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Stabilization of Boundary Controlled Hyperbolic PDEs via

Lyapunov-Based Event Triggered Sampling and Quantization

Nicolás Espitia Aneel Tanwani Sophie Tarbouriech

Abstract— With the growing utility of hyperbolic systems
in modeling physical and controlled systems, this paper con-
siders the problem of stabilization of boundary controlled
hyperbolic partial differential equations where the output
measurements are communicated after being time-sampled and
space-quantized. Static and dynamic controllers are designed,
which establish stability in different norms with respect to
measurement errors using Lyapunov-based techniques. For
practical purposes, stability in the presence of event-based
sampling and quantization errors is analyzed. The design of
sampling algorithms ensures practical stability.

I. INTRODUCTION

Hyperbolic partial differential equations (PDEs) have been

useful in modeling physical networks of different nature:

e.g. hydraulic, road traffic, gas networks ([2], [3], [13]) to

mention a few. Stabilizing this class of infinite dimensional

systems, when applying control action either on the domain

or on the boundary, has also been well studied, see for

example [6] for backstepping control, and [4], [5], [7] for

other Lyapunov techniques in general. Several results on the

modeling of physical systems in hyperbolic PDE setting,

along with the stability and boundary stabilization of such

systems can be found in a recent book [1]. For the most

part of boundary controllers for hyperbolic systems, digital

control without reducing the model has not been studied in

general. In fact, for control of PDEs, digital control synthesis

commonly relies on reducing the model by discretizing the

space so that one gets ordinary differential equations. In

that case, finite dimensional approaches for digital control

can be applied. However, without reducing the model, it

is not sufficiently clear how fast continuous-time boundary

controllers of hyperbolic PDEs must be sampled in a periodic

fashion so as to implement them into a digital platform.

Besides this, in large scale scenarios where sensors and

actuators are distributed, information is transmitted through

digital communication channels. Therefore, the need to re-

duce energy consumption and save communication resources

is also a central issue.

Motivated by all of this, a recent work [10] introduced

event-based sampling algorithms for boundary control of

linear hyperbolic systems of conservation laws. The proposed

rigorous framework establishes well-posedness of the closed-

loop system and uses Lyapunov techniques for sampling

algorithms to ensure exponential stability of the system.
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Furthermore, in [22], [23], boundary control of linear hy-

perbolic systems is treated when the output measurements

are quantized. Few approaches on sampled data and event-

triggered control for another class of infinite dimensional

systems, namely, parabolic PDEs, are considered e.g. in [11]

and [18], [25]. The later combines event-triggered sampling

with a logarithmic quantizer.

It is worth recalling that for finite dimensional networked

control systems, several contributions have been developed

in the field of event-triggered and quantized control. See

for instance, [14], [16], [17], and [21]. Among triggering

strategies, we point out a static rule based on a robustness

notion, called input-to-state stability (ISS), as introduced

in [20], a dynamic rule as introduced in [12], [24], and

the strategies relying on the time-derivative of a Lyapunov

function as developed for instance in [15], [19].

When considering sampling and quantization issues, mea-

surement errors are introduced which in most cases can

cause the hyperbolic system to become unstable. Therefore,

ISS properties with respect to those errors must be properly

addressed. In [10], a static boundary control yields ISS in L2-

norm by means of Lyapunov analysis. While in [22], [23],

ISS in H1-norm leading to practical stability is obtained by

using a dynamic controller. The use of H1-norm is motivated

by the fact that the output function to be quantized, must

remain within the range of the quantizer, which is considered

to be bounded.

This work builds on the ISS notions developed in [10]

and [22] to solve the stabilization problem of hyperbolic

PDEs when the output is subjected to event-based sampling,

and quantization. The main contribution lies on the fact that

even under event-triggered sampling of the output, one can

still obtain ISS stability in both L2 and H1 norms and the

well-posedness of the system. In the first instance, assuming

the quantizers do not have limitations on data rate, a static

control is used and bounds on L2-norm of the state are

obtained. For finite data-rate quantizers, it turns out to be

necessary to work with a dynamic controller, and stability in

H1-norm is established.

This paper is organized as follows. In Section II, we

introduce the problem statement. In Section III, we present

the static control and stability result in L2-norm. Section

IV provides the result on stability in H1-norm for dynamic

boundary control. Section V provides a numerical example

to illustrate the main results. Due to space limitations, the

proofs of several results are omitted. We sketch the outline

describing the major steps involved in the proof of main

results.



II. PROBLEM FORMULATION

Consider the linear hyperbolic PDE:

∂ty(t, x) + Λ∂xy(t, x) = 0 (1)

where x ∈ [0, 1], t ∈ R+ and Λ = diag(λi) is a diagonal

positive definite matrix. The boundary condition is given by

y(t, 0) = Hy(t, 1) +Bu(t) (2)

and the initial condition is

y(0, x) = y0(x), x ∈ (0, 1), (3)

where y : R
n × [0, 1] → R

n, the input u : R+ → R
m,

H ∈ R
n×n and B ∈ R

n×m. We consider the output of this

system to be

z(t) = y(t, 1). (4)

The objective is to design the control input u in (2) as a

function of the output measurements such that the resulting

closed-loop system is asymptotically stable in appropriate

sense. In our setup, we impose certain restrictions on the

transmission of output to the controller. Motivated by the

fact that the output is communicated to the controller via a

communication channel, we determine the sampling instants,

tk ∈ R+, k ∈ N, such that y(tk, 1) is transmitted to the

controller for t ∈ [tk, tk+1). Additionally, after the sampling

instants have been computed, a quantizer q : R
n → Q

encodes each output sample y(tk, 1) to a discrete alphabet

set Q. We consider two cases:

• The domain of the quantizer is not necessarily compact,

so that Q is countably infinite.

• The quantizers have a compact domain, and Q is finite.

In both cases, we solve the design problem where we

compute the sampling instants tk, k ∈ N. In order to save

communication resources, our objective is to employ event-

based strategy for computing the sampling times. We provide

the sampling algorithms for both aforementioned cases, and

show that the closed-loop system is ISS with respect to the

quantization error with appropriate norms.

III. STATIC CONTROL WITH INFINITE DATA RATE

To highlight the fundamental ideas behind our approach,

we first treat the case where quantization error is assumed to

be bounded for all possible values of the output, for example,

q(y) = ⌊y + 0.5⌋. In that case, we can talk about stability

of y(t, ·) in L2-norm without requiring any bounds on z(t).
We first describe how ISS in L2-norm is achieved via static

output feedback, and then present the sampling algorithm.

A. ISS via static output feedback

We start by introducing perturbations in the output mea-

surements by letting

zd(t) = y(t, 1) + d(t) (5)

with d ∈ L∞(R+;R
n). We are interested in designing an

output feedback which achieves ISS with respect to d in the

following sense:

Definition 1 (L2-ISS): The system (1)-(3),(5), with con-

troller u = ϕ(zd) is input-to-state stable (ISS) in L2-norm

with respect to disturbance d ∈ L∞(R+;R
n), if there

exist ν > 0, C1 > 0 and C2 > 0 such that, for every

y0 ∈ L2([0, 1];Rn), the solution satisfies, for all t ∈ R+,

‖y(t, ·)‖2L2([0,1],Rn) ≤ C1e
−νt(‖y0‖2L2([0,1];Rn))+C2‖d[0,t]‖2∞.

(6)

In case there are no perturbation, i.e. d ≡ 0, a particular

case of ϕ is a static output feedback control u(t) = Kz(t),
which renders the system globally exponential stable. Setting

G := H +BK , the boundary condition (2) is

y(t, 0) = Gz(t). (7)

The design of K ∈ R
m×n relies on the following as-

sumption, which states a sufficient (dissipative boundary)

condition for the global exponential stability of the system.

Let us recall it here as follows [4]:

Assumption 1: The following inequality holds:

ρ2(G) = inf
{
‖∆G∆−1‖; ∆ ∈ Dn,+

}
< 1 (8)

where ‖·‖ denotes the induced Euclidean-norm of matrices in

R
n×n and Dn,+ denotes the set of diagonal positive definite

matrices.

In case there are perturbations, and u = Kzd, the resulting

boundary condition can be expressed as

y(t, 0) = Gz(t) +BKd(t). (9)

Under Assumption 1, let us recall that the function defined

for all y ∈ L2([0, 1];Rn) by

V (y) =

∫ 1

0

y(x)TQy(x)e−2µxdx (10)

is a Lyapunov function for system (1)-(3), (4), (7) where Q

is a diagonal positive definite matrix and µ > 0 (see [8]).

Even in the presence of perturbations, the system (1)-(3), (5)

with control u = Kzd, is ISS in L2-norm. The result follows

using (10) as well, see [10], [17].

B. Static control with event-based sampling and quantizer

In this section, we analyze the stability of the closed-

loop system when the output is subject to event-triggered

sampling and quantization. Highly inspired by [21] and [10],

we design the sampling algorithm so that L2-norm of y(t, ·)
converges to a bound parameterized by quantization error. In

the sequel, we use the boundary controller as u = ϕs(z). The

operator ϕs encloses the triggering condition, the quantizer

and the control function. This requires us to first state a result

from [10] that allows us to express V from (10) in terms of

measured output.

Denoting λ = min1≤i≤n{λi}, we define the function Ṽ :
[ 1
λ
,∞) → R+, at t = 1

λ
, by

Ṽ (t) =

n∑

i=1

Qii

∫ 1

0

(
Hiz

(
t− x

λi

))2

e−2µxdx, (11)



and for all t > 1
λ

, by

Ṽ (t) =
∑n

i=1 Qii

∫ 1

0

(
Hiz

(
t− x

λi

)
+Biu

(
t− x

λi

))2

e−2µxdx

(12)

with Q ∈ R
n×n a diagonal positive definite matrix.

Proposition 1 ([10]): Let y be a solution to (1)-(3), (4).

It holds that for all t ≥ 1
λ

, Ṽ (t) = V (y(t, ·)) with Ṽ given

by (12).

Having stated the above issues, let us now characterize ϕs

as follows:

Definition 2 (Defintion of ϕs): Let σ ∈ (0, 1), γs, ξ, δ,

µ, ν > 0, and K ∈ R
m×n. Let εs(t) = εs(0)e

−δt, for all

t ≥ 1
λ

, with εs(0) ≤ ξṼ ( 1
λ
).

To define the operator ϕs, which maps the output function

z to u, we consider

• The increasing sequence of time instants (tk) that is

defined iteratively by t0 = 0, t1 = 1
λ

, and for all k ≥ 1,

tk+1 = inf{t ∈ R
+|t > tk∧

γs‖BK(−z(t)+z(tk))‖2 ≥ 2νσṼ (t)+εs(t)}.
(13)

If Ṽ ( 1
λ
) = 0, the time instants are t0 = 0, t1 = 1

λ
and

t2 = ∞.

• The quantizer q : Rn → Q having the property that

|q(x) − x| ≤ ∆q , for some countable set Q, and a

scalar ∆q > 0.

• The static control function ϕs is described by:

u(t) = 0 ∀t ∈ [t0, t1),

u(t) = Kq(z(tk)) ∀t ∈ [tk, tk+1), k ≥ 1.
(14)

For each t ≥ 1
λ

, the boundary condition (2), with (4), un-

der static boundary control, u = ϕs(z) as u(t) = Kq(z(tk)),
t ∈ [tk, tk+1), can be rewritten as:

y(t, 0) = (H +BK)z(t) + dq(t) + ds(t) (15)

where
{
dq(t) := BK(q(z(tk))− z(tk))

ds(t) := BK(z(tk)− z(t)) ∀t ∈ [tk, tk+1)
(16)

can be seen as errors related to the quantization and to the

sampling respectively.

1) Well-posedness of the closed-loop system: In this sec-

tion, we use the notion of piecewise continuous solutions

as in [10]. As a matter of fact, the controller ϕs introduced

in this section has the same nature as the operator defined

in [10]. Using Crpw (resp. Clpw) to denote piecewise right

(resp. left) continuous functions, it follows from the argu-

ments presented in [10] that u ∈ Crpw(R+,R
m) provided

z ∈ Crpw(R+,R
n). It allows us to state the following result

on the existence of solutions [10, Proposition 1]:

Proposition 2 (Existence of solutions): For any y0 ∈
Clpw([0, 1],Rn), there exists a unique solution to the closed-

loop system (1)-(3), (4) with controller u = ϕs(z).

2) Stability result: Let us state the main result of this

section on stability with static feedback.

Theorem 1 (L2-stability): Let K ∈ R
m×n be such that

Assumption 1 holds. Let µ > 0, Q ∈ Dn,+, ν = µλ,

σ ∈ (0, 1), and δ > 2ν(1 − σ). Let εs(t) be the decreasing

function as in Definition 2 and assume that there exist γq
and γs > 0 such that

Mc =



GTQΛG−QΛe−2µ GTQΛ GTQΛ

⋆ QΛ− γqI QΛ
⋆ QΛ QΛ− γsI


 ≤ 0

(17)

Then the closed-loop system (1)-(3), (4), (15) with controller

u in (14) is ISS in L2-norm with respect to dq.

To prove that the system is ISS with respect to dq , we

use the Lyapunov function candidate (10). Computing the

right-time derivative of the Lyapunov function as done in

[10, Lemma 2], and using the definition of ϕs, one ends up

with

V (y(t, ·)) ≤ C̃1e
−2ν(1−σ)tV (y0)+

γq

2ν(1− σ)
sup

s∈[0,t]

‖dq(s)‖2

for some C̃1 > 0.

IV. DYNAMIC CONTROL WITH FINITE DATA RATE

In this section, we consider the case when the sampled-

output is subject to a quantizer, which has constraints on the

domain. We define a finite-rate uniform quantizer q : Rn →
Q where Q := {q1, q2, ..., qN} is a set of finite alphabets. It

has the following property:

|q(x) − x| ≤ ∆q if |x| ≤ Mq (18a)

and

|q(x)| ≥ Mq −∆q if |x| > Mq (18b)

where ∆q > 0 is the sensitivity of the quantizer and Mq is

the range of the quantizer. We refer to [14], or [21], [23]

for further details. With the quantizer specified in (18), the

sampled-output y(tk, 1) (for some tk to be defined in the

sequel), must be bounded in a proper sense. It turns out that

it can be only bounded if the H1-norm of y(t, ·), defined as

‖y‖2H1([0,1];Rn) = ‖y‖2L2([0,1];Rn) + ‖∂y‖2L2([0,1];Rn)

is bounded, as explained in Section IV-B. Thus, it is nec-

essary for y to be absolutely continuous so that ∂y is

well-defined. When dealing with quantized and sampled

output, a static control would introduce discontinuous inputs

at the boundary, which result in y being discontinuous.

To overcome this problem, we use a dynamic controller

as proposed in [22], [23], which helps in smoothing the

discontinuities caused by the quantization and sampling. We

introduce then the dynamic variable η ∈ R
n satisfying the

following ordinary differential equation,

η̇(t) = −αη(t) + αzd(t) η(0) = η0 (19)

for some α > 0 to be chosen later and zd(t) given by (5)

where d will be characterized later on. Once again, we shall

consider ISS issues with respect to d.



Definition 3 (H1 input-to-state stability): The system

(1)-(3), (5), (19) with controller u = ϕd(z, η) is ISS in

H1-norm with respect to disturbance d ∈ L∞(R+,R
n), if

there exist ν > 0, C1 > 0 and C2 > 0 such that, for every

y0 ∈ H1([0, 1];Rn), η0 ∈ R
n, the solution satisfies, for all

t ∈ R+,

|η(t)− y(t, 1)|2 + ‖y(t, ·)‖2H1([0,1],Rn) ≤ C1‖d[0,t]‖2∞
+ C2e

−νt(|η0 − y(0, 1)|2 + ‖y0‖2H1([0,1];Rn)) (20)

A. Event-based and quantized dynamic boundary control

Proceeding similarly as in Section III-B, we will call

the dynamic boundary controller as ϕd, where this operator

encloses the triggering condition, the quantizer and the

dynamic control function. It is rigorously characterized as

follows:

Definition 4 (Definition of ϕd): Let σ ∈ (0, 1), κ1 > 0,

γs, ξ, µ > 0, K ∈ R
m×n and P be a symmetric positive

definite matrix. Let Ṽ be given, at t = 1
λ

by (11) and for all

t > 1
λ

, by (12). For each t ≥ 1
λ

, let

εd(t) =

(
Ṽ
(

1
λ

)
+
(
η
(

1
λ

)
− z

(
1
λ

))⊤

P
(
η
(

1
λ

)
− z

(
1
λ

)))
e−δtξ.

To define the operator ϕd, which maps the output function z

to u, we consider

• The increasing sequence of time instants (tk) that is

defined iteratively by t0 = 0, t1 = 1
λ

, and for all k ≥ 1,

tk+1 = inf{t ∈ R
+|t > tk∧

γs‖α(−z(t) + z(tk))‖2 ≥
κ1(η(t)− z(t))TP (η(t) − z(t)) + κ1Ṽ (t)
+εd(t)}

(21)

where η is obtained from (19) by setting zd(t) =
q(y(tk, 1)), with t ∈ [tk, tk+1), and q defined in (18).

If Ṽ ( 1
λ
) = 0 and (η( 1

λ
)− z( 1

λ
))⊤P (η( 1

λ
)− z( 1

λ
)) = 0,

the time instants are t0 = 0, t1 = 1
λ

and t2 = ∞.

• The dynamic control function is defined as

u(t) = ũ(η0, y0) ∀t ∈ [t0, t1)
u(t) = Kη(t) ∀t ∈ [tk, tk+1), k ≥ 1

(22)

where, for i = 1, ...,m,

ũi(η
0, y0) =

∑n
j=1 Kije

−αt1

(
η0j +

∫ t1

0
eαsαy0j (1 − λjs)ds

)
,

with η0, y0 satisfying the compatibility condition

y0(0) = Hy0(1)+Bũ(η0, y0) and u(t1) = ũ(η0, y0) =
Kη(t1).

With u = ϕd(z), and (4), we can rewrite (19), for all

t > t1, as follows:

η̇(t) = −αη(t) + αz(t) + dq(t) + ds(t) (23)

where{
dq(t) = α(q(z(tk))− z(tk))

ds(t) = α(z(tk)− z(t)) ∀t ∈ [tk, tk+1)
(24)

can be seen as the measurement errors resulting from the

quantization and sampling, respectively.

1) Well-posedness of the closed-loop system: The pres-

ence of dynamic controller makes it challenging to address

the question of existence and uniqueness of solutions for

the closed-loop systems. The authors of this paper have

addressed this question in their other works. The work

of [22], [23] proposes the framework where the closed-

loop trajectories (y, η) are in C0([0, T ], H1([0, T ],Rn)) ×
AC([0, T ],Rn), where AC denotes the space of absolutely

continuous functions. Continuing along the lines of [10,

Proposition 1], solutions y which are absolutely continuous

in spatial variable, and whose derivatives are piecewise

continuous functions, are studied in [9].

2) ISS stability result: Remark first that the boundary

condition (2), with (4) under the dynamic boundary con-

troller u = ϕd(z, η) as u = Kη is rewritten as follows:

y(t, 0) = Hz(t) +BKη(t)

= Gz(t) +BK(η(t)− z(t)) (25)

with G = H +BK . In order to state the main result, let us

introduce some notation. We denote

F0 := GTΛ−1Q2G− Λ−1Q2e
−2µ;

F1 := KTBTΛ−1Q2G;

F2 := KTBTΛ−1Q2BK,

(26)

for scalars µ > 0, α > 0, λ = min1≤i≤n{λi}, diagonal

positive definite matrices Q1, Q2 and a symmetric positive

definite matrix P . In addition, we denote by Mc the matrix

in (27) (at the top of next page), and finally, define the matrix

Md
c , for some scalars γq and γs > 0, as

Md
c =




Mc

0 0
FT

1
−F2 FT

1
−F2

−αF2+P −αF2+P

⋆
F2−γqI F2

F2 F2−γsI


 . (28)

Let us now present the main result of the second part of the

paper.

Theorem 2 (H1-stability): Let K ∈ R
m×n be such

that Assumption 1 holds. Assume that there exist matrices

Q1, Q2 ∈ Dn,+, a symmetric positive definite matrix P ∈
R

n×n, K in R
m×n, α > 0, µ > 0, ν = µλ, σ ∈ (0, 1),

δ > 2ν(1− σ), and γq, γs > 0 such that

Mc ≤ 0 (29)

and

Md
c ≤ 0. (30)

Then, the closed-loop system (1)-(3), (4), (23) with controller

u in (22) is ISS in H1-norm with respect to dq .

To prove that the system is ISS with respect to dq , we use a

Lyapunov function candidate V : H1([0, 1],Rn)×R
n → R+

given by

V := V1 + V2 + V3 (31)

where V1 : H1([0, 1],Rn) → R+ is defined as,

V1(y) =

∫ 1

0

y(x)TQ1y(x)e
−2µxdx, (32)



Mc =




GTQ1ΛG−Q1Λe

−2µ 0 GTQ1ΛBK

0 F0 − F1 − FT
1 + F2 −αFT

1 + αF2 − P

⋆ ⋆ α2F2 − 2αP + 2µλP +KTBTQ1ΛBK



 (27)

and V2 : H1([0, 1],Rn) → R+ is defined as,

V2(y) =

∫ 1

0

yx(x)
TQ2yx(x)e

−2µxdx (33)

where yx := ∂y
∂x

. Finally, V3 : H1([0, 1],Rn)×R
n → R+ is

defined as,

V3(y, η) = (η − y(·, 1))TP (η − y(·, 1)) (34)

Computing the time-derivative of V , and using the definition

of ϕd, we obtain

V (y(t, ·), η(t)) ≤ C̃1e
−2ν(1−σ)tV (y0, η0)

+
γq

2ν(1− σ)
sup

s∈[0,t]

‖dq(s)‖2

for some C̃1 > 0, whence the desired claim follows.

B. Quantized control and practical stability

Let us consider now the study of practical stability of the

system under quantization errors, (see [22], [23] for further

details). As mentioned earlier, in order to apply quantized

control with finite data rate, according to rule (18), we have

to find a bound for z(t) = y(t, 1). It would hold also for

z(tk) for the time instants defined in (21). The main reason of

having used H1-norm stability analysis, is because a suitable

bound for z(t) can be deduced as follows. Observe that

|z(t)|2 =

(∣∣∣
∫ 1

0

syx(t, s) + y(t, s)ds
∣∣∣
)2

≤ 2

(∫ 1

0

|syx(t, s)|ds
)2

+ 2

(∫ 1

0

|y(t, s)|ds
)2

≤ 2

(∫ 1

0

|yx(t, s)|2ds+
∫ 1

0

|y(t, s)|2ds
)

≤ 2‖y(t, ·)‖2H1([0,1],Rn). (35)

Moreover, from (35), it also holds that

|z(t)|2 ≤ 2(‖yx(t, ·)‖2L2([0,1],Rn) + ‖y(t, ·)‖2L2([0,1],Rn))

+2|η(t)− z(t)|2. (36)

Next, for all y ∈ H1([0, 1],Rn) and η ∈ R
n, the Lyapunov

function V given by (31) may be bounded as follows:

c1e
−2µ

(
‖y(t, ·)‖2L2 + ‖yx(t, ·)‖2L2 + |η(t)− y(t, 1)|2

)

≤ V (y(t, ·), η(t)) ≤ c2

(
‖y(t, ·)‖2L2

+ ‖yx(t, ·)‖2L2 + |η(t)− y(t, 1)|2
)

(37)

for some c1, c2 > 0. Therefore, using (37) with (36) we

obtain that

|z(t)|2 ≤ 2e2µ

c1
V (y(t, ·), η(t)). (38)

Inequality (38) will be useful when determining the ultimate

boundedness of the system. To that end, let us prove first

that the output remains within the range of the quantizer.

Following the same arguments provided in [23, Section 5.2],

and assuming that the initial conditions y0 and η0 are such

that
2e2µ

c1
V (y0, η0) ≤ M2

q (39)

where Mq is the range of the quantizer defined in (18), one

can obtain that

V (y(t, ·), η(t)) ≤
M2

q c1

2e2µ
C̃1e

−2ν(1−σ)t +
γq

2ν(1− σ)
∆2

q.

Using the bound on V from (37), we get also that

‖y(t, ·)‖2H1([0,1],Rn) + |η − y(t, 1)|2 ≤ M2

q

2 C̃1e
−2ν(1−σ)t

+
γqe

2µ

2ν(1− σ)c1
∆2

q.

Considering the behavior for t sufficiently large, we obtain

the practical stability with ultimate boundedness of the

closed-loop system (1)-(3),(4) with controller ϕd, that is,

lim sup
t→∞

{‖y(t, ·)‖2H1([0,1],Rn)+|η−y(t, 1)|2} ≤
γqe

2µ∆2
q

2ν(1− σ)c1
.

V. SIMULATIONS

We illustrate the results of Section IV by considering

the following example of a linear system of 2 × 2 hy-

perbolic conservation laws of the form (1) with y =
[y1 y2]

T , Λ = diag(1 ;
√
2), initial condition y(0, x) =

[ cos(4πx)−1 cos(2πx)−1 ]
T

for all x ∈ [0, 1] and dynamic

boundary condition given by y(t, 0) = Hz(t) + Bu(t)
where H = ( 0 0.55

1 0 ), B = I2 and u(t) = Kη(t). Let us

consider first the case when stabilization is carried out using

a dynamic controller without any measurement error, that

is, we set dq ≡ 0 and ds ≡ 0 in (24). Therefore, η just

satisfies η̇(t) = −αη(t) + αz(t), where we choose α = 10.

Furthermore, the gain of the dynamic controller K has been

chosen such that ρ2(G) < 1 with G = H + BK . Indeed

with K =
(

0 −0.15
−1 0

)
, ρ2(G) = 3.82 × 10−1 and ∆ =(

9.96×10−1 0
0 1.04

)
. Hence, the dissipativity condition holds,

which is a necessary condition for the result in Theorem 2.

In addition, condition (29) is verified for suitable Q1, Q2 and

P . In fact, by choosing properly K and α and performing

a line search on µ, one leads to several LMIs (linear in

variables P , Q1, and Q2). With K and α given as before,

we obtain P =
(
3.92×101 0

0 7.09

)
, Q1 =

(
9.90×101 0

0 1.41×102

)
,

Q2 = ( 7.61 0
0 5.9 ) and scalars µ = ν = 0.29.

Consider now the case of event-triggered sampling and

quantized output. We use the following uniform quantizer

q(x) = ∆q

⌊
x+0.5
∆q

⌋
whose sensitivity is given by ∆q. We



(a) Evolution of y1 with ds = dq = 0. (b) Evolution of y1 with quantized samples.
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(c) Evolution of V and discrete samples.

Fig. 1. Simulation results with dynamic controller.

choose ∆q = 1 and, for the sake of simplicity, we assume

the range of the quantizer to be large. The parameters for the

triggering condition are σ = 0.95, ε(0) = 0.1 and δ = 0.28.

Condition Md
c ≤ 0 in (30) is verified with γs = 393 and

γq = 611 × 104. Then, Theorem 2 applies. Figure 1(a)

shows the plot of y1 with a dynamic controller without

measurement errors, and Fig. 1(b) shows evolution of y1
with the same controller in the presence of sampling and

quantization errors. Figure 1(c) shows the time-evolution of

function V given by (31) with ds = dq = 0 (black line) and

with ϕd (red dashed line with circle markers) using sampled

and quantized measurements.

VI. CONCLUSION

In this paper, the problem of stabilization of boundary

controlled hyperbolic PDEs has been considered, where the

output measurements are event-triggered and quantized. We

have studied ISS in L2- and H1- norms. It could be fruitful

to consider also sampling algorithms for the control input in

order to keep it constant until an update is necessary.
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