z̃ for some
function h : Rn → Rp×n).

CMF Control Matrix Function. For all positive definite
matrix Q ∈ Rn×n, there exist a continuous function
P : Rn → Rn×n and strictly positive real numbers p
and p such that

p Idn ≤ P (z) ≤ p Idn (5)

holds for all z ∈ Rn, P has a derivative dfP along f
in the following sense

dfP (z) = lim
h→0

P (Z(z, h))− P (z)

h
(6)

where Z(z, ·) is the solution to (4b) with an initial state
z in Rn so that the inequality

v>dfP (z)v + 2v>P (z)
∂f

∂z
(z)v ≤ −v>Qv (7)

holds for all (v, z) in Rn × Rn satisfying
v>P (z)g(z) = 0.

An important feature of properties IS and CMF comes
from the fact that they are properties of each individual
agent, independent of the network topology. The first one
is a local stabilizability property. The second one establishes
that there exists a symmetric covariant tensor field of order
two denoted by P whose Lie derivative satisfies a certain
inequality in some specific directions. This type of condition
can be related to the notion of control Lyapunov function
which is a characterization of stabilizability as studied by
Artstein in [5] or Sontag in [16]. This property can be
regarding as an Artstein like condition. The dual of the CMF



property has been thoroughly studied in [12] when dealing
with an observer design ([12, Eq. (8)], see also [2] or [1]).

In this note, we show that properties IS and CMF are still
necessary conditions if one considers a network of agents
with a communication graph G as given in II-A. Hence,
as this is already the case for linear system, we recover
the paradigm which establishes that a necessary condition
for synchronization is a stabilizability property for each
individual agent. However, to obtain this property we need
to restrict ourselves to a particular class of synchronizing
control laws as given in the following theorem.

Theorem 1: Consider the interconnected systems in (1)
with the communication graph G and assume that there
exists a control law u = φ(x) where φ(x) =[
φ>1 (x) . . . φ>N (x)

]>
that solves the local uniform ex-

ponential synchronization of (1). Assume that there exists a
C2 function r : Rn → Rn such that for all x = 1N ⊗ z =
(z, . . . z) ∈ D, with z ∈ Rn we have

∂φ

∂x
(x) = r(z)> ⊗ L, (8)

where L in RN×N is the Laplacian matrix associated to the
graph. Assume moreover that g is bounded and f , g and
the φi’s have bounded first and second derivatives and the
closed-loop system is complete. Then properties IS and CMF
hold.

Proof : The proof of IS is decomposed into the following two
steps. In the first step, we show the stabilizability property
for an Nn-dimensional system which is established using
the tools as developed in [2]. In the second step, employing
the structure of the control law as given in Definition 1, we
obtain the desired stabilizability property for the transversally
linear system (4a).

Step 1 : This part of the proof follows exactly the
same steps as the ones presented in [3]. Let e =[
e>2 e>3 . . . e>N

]>
with ei = xi − x1, i = 2, . . . N , the

closed-loop system (1) with the control law φ is given by

ė = F (e, x1) , ẋ1 = G(e, x1) (9)

with e in R(N−1)n, x1 in Rn and where

F =
[
F>2 F>3 . . . F>N

]>
(10)

Fi(e, x1) = f(x1 + ei)− f(x1) (11)
+ g(x1 + ei)φ̄i(e, x1)− g(x1)φ̄1(x1) ,

G(e, x1) = f(x1) + g(x1)φ̄1(e, x1) , (12)

where we have used the notation

φ̄i(e, x1) = φi(x1, x1 + e2, . . . , x1 + eN ). (13)

Note that we have

|e|2 =

N∑
i=2

|xi − x1|2 ,

≤ (N − 1)|x|2D , (14)

and

|x|2D ≤ |e|2 + (N − 1)

∣∣∣∣∣
N∑
i=1

x1 − xi
N

∣∣∣∣∣
2

≤
(

1 +
N − 1

N2

)
|e|2. (15)

Hence, if we denote E(e, x1, ·) the e components of the
solution to (9), then (3) implies for all (e, x1) in R(N−1)n×
Rn

|E(e, x1, t)|

≤

√
(N − 1)

(
1 +

N − 1

N2

)
k exp(−λt) |e|.

It follows that the manifold e = 0 is locally uniformly (in
x1) exponentially stable for (9). We conclude with [2, Prop.
1] that the so-called Property UES-TL is satisfied. Moreover,
we conclude that there exist strictly positive real numbers k̃
and λ̃ such that any solution (Ẽ(ẽ, z, ·), Z(z, ·)) to

˙̃e =
∂F

∂ẽ
(0, z)ẽ , ż = G(0, z) (16)

with ẽ in R(N−1)n and z in Rn satisfies

|Ẽ(ẽ, z, t)| ≤ k̃ exp(−λ̃t)|ẽ| (17)

for all (ẽ, z, t) in R(N−1)n × Rn × R≥0.
By the definition of φ̄ in (13), it follows that in the

manifold where e = 0, we have that φ̄i(0, x1) = 0. This
implies that for every i = 1, . . . , N ,

∂Fi
∂ẽi

(0, z) =
∂f

∂z
(z)

+ g(z)

[
∂φ̄i
∂ẽi

(0, z)− ∂φ̄1
∂ẽi

(0, z)

]
(18)

and for all j 6= i,

∂Fi
∂ẽj

(0, z) = g(z)

[
∂φ̄i
∂ẽj

(0, z)− ∂φ̄1
∂ẽj

(0, z)

]
. (19)

Hence, this yields

˙̃ei =
∂Fi
∂ẽ

(0, z)ẽ =
∂f

∂z
(z)ẽi

+ g(z)

[
∂φ̄i
∂ẽ

(0, z)− ∂φ̄1
∂ẽ

(0, z)

]
ẽ.

Step 2: We will now show that (4a) is stabilizable by a
state feedback that is linear in z̃. In particular, the stabilizing
control law for (4a) will be given by

ũ = νr(z)>z̃ (20)

where ν is a real non-zero eigenvalue of the matrix L2:n,2:n−

1N−1L1,2:n =: L̄, where L =

[
L11 L1,2:n

L>1,2:n L2:n,2:n

]
is the

Laplacian of G. By Lemma 1, all eigenvalues of L̄ are
the same as the non-zero eigenvalues of L (which are all
positive) with the same multiplicity and −L̄ is Hurwitz.



Let v = (v2, . . . , vN ) in RN−1 be a left eigenvector of L̄
associated to ν, i.e.

v>L̄ = νv>

By using Π = Idn⊗v> as a mapping from R(N−1)n to
Rn, we will show that the image of the solution to (16)
are solution to (4a) with the control law (20). Indeed, by
denoting z̃ = Πẽ and by using (16), we have

˙̃z =

˙︷ ︷
N∑
i=2

viẽi =
∂f

∂z
(z)

N∑
i=2

viẽi

+ g(z)

N∑
i=2

vi

[
∂φ̄i
∂ẽ

(0, z)− ∂φ̄1
∂ẽ

(0, z)

]
ẽ

=
∂f

∂z
(z)

N∑
i=2

viẽi

+ g(z)

N∑
i=2

vi

N∑
j=2

[Lij − L1j ] r(z)
>ẽj

=
∂f

∂z
(z)

N∑
i=2

viẽi

+ g(z)r(z)>v>(L2:n,2:n − 1N−1L1,2:n)ẽ

=

[
∂f

∂z
(z) + g(z)νr(z)>

]
z̃.

Denote the solution of the above equation by Z̃(z̃, z, t). Since
Z̃(z̃, z, t) = ΠẼ(ẽ, z, t), it follows from (17) that

|Z̃(z̃, z, t)| ≤ |v|k̃ exp(−λ̃t)|ẽ|.

This proves that the property IS holds.
Proof of CMF : To prove CMF, we use the property

IS and [2, Proposition 2]. Indeed, note that if we consider
another system with state (z̃, z) in Rn×Rn that is described
by

˙̃z = F̄ (z̃, z) , ż = f(z) (21)

with F̄ (z̃, z) = f(z̃ + z) − f(z) + g(z)νr(z)>z̃, ν ∈ R,
it follows from IS and [2, Proposition 2] that there exist a
function P : Rn → Rn such that CMF holds. In particular,
we have that, for all (v, z) in Rn × Rn,

v>dfP (z)v

+2v>P (z)

(
∂f

∂z
(z) + g(z)νr(z)>

)
v ≤ −v>Qv

which implies that (7) holds when v>P (z)g(z) = 0. 2

B. A sufficient condition

The interest that we have in the Property CMF given in
Subsection III-A is to use the symmetric covariant tensor P
in the design of a local synchronizing control law. Indeed,
following one of the main results in [2], we get the following
sufficient condition for the solvability of (local) uniform
exponential synchronization problem. The first assumption

is that, up to a scaling factor, the control vector field g is a
gradient field with P as a Riemannian metric.

Theorem 2 (Local sufficient condition): Assume that g is
bounded and that f and g have bounded first and second
derivatives. Assume that there exists a C2 function P : Rn →
Rn×n with a bounded derivative that satisfies the following
two conditions.
1. There exist a C2 function U : Rn → R which has

bounded first and second derivatives, and a C1 function
α : Rn → Rp which has bounded first and second
derivative such that

∂U

∂z
(z)> = P (z)g(z)α(z) ; (22)

holds for all z in Rn; and
2. There exist a positive definite matrix Q and positive

constants p, p and ρ > 0 such that (5) and

v>dfP (z)v+2v>P (z)
∂f

∂z
(z)v−ρ

∣∣∣∣∂U∂z (z)v

∣∣∣∣2 ≤ −v>Qv ,
(23)

holds for all (z, v) in Rn × Rn.
Then, given a connected graph G with associated Laplacian
matrix L = (Lij), there exists a constant ` such that the
control laws u = φ(x) with φ =

[
φ>1 . . . φ>N

]>
given

by

φi(x) = −`α(xi)

N∑
j=1

LijU(xj) (24)

and ` ≥ ` solves the local uniform exponential synchroniza-
tion of (1).

Proof : First of all, note that the control law φ satisfies
the condition 1) and 2) in Definition 1. Indeed, for all x =
1N ⊗ z = (z, . . . , z) in D and for all (i, j)

∂φi
∂xj

(x) = −`α(z)Lij
∂U

∂z
(z) (25)

Hence, for all x = 1N ⊗ z in D, we get

∂φ

∂x
(x) = −`α(z)

∂U

∂z
(z)⊗ L . (26)

It remains to prove that the manifold D of the closed-loop
system is locally exponentially stable.

As in the proof of Theorem 1, let us denote e =
(e2, . . . , eN ) with ei = x1 − xi. Note that the closed-loop
system may be rewritten as in (9) with the vector fields F
and G as defined in (10)–(12) with φ as the control law.

The rest of the proof is to apply [2, Proposition 3]. For this
purpose, we need to show that for closed-loop system (10)–
(12) the property ULMTE introduced in [2] is satisfied. More
precisely, we need to show that there exists a symmetric
covariant 2-tensor field PN : Rn → R(N−1)n×(N−1)n which
satisfies [2, Ineq. (9)].

By the assumption on the graph being connected
and together with Lemma 1, we have that the matrix
A = −(L2:n,2:n − 1N−1L1,2:n) is Hurwitz. Let S in



R(N−1)×(N−1) be a positive definite matrix solution to the
Lyapunov equation

SA+A>S ≤ −νS (27)

where ν is a positive real number.
Consider the function PN : Rn → R(N−1)n×(N−1)n

defined as
PN (z) = S ⊗ P (z)

Note that we have G(0, z) = f(z). Moreover we have

dG(0,z)PN (z) = S ⊗ dfP (z).

Note that with properties (18), (19) and (26), it follows
that

∂F

∂ẽ
(0, z) = IdN−1⊗

∂f

∂z
(z)

+ `A⊗
(
α(z)g(z)

∂U

∂z
(z)

)
(28)

Hence,

dG(0,z)PN (z) + PN (z)
∂F

∂ẽ
(0, z) +

∂F

∂ẽ
(0, z)>PN (z)

= S ⊗
(
dfP (z) + P (z)

∂f

∂z
(z) +

∂f

∂z
(z)>P (z)

)
+`(SA+A>S)⊗

(
∂U

∂z
(z)>

∂U

∂z
(z)

)
With (27) and (23) this implies that

dfPN (z) + PN (z)
∂F

∂ẽ
(0, z) +

∂F

∂ẽ
(0, z)>PN (z)

≤ S ⊗
(
−Q+ (ρ− `ν)

∂U

∂z
(z)>

∂U

∂z
(z)

)
Hence, by choosing ` > ρ

ν , [2, Inequality (9)] holds. The
last part of the proof is to make sure that the vector field
F has bounded first and second derivatives and that the
vector field G has bounded first derivative. Note that by
employing the bounds on the functions P , f , g, α and
their derivatives, the result follows immediately from [2,
Proposition 3]. Hence e = 0 is (locally) exponentially
stable manifold for system (10)–(12) in closed loop with
the control (24). With inequalities (14) and (15), it implies
that inequality (3) holds for r sufficiently small. 2

Remark 1: Note that in [3] with an extra assumption
related to the metric (the level sets of U are totally geodesic
set with respect to the Riemanian metric obtained from P ),
it is shown that global synchronization may be achieved
when all agents are connected to all other. It is still an open
question to know if global synchronization may be achieved
in the communication topology constraint context.

C. Illustrative example

As an illustrative example, consider the case in which the
vector fields f and g are given by

ż = f(z) + g(z)u

with
f(z) =

[
−z1 + sin(z2) cos(z1) + z2

0

]
,

g(z) =

[
0

2 + sin(z1)

]
We will now show that the above system satisfy the hypothe-
ses in Theorem 2. Consider a constant matrix P given by

P =

(
2 1
1 2

)
It can be checked that by taking

U(z) = z1 + 2z2 ,

Eq. (22) holds with α = 1
2+sin(z1)

. Using the above U , it
follows that

v>
∂U

∂z
(z) = 0⇔ v1 + 2v2 = 0

in which case, by taking v =

[
−2
1

]
s where s ∈ R, Eq. (23)

becomes[
−2 1

]
P
∂f

∂z
(z)

[
−2
1

]
= −3

[
−2

∂f1
∂z1

+
∂f1
∂z2

]
= −3[−2(−1 + sin(z2) sin(z1))− cos(z1) cos(z2) + 1]

≤ −3.

Hence, (23) holds by taking ρ sufficiently large.
The function ∂f

∂z (z) being periodic in za1 and za2 we
can assume that za1 and za2 are in compact subset. This
implies employing some variation on Finsler lemma that
there exists ρ and Q such that inequality (23) holds. Hence
from Theorem 2, the control law given in (24) solves the
local exponential synchronization problem for the N iden-
tical systems that exchange information via any undirected
communication graph G which is connected.

IV. CONCLUSION

In this paper, based on recent results in [2], we have
presented necessary and sufficient condition for the solv-
ability of local exponential synchronization of N identical
affine nonlinear systems through a distributed control law.
In particular, we have shown that the necessary condition
is linked to the infinitesimal stabilizability of the individual
system and is independent of the network topology. The
existence of a symmetric covariant tensor of order two, as
a result of the infinitesimal stabilizability, has allowed us to
design a distributed synchronizing control law.

APPENDIX

A. Proof of Lemma 1

From the property of Laplacian matrix, the eigenvalues of
L are real and satisfy 0 = λ1 ≤ λ2 ≤ . . . ≤ λN . Let us take
the non-zero eigenvalue ν > 0 of L and its corresponding
eigenvector v in RN . Note that we can decompose

v =

[
va
vb

]
, L =

[
L11 L1,2:n

L>1,2:n L2:n,2:n

]



with va and L11 in R. It follows that

L11va + L1,2:nvb = νva (29)

L>1,2:nva + L2:n,2:nvb = νvb. (30)

Moreover, since 1N is an eigenvector associated to the
eigenvalue 0,

L11 + L1,2:n1N−1 = 0 (31)

L>1,2:n + L2:n,2:n1N−1 = 0 (32)

Consider now a vector in RN−1 defined by

ṽ = vb − 1N−1va
Note that ṽ is non zero since v is not colinear to 1N . By
a routine algebraic computation, it follows that this vector
satisfies

[L2:n,2:n − 1N−1L1,2:n]ṽ = L2:n,2:nvb − 1N−1L1,2:nvb

+[1N−1L1,2:n1N−1 − L2:n,2:n1N−1]va

= νvb − L>1,2:nva
−1N−1L1,2:nvb + [−1N−1L11 + L1,2:n]va

= νṽ.

This shows that ṽ is an eigenvector with the same non-zero
eigenvalue of L. It proves the first claim of the lemma.

Note that the multiplicity of the eigenvalue ν is the same
for both matrices. Also, if the graph is connected, then the
0 eigenvalue of the Laplacian matrix L is of multiplicity 1
and the other eigenvalues are positive and distinct. Hence the
matrix −L̄ is Hurwitz. 2
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