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Event-triggered PI control for continuous plants with input saturation

L. G. Moreira, L. B. Groff, J. M. Gomes da Silva Jr., S. Tarbouriech

Abstract— This paper proposes a methodology to design
stabilizing event-trigger strategies for PI controlled linear
continuous-time plants subject to input saturation. Using Lya-
punov theory techniques, LMI-based conditions are derived to
guarantee regional (or global, when possible) asymptotic stabil-
ity of the origin. These conditions can be cast in an optimization
problem to choose the parameters of the trigger function aiming
at reducing the sampling activity, while ensuring the regional
stability of the origin with respect to a given set of admissible
initial states. Simulation results illustrate the application and
potentialities of the method.

I. INTRODUCTION

Event-triggered control techniques consist in sampling and
transmitting data only when a trigger condition occurs [1].
A challenge in this case is to devise trigger conditions that
ensure the stability of the closed-loop system under the
aperiodic sampling strategy. With this respect, [2] is a widely
cited work, which shows that there exist lower bounds for the
inter-sampling time of a stabilizing event-triggered control
when a threshold on the relative state measurement error is
used as trigger condition. Moreover, it is of major interest
in networked control systems to develop systematic methods
to “tune” the parameters of the trigger condition aiming at
reducing the number of samples to deal with the problems
of limited bandwidth and energy consumption (mainly in
wireless networks). More recently, other issues have also
been addressed in the literature. For instance, the co-design
between the trigger function and controller gains [3] and the
application to nonlinear systems along with the assumption
that there is one sensor and one event-trigger generator for
each state variable [4].

On the other hand, PI controllers are of special interest
due to its massive use in the process industry and applica-
tions where constant references and disturbances have to be
tracked or rejected. Among the works dealing with event-
triggered PI or PID controlled systems, we can cite [5]
and [6] that propose triggering data transmissions when the
difference between the current plant output value and the last
sampled one crosses a given threshold. Although simulations
that give insights on the applicability of this strategy scheme
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are presented, those papers do not give explicit guidance on
how to choose the threshold values neither prove the stability
of the resulting closed-loop systems. In [7], the authors
present a design method for event-triggered PI controllers
and LTI plants. Based on the Lyapunov Theory, formal proofs
of stability of the closed-loop system under the proposed
sampling strategy are provided. The proposed method allows
to design all the parameters of the controller and an event-
trigger condition to attain a linear quadratic performance
criterion. However, the trigger function used is somewhat
complex to calculate, as it uses a matrix of dimension
3(n+ 1). In [8] and [9], stability analysis of event-triggered
PI controllers acting on first-order stable plants are presented;
the measurement error is used in the trigger criterion without
normalizing it with respect to the state. In this case, tracking
of constant references with zero steady state error is not
achieved.

Furthermore, control input saturation is an ubiquitous
phenomenon in real control systems. Thus, it is natural
to investigate the use of event-triggered techniques with
plants subject to control input saturation. In this case, the
closed-loop system becomes nonlinear and for exponentially
unstable open-loop systems only regional stabilization is
possible to achieve [10]. In this context, considering state-
feedback control laws, in [11] algorithms based on linear-
quadratic criteria are proposed to design periodic, event-
triggered and self-triggered controllers. Lyapunov and hybrid
system techniques are used along with generalized sector
conditions to ensure exponential stability of the origin and
to provide estimates of the region of attraction. Considering
a discrete-time framework, saturating state feedback control
laws are also addressed in [12]. Regarding PI controllers we
can cite [13], which proposes to design an event-triggered
controller without taking the saturation into account and
then investigates how the saturation impacts the performance
of the closed-loop system. The authors show, by means of
examples, that the use of anti-windup techniques can reduce
the negative effects of saturation. Since the saturation is not
taken into account in the design of the trigger function, there
is no a priori guarantee that the designed system will still
be stable when the saturation effectively occurs. Moreover,
no systematic procedure to determine suitable values for the
trigger function are presented. In [14] and [15], stability
issues under control saturation are addressed considering PI
and generic dynamic output feedback controllers. Although
the proposed conditions ensure that the trajectories are
bounded in an ellipsoidal set, the convergence to the origin
(i.e. asymptotic stability) is not guaranteed. It should be
pointed out that the problem setup in that paper assumes



that the output of the controller is continuously applied to the
plant (i. e. no sampling and zero order hold are considered),
which presupposes that controller and plant are in the same
node in a networked implementation.

The present paper addresses the design of an event-trigger
strategy for PI controlled continuous-time linear plants sub-
ject to input saturation. Differently from [14] and [15],
we suppose that plant and controller are in different nodes
and that the value of the control signal is kept constant
between two sampling instants (i. e. between two successive
events). The considered trigger function takes into account
a weighted (through the use of generic positive definite
matrices) relative distance between the last sampled state and
the current continuous one. Based on Lyapunov theory, LMI
conditions to ensure the asymptotic stability of the closed-
loop system (under the event trigger strategy) for a given set
of admissible initial states are proposed. Since the weighting
matrices of the trigger function appear explicitly in the LMIs,
a convex optimization problem aiming at selecting them in
order to reduce the sampling activity (i. e. the number of
trigger events) is proposed. A numerical example illustrates
the application of the method.

Notation: R represents the set of real numbers. For v ∈ R,
sat(v) is the classical symmetric saturation function with limits
±u0, with u0 > 0 ∈ R. A deadzone non-linearity is defined as
φ(v) , sat(v)−v; thereof, we can state that sat(v) = v+φ(v). A′

denotes the transpose of matrix A. He{A} , A+A′. The symbol
∗ stands for symmetric blocks within a matrix. tr(A) denotes the
trace of matrix A. diag(X,Y ) denotes the block-diagonal matrix
composed by the blocks X and Y . E(P ) = {ξ ∈ Rq; ξ′Pξ ≤ 1}
denotes an ellipsoid defined from a matrix P = P ′ > 0 ∈ Rq×q .

II. PROBLEM STATEMENT

Consider a continuous-time single-input single-output lin-
ear plant defined by the following equations:{

ẋp(t) = Apxp(t) +Bpu(t)

y(t) = Cpxp(t)
(1)

where xp(t) ∈ Rn is the state vector; u(t) ∈ R is the input,
limited in amplitude such that −u0 ≤ u(t) ≤ u0 , with
u0 > 0; y(t) ∈ R is the controlled output; Ap, Bp and Cp
are real-valued constant matrices of appropriate dimensions.
We assume that the plant is observable and controllable.

The controller is a continuous-time PI controller, defined
by the following state space representation:{

ẋc(t) = −y(t)

ν(t) = kixc(t)− kpy(t)
(2)

where xc(t) ∈ R is the controller state; ν(t) ∈ R is the
controller output and kp, ki ∈ R are the proportional and
integral gains, respectively.

We consider a networked control implementation where
plant and controller are in separate nodes and are connected
through a general purpose network forming the closed-loop
system depicted in Figure 1.

At instants determined by an event-trigger generator, a
sample of the plant output is sent to the controller node.

PI
controller sampler ZOH sat

ẋp = Apxp +Bpu

y = Cpxp

event-trigger
(Trigger times tk)

samplerZOH−1

ẋc(t) ν(t) ν(tk) u(t) y(t)

x(t)

y(tk)

ν(tk)

node 1 node 2

Fig. 1. Closed-loop system diagram

At the same time, the current value of ν(t) is sent to
the plant input and to the event generator. Between two
trigger instants, the controller and plant inputs are held at
the constant sampled values by means of zero-order holders.

Therefore, the closed-loop system can be represented as
follows:

ẋp(t) = Apxp(t) +Bpu(t)

y(t) = Cpxp(t)

ẋc(t) = −y(tk) ∀t ∈ [tk, tk+1)

ν(t) = kixc(t)− kpy(tk) ∀t ∈ [tk, tk+1)

u(t) = sat(ν(tk)) ∀t ∈ [tk, tk+1)

(3)

where tk, k = 0, 1, 2, 3, ... are the triggering times. We
consider t0 = 0. Note that the equilibrium point is assumed
to be the origin. If the system is subject to a non-zero
constant reference, the equilibrium is not the origin anymore,
but a variable translation can be done and the stability
analysis will be the same (see details in [7]).

Due to the control input saturation, the overall behavior
of the closed-loop system is nonlinear. In this case, defining
the state vector x = [x′p x′c]

′, the region of attraction for (3)
can be defined as follows [16]:

Definition 1: The region of attraction (RA) of the origin
for the system (3) is the set of all initial states x0 ∈ R(n+1)

for which x(0) = x0 =⇒ x(t)→ 0 as t→∞.
In words, the RA is the set of all initial conditions whose

trajectories converge to the origin. Nevertheless the exact
characterization of the RA is, in general, a complex task
([16]–[18]). Thus, it is useful to characterize subsets of the
RA that have an analytical representation, such as ellipsoidal
and polyhedral sets. These subsets can be used as estimates
of the RA and are called regions of asymptotic stability
(RAS) [16].

Considering system (3), we aim at designing an event-
triggered control strategy (i. e. that defines the trigger instants
tk) to reduce the number of messages exchanged between
the nodes, so that we can save energy and communication
bandwidth, while keeping the closed-loop system stable.
Hence we can formally state the problem we want to address
as follows:

Problem 1: Devise an event-triggered strategy for the
closed-loop system (3) guaranteeing the regional asymptotic
stability of the origin for initial conditions in a given subset
X0 of the RA of the closed-loop system, while reducing the
number of data transmission events between the sensor/plant
node and the controller node.



III. CONTINUOUS-TIME SYSTEM STABILITY

Before analyzing the event-triggered control strategy, we
recall some stability conditions for the continuous-time sys-
tem composed by the direct connection between (1) and (2),
through a saturation function, i. e. u(t) = sat(ν(t)), which
leads to the following system:{

ẋp(t) = Apxp(t) +Bp sat(kixc(t)− kpCpxp(t))
ẋc(t) = −Cpxp(t)

(4)

We assume that the gains ki and kp have been designed
such that (4) is regionally stable in a set X0. This is guar-
anteed if ki and kp are such that there exist a scalar ς > 0,
matrices W̄ = W̄ ′ > 0 ∈ R(n+1)×(n+1), Z̄ ∈ R1×(n+1)

satisfying the following linear matrix inequalities (see [16]
for details): [

He{(A+BK)W̄} ςB − Z̄′
∗ −2ς

]
< 0[

W̄ W̄K′ − Z̄
∗ u2

0

]
≥ 0

(5)

and X0 ⊂ E(W̄−1), with

A ,

[
Ap 0
−Cp 0

]
; B ,

[
Bp
0

]
; K ,

[
−kpCp ki

]
(6)

In this case, it follows that V (x) = x′Px, with P = W̄−1

is such that V̇ (x) < 0,∀x ∈ E(P ), i. e. E(P ) is a contractive
domain for the closed-loop system (4).

IV. EVENT-TRIGGER STRATEGY

In this section, we propose an event-trigger strategy and
provide stability conditions by means of a quadratic Lya-
punov function.

Defining δ(t) , x(tk)−x(t), with x(t) being the state of
the closed-loop system (in our case, the plant and controller
system combined), it is shown in [2] that one can use the
triggering criterion presented below to ensure that an event-
triggered control system like (3) is stable:

if ||δ(t)|| = σ0||x(t)|| then
trigger

end if
where || · || denotes the Euclidean norm and σ0 is a scalar se-
lected from an interval of values determined by the dynamics
of the system.

In this paper, we extend this idea by using the following
generalized criterion:

if δ′(t)Qδδ(t) > x′(t)Qxx(t) then
trigger

end if
where Qδ and Qx are symmetric positive definite matrices
of dimension (n + 1) × (n + 1). With this generalization,
we add degrees of freedom and we expect to allow a larger
reduction in the sampling activity. Notice that we can rewrite
our event-trigger strategy as follows:

Algorithm 1 Event-trigger strategy

if f(δ, x) , δ′(t)Qδδ(t)− x′(t)Qxx(t) > 0 then
trigger

end if

The term δ′(t)Qδδ(t)−x′(t)Qxx(t) is a relative measure
of the deviation between the last sampled state and the
current state; Qδ and Qx act as weights on this measure.
The relation between these matrices plays a role similar to
the one of σ0 in [2], in the sense that the “larger” Qx and the
“smaller” Qδ are, the more we let the current state deviate
from the last sampled one and the less sampling activity is
expected. To illustrate this, notice that if we choose Qx = σI
and Qδ = µI we basically retrieve the criterion in [2] with
σ0 = σ/µ and, as shown in that paper, the larger σ0 the less
sampling activity is expected.

Let A, B and K be given matrices defined as in (6), with
K verifying (5), and define

Aδ ,

[
0 0
−Cp 0

]
Now we derive conditions that ensure the asymptotic sta-

bility of the origin when the event-trigger strategy described
in Algorithm 1 is used.

Theorem 1: If there exist a scalar ς > 0, matrices W =
W ′ > 0 ∈ R(n+1)×(n+1), Q̄x = Q̄′x > 0 ∈ R(n+1)×(n+1),
Qδ = Q′δ > 0 ∈ R(n+1)×(n+1) and Z,G2 ∈ R1×(n+1) such
that the following LMIs are satisfied:He{(A+BK)W} W (Aδ +BK) ςB − Z′

∗ −Q̄x 0 0
∗ ∗ −Qδ −G′2
∗ ∗ ∗ −2ς

 < 0

(7)W 0 WK′ − Z′ W
∗ Qδ K′ −G′2 0
∗ ∗ u2

0 0
∗ ∗ ∗ Q̄x

 > 0

(8)

then, E(W−1) = {x ∈ Rn+1; x′W−1x ≤ 1} is a RAS
for the system (3) under the sampling strategy given by
Algorithm 1, with Qx = Q̄−1x .

Proof: Considering δp(t) , xp(tk) − xp(t), δc(t) ,
xc(tk) − xc(t) and sat(ν) = ν + φ(ν), note that between
two trigger events, that is for t ∈ (tk, tk+1), we can re-write
(3) as follows:

ẋp(t) = Apxp(t) +Bpu(t)

ẋc(t) = −Cpxp(t)− Cpδp(t)
u(t) = −kpCp[xp(t) + δp(t)] + ki[xc(t) + δc(t)]

+ φ(ν(tk))

y(t) = Cpxp(t)

(9)

Using now A, B and K as defined in (6) and considering

x ,

[
xp
xc

]
, δ ,

[
δp
δc

]
and C ,

[
Cp 0

]
, we can rewrite

(9) as follows, where we dropped the time dependence to
simplify the notation:{

ẋ = (A+BK)x+ (Aδ +BK)δ +Bφ(K(x+ δ))

y = Cx
(10)



Considering a quadratic Lyapunov function candidate
V (x(t)) = x′(t)Px(t), it follows that

V̇ (x) = x′He{P (A+BK)}x
+ 2x′P (Aδ +BK)δ + 2x′PBφ

(11)

Notice that the argument of φ, i. e. ν(tk), can be written
as

K(x+ δ) =
[
K K

] [x
δ

]
, Kaxa (12)

where Ka ,
[
K K

]
and xa ,

[
x
δ

]
.

Hence, provided that xa belongs to the region S0 = {xa ∈
R2(n+1);

∣∣Kaxa −Gaxa
∣∣ ≤ u0}, the following generalized

sector condition ([16], [19]) is verified with respect to the
deadzone nonlinearity φ:

τφ′(Kaxa)(φ(Kaxa) +Gaxa) ≤ 0 (13)

with τ being a positive scalar and Ga =
[
G1 G2

]
a free

matrix of appropriate dimensions.
Assuming xa ∈ S0 and applying (13), we can write

V̇ (x) ≤ V̇ (x)− 2τφ′(Kaxa)
(
φ(Kaxa) +Gaxa

)
(14)

Thus, from (11) and (12), (14) can be written as follows:

V̇ (x) ≤
[
x′ δ′ φ′

]
M
[
x′ δ′ φ′

]′
(15)

with

M =

[
He{P (A+BK)} P (Aδ +BK) PB − τG′1

∗ 0 −τG′2
∗ ∗ −2τ

]

From Algorithm 1, it follows that δ′Qδδ − x′Qxx ≤ 0.
Then, if the following matrix inequality is verified:He{P (A+BK)}+Qx P (Aδ +BK) PB − τG′1

∗ −Qδ −τG′2
∗ ∗ −2τ

 < 0

(16)
from (15), we can conclude that V̇ (x) < δ′Qδδ−x′Qxx ≤ 0
for t ∈ (tk, tk+1), provided xa ∈ S0. Now pre- and post-
multiplying (16) by diag(W, I, ς) with W = P−1, ς =
τ−1, considering the variable changes Z = G1W and then
applying Schur’s complement, we retrieve matrix inequality
(7), with Q̄x = Q−1x . Thus, the satisfaction of (7) guarantees
V̇ (x) < 0 for t ∈ (tk, tk+1), provided xa ∈ S0.

At the instants t = tk, δ(t) is zero and the system reduces
to the continuous-time (4). In this case, it can be verified that
(16) implies (5) and it follows that V̇ (x(tk)) < 0, provided
xa(tk) ∈ S0.

Now we show that (8) guarantees that xa ∈ S0,∀t ≥
0, provided x(0) ∈ E(P ). Pre- and post-multiplying (8)
by diag(P, I, 1, I), applying Schur’s complement twice and
recalling that Z = G1W , the following relation is verified[
P −Qx 0

0 Qδ

]
− [K −G1 K −G2]′

1

u2
0

[K −G1 K −G2] > 0

(17)

Pre- and post-multiplying (17) by
[
x′ δ′

]
and

[
x
δ

]
re-

spectively, (17) implies that

x′Px+ δ′Qδδ − x′Qxx

− x′a[K −G1 K −G2]′
1

u2
0

[K −G1 K −G2]xa > 0
(18)

Hence, if t ∈ (tk, tk+1), since δ′Qδδ − x′Qxx ≤ 0, we
conclude that xa(t) ∈ S0 if x(t) ∈ E(P ). On the other
hand, at t = tk, we have δ(t) = 0 and it also follows that
xa(tk) ∈ S0 if x(tk) ∈ E(P ). Thus, we can conclude that
if x(0) ∈ E(P ), (7) along with (8) effectively ensures that
xa(t) ∈ S0 and V̇ (x) < 0, ∀t ≥ 0, which ensures that E(P )
is an invariant and contractive set with respect to the system
(3), being included in its region of attraction.

Theorem 1 ensures the regional asymptotic stability of
the closed-loop system. Actually, it can be applied to both
stable or unstable plants. Nevertheless, if Ap is Hurwitz,
global stability can be achievable [10]. A sufficient condition
for the global stability of the closed-loop system under the
event-trigger strategy can therefore be stated as a corollary
to Theorem 1 as follows.

Corollary 1: If there exist a scalar ς > 0, matrices W =
W ′ > 0 ∈ R(n+1)×(n+1), Q̄x = Q̄′x > 0 ∈ R(n+1)×(n+1)

and Qδ = Q′δ > 0 ∈ R(n+1)×(n+1) such that the following
LMI is satisfied:He{(A+BK)W} W (Aδ +BK) ςB −WK′

∗ −Q̄x 0 0
∗ ∗ −Qδ −K′
∗ ∗ ∗ −2ς

 < 0

(19)

then, the origin of system (3) is globally asymptotically
stable under the sampling strategy given by Algorithm 1,
with Qx = Q̄−1x .

Proof: It follows the same lines as the proof of Theorem
1 but applying a global generalized sector condition, i. e.,
using Ga = Ka, which implies G1 = G2 = K.

Remark 1: It is worth noticing that the possibility of Zeno
solutions is eliminated taking into account that the event-
trigger function satisfies:

||δ(t)|| ≤ λmax(Qx)

λmin(Qδ)
||x(t)|| (20)

Hence, the same arguments used in [2] can be applied here
to show that the inter-sampling times are lower bounded.

Remark 2: Notice that the plant and controller states need
to be available to implement the event trigger criterion
defined by Algorithm 1. Considering that the controller and
the event generator run in different nodes, the controller state
can be transmitted to the event generator only at the instants
tk. Then, assuming the controller sends its state at instants
tk, xc(t) can be recovered, as in [7], using:

xc(t) = xc(tk)−
∫ t

tk

y(tk)dt = xc(tk)− y(tk)(t− tk) (21)

In numerous applications only part of the plant state is mea-
sured. In this case, since y(t) is assumed to be continuously



available to the event generator, xp(t) can be recovered
through a Luenberger observer:

x̂p(t) = Apx̂p +Bpu(t) + L(Cpx̂p − y(t)) (22)

where x̂p is the estimated state.
Remark 3: In [14] and [15] it is assumed that the con-

troller output is continuously applied to the plant. In this
scenario, the closed-loop system is given by:

ẋp(t) = Apxp(t) +Bpu(t)

y(t) = Cpxp(t)

ẋc(t) = −y(tk)

u(t) = sat(ν(t))

ν(t) = kixc(t)− kpy(tk) ∀t ∈ [tk, tk+1)

(23)

Our approach can be easily adapted to cope with this case,
i.e. similar conditions to (7) and (8) can be obtained from
the same steps used in the proof of Theorem 1. Particularly
in this case, the trigger function can be defined only in terms
of the plant and controller outputs. However, the possibility
of Zeno solutions occurrence has to be carefully studied.

V. OPTIMIZATION PROBLEMS

Consider a given region of admissible initial states X0. If
X0 ⊂ E(P ) and conditions of Theorem 1 are satisfied, we
conclude that X0 is also included in the region of attraction
of the closed-loop system. To solve Problem 1, the idea is
also to reduce the number of transmission events, i. e., reduce
the number of sampling instants.

As observed in Section IV, in order to reduce the sampling
activity, one should aim at finding Qx as “large” as possible
and Qδ as “small” as possible, while ensuring that the
closed-loop system under the event-trigger strategy given in
Algorithm 1 is stable. Considering that X0 is specified as
an ellipsoid E(P0) = {x ∈ R(n+1); x′P0x ≤ 1}, this
goal can be achieved from the following convex optimization
problem:

min(tr(Qδ + Q̄x))

subject to: (7), (8),
[
W I
I P0

]
> 0

(24)

Note that the last constraint in (24) ensures that X0 ⊂
E(P ). Also note that this optimization problem, although
leading to a reduction in the number of events, does not
guarantee that the minimum possible is achieved.

VI. NUMERICAL EXAMPLE

Consider the following unstable plant: ẋ(t) =

[
0 1
4 0

]
x(t) +

[
1
0

]
sat(u(t))

y(t) =
[
1 1

]
x(t)

(25)

We choose controller gains kp = 18 and ki = 19 so
that the system without saturation and with a continuous-
time controller is stabilized with closed-loop poles in −10.2,
−6.68 and −1.11.

We consider X0 = E(P0), with P0 = diag(4, 4, 106).
Then we apply the optimization problem (24) proposed in the
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previous section, with an additional constraint Qδ ≤ 0.01I
in order to prevent Qδ from being ill-conditioned, obtaining:

Qx =

0.2360 −0.1015 −0.05127
∗ 0.4291 0.01756
∗ ∗ 1.643


Qδ =

11.33 11.32 −10.72
∗ 11.33 −10.72
∗ ∗ 12.49

 P =

0.9049 0.6176 −0.8064
∗ 1.219 −0.9665
∗ ∗ 4.240


Figure 2 shows results of a simulation with x(0) =

[
√

2/4
√

2/4 0]′. Only 40 trigger events are needed in the
time interval [0, 5] and the minimum inter-sampling time is
19 ms. For comparison purposes, the response considering
a continuous-time implementation is also depicted in this
figure. We can observe that there is no significant degradation
on the system performance when compared to the continuous
case. As a matter of comparison, if one uses a periodic
sampled control law with a sampling period that achieves
the same number of samples as the event-triggered, i. e. a
sampling period around 100 ms, the trajectory for the same
initial condition diverges. Figure 3 shows the projection of
the set E(P ) obtained for the event-triggered controller along
with the projections of some convergent and some divergent
trajectories, in black and in magenta, respectively. Note that
E(P ) contains X0, as required.

We consider now a more stringent specification for X0, by
choosing P0 = diag(1, 1, 106). Figure 4 shows the projection
of the set E(P ) obtained. One can see that E(P ) now is
closer to X0. Figure 5 shows results of a simulation with
x0 = [

√
2/2

√
2/2 0]′. Now 48 trigger events are needed in
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Fig. 5. Simulation results – Comparison between continuous and event-
triggered systems – Large X0

the time interval [0, 5] and the minimum inter-sampling time
is 17 ms; a slight worse performance than the less restrictive
X0 specification. One can also observe a slight degradation
on the system performance when compared to the continuous
case.

VII. CONCLUDING REMARKS

In this paper we proposed a systematic methodology to
design event-triggered strategies for PI controlled plants
subject to input saturation. Differently from previous work,
we suppose that plant and controller are in different nodes
in a network and that the value of the plant input is kept
constant between two trigger instants, i.e. when the trigger
condition is verified the plant output is transmitted to the
controller and an updated control signal is transmitted to
the plant. The method guarantees local asymptotic stability
of the origin for a given set of initial conditions and can
be easily extended to guarantee global stability for stable
plants. Since the derived conditions are in an LMI form,
a convex optimization problem is proposed to compute the
trigger function parameters aiming at reducing the sampling
activity while guaranteeing the stability of the closed-loop
system.

The extension of the proposed approach to include anti-
windup compensation, the co-design of the trigger function
and controller parameters and incorporating the ideas from
[20] to handle periodic event-triggered control are subjects
of ongoing work.
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