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Introduction

An important aspect that must be taken into account in many control applications is the presence of delay in the loop, which can be the source of performance degradation or even instability (see, for example, [START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF], [START_REF]Time delay systems: method, applications and new trends[END_REF] and references therein).

A control architecture that received much attention in recent years is that of reset control. Reset control systems can be represented by means of different hybrid systems formulations. Many of the previous work about systems with resets has been done by using the impulsive state dependent state formulation of [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF]. Alternatively, the hybrid formulation developed in [START_REF] Goebel | Hybrid dynamical systems[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] has been also used for describing reset control systems, and formal stability results have been already obtained (see, e.g., [START_REF] Nesic | Stability properties of reset systems[END_REF][START_REF] Nešić | Stability and performance of SISO control systems with First Order Reset Elements[END_REF][START_REF] Zaccarian | Analytical and numerical Lyapunov functions for SISO linear control systems with First Order Reset Elements[END_REF]). This last framework has also been used for systems with time delays in the recent work [START_REF] Liu | Generalized solutions to hybrid systems with delays[END_REF], that is inspiring for the notation followed in this chapter. This formulation will be first used for stability analysis of reset control system with time delays, and with a new characterization of flow and jump sets, inspired by [START_REF] Fichera | Using Luenberger observers and dwelltime logic for feedback hybrid loops in continuous-time control systems[END_REF], that allows us to state a Lyapunov-Krasovskii theorem for delay-independent stability of the reset control system. Alfonso Baños Departamento de Informtica y Sistemas. Facultad de Informatica. Universidad de Murcia, e-mail: abanos@um.es Félix Pérez Rubio MTorres SAU. (31119) Spain, Software Department, e-mail: Felix.Perez@mtorres.es Sophie Tarbouriech CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France and Univ de Toulouse, LAAS, F-31400 Toulouse, France, e-mail: tarbour@laas.fr Luca Zaccarian CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France, Univ de Toulouse, LAAS, F-31400 Toulouse, France, and Dipartimento di Ingegneria Industriale, University of Trento, Italy e-mail: zaccarian@laas.fr From a historical perspective, the idea of reset compensation dates back to the seminal works of Clegg and Horowitz [START_REF] Clegg | A nonlinear integrator for servomechnisms[END_REF][START_REF] Horowitz | Nonlinear design for cost of feedback reduction in systems with large parameter uncertainty[END_REF], where simple reset compensators such as the Clegg integrator or the First Order Reset Element (FORE) were first proposed with the main motivation of overcoming fundamental limitations of linear time-invariant compensators in control practice. Intuitively, within this quest, since it was observed already in [START_REF] Clegg | A nonlinear integrator for servomechnisms[END_REF] (see also [START_REF] Baños | Reset Control Systems[END_REF]) that reset compensation introduces phase lead without significantly increasing the loop gain, it seems to be appropriate to propose reset compensation for systems with time-delays due to the evident time lag introduced by the delay effect. In [START_REF] Baños | Delay-independent stability of reset systems[END_REF], a delay-independent stability analysis of reset control system is first performed, that has been extended to the more general delay-dependent case in [START_REF] Barreiro | Delay-dependent stability of reset systems[END_REF][START_REF] Baños | Reset Control Systems[END_REF] and in [START_REF] Guo | Quadratic stability of reset control systems with delays[END_REF].

In this chapter, we are interested in studying the stability of closed loops independently of the delay. In particular, our work is focused on the design of hybrid reset rules based on Lyapunov conditions and applied to time-delay continuous-time plants in order to eliminate possible instability arising from the linear interconnection. We propose a kind of hybrid controller that can guarantee delay-independent stability of the closed loop. The class of systems that we address combines two ingredients: 1) the continuous-time dynamics of a linear time-delay plant and a linear controller, enforced when the overall state belongs to a certain flow set F and 2) a discrete dynamics corresponding to an impulsive action performed on the controller state when the overall state belongs to a certain jump set J [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]. It is important to emphasize that few works are dedicated to the study of hybrid time-delay systems. Notable exceptions comprise the reset systems work in [START_REF] Baños | Delay-independent stability of reset systems[END_REF], [START_REF] Guo | Quadratic stability of reset control systems with delays[END_REF] and the framework recently proposed in [START_REF] Liu | Generalized solutions to hybrid systems with delays[END_REF].

The scheme proposed in this chapter arises from adapting the hybrid augmentation paradigm recently proposed in [START_REF] Prieur | Lyapunov-based hybrid loops for stability and performance of continuous-time control systems[END_REF][START_REF] Fichera | Using Luenberger observers and dwelltime logic for feedback hybrid loops in continuous-time control systems[END_REF]. Moreover, to prove our main result, we also formulate a Lyapunov-Krasovskii theorem that complements the results issued from [START_REF] Baños | Delay-independent stability of reset systems[END_REF] and [START_REF] Guo | Quadratic stability of reset control systems with delays[END_REF], by using a different definition of flow and jumps sets and an additional dwell-time logic.

In the sequel we first introduce the problem under consideration in Section 2. Then we describe the proposed closed loop with resets in Section 3. Subsequently we prove suitable stability properties of the control scheme in Section 4 and finally we discuss a simulation example in Section 5.

Problem data and standing assumption

Consider the following strictly proper linear time-delay plant:

P : ẋp (t) = A p x p (t) + A pd x p (t -θ ) + B p u c (t) y p (t) = C p x p (t), (1) 
where x p ∈ R n p is the state of the plant, θ ∈ R ≥0 is a known state delay, y p ∈ R n y is the output available for measurement and u c is the control input to be used in the controller design. It is costumary to denote the infinite dimensional state of plant (3) as

x pt = {x p (s), s ∈ [t -θ ,t]}, (2) 
and to use the shortcut notation x pd (t) = x p (t -θ ) so that equation (3) can be written in compact from as

P : ẋp = A p x p + A pd x pd + B p u p y p = C p x p . (3) 
For plant (3) we assume that a linear time invariant controller has been designed to ensure suitable closed-loop properties under certain operating conditions:

C : ẋc = A c x p + B c y p u p = C c x c ( 4 
)
where x c ∈ R n c is the state of the controller. Controller (4) has been designed for plant (3) disregarding the effect of delay, namely in such a way to stabilize the delayfree dynamics corresponding to the transition matrix A p +A pd , which corresponds to plant (3) in the special case θ = 0. Then the goal of this paper is to introduce suitable reset rules on the controller states that ensure recovery of closed-loop asymptotic stability for any known value of the delay θ . Since we do not need the requirement that controller (4) stabilizes the plant when θ = 0, we don't make this as an explicit assumption.

In this work we will use Lyapunov-Krasovskii techniques to assess asymptotic stability of the closed loop for any value of the time delay θ , that is, stability independent of the delay. Due to this fact, we will require the following assumption on the plant data.

Assumption 1 Given the matrices in [START_REF] Baños | Delay-independent stability via reset loops[END_REF] there exist two positive definite matrices P p and Q, a gain K p and a scalar ε p > 0 such that

He P p (A p + B p C c K p ) + Q/2 P p A pd 0 -Q/2 ≤ -2ε p P p 0 0 Q (5)
Assumption 1 ensures that it is possible to prestabilize plant (3) by way of the state feedback gain u p = K p x p and obtain a delay-independent stable closed loop. The following lemma clarifies that the search for parameters P p , Q and K p in ( 5) is equivalent to a convex (LMI eigenvalue) problem.

Lemma 1. Assumption 1 holds if and only if the following LMI in the variables

Q p = Q T p > 0, S = S T > 0 and X is feasible: He A p Q p + B p C c X + S/2 A pd Q p 0 -S/2 < 0, (6) 
Moreover, whenever [START_REF] Fichera | Using Luenberger observers and dwelltime logic for feedback hybrid loops in continuous-time control systems[END_REF] holds, a solution to Assumption 1 is given by P p = Q -1 p , Q = P p SP p , K p = XP p and a small enough ε p .

Proof. Consider equation ( 6) and perform the congruence transformation pre-and post-multiplying by the block-diagonal symmetric matrix diag(Q -1 p , S -1 ). Then the following equivalent relation to ( 6) is obtained, with the definitions in the lemma:

He P p (A p + B p C c K p ) + Q/2 P p A pd 0 -Q/2 < 0. ( 7 
)
Assume now that Assumption 1 holds, then obviously equation ( 7) holds too, which is equivalent to [START_REF] Fichera | Using Luenberger observers and dwelltime logic for feedback hybrid loops in continuous-time control systems[END_REF]. Viceversa, if (6) (therefore ( 7)) holds, then due to the strict inequality in [START_REF] Goebel | Hybrid dynamical systems[END_REF] there exists a small enough ε p > 0 such that (5) holds with the selections in the statement of the lemma.

Remark 1. Once the feasibility condition ( 6) is verified, it might be of interest to seek for the solution to (5) corresponding to maximizing ε p while imposing that the gain K p satisfies a prescribed bound |K p | ≤ κ M , for some fixed scalar κ M > 0. This solution can be computed by solving the following optimization problem:

ε * p = max Q p ,X,S,ε p ε p subject to: Q p ≥ I, κ M I X X T κ M I ≥ 0 He A p Q p + B p C c X + S/2 A pd Q p 0 -S/2 ≤ -2ε p Q p 0 0 S (8)
which is a generalized eigenvalue problem (namely a quasi convex optimization problem) for which efficient numerical solution algorithms are available. The corresponding solution to (5) can then be computed as P p = Q -1 p , Q = P p SP p and K p = XP p , just as in Lemma 1.

Hybrid closed-loop system

In this section we design a hybrid closed-loop system whose flow dynamics corresponds to the interconnection between (3) and ( 4) and whose jump dynamics and jump and flow sets are constructed, based on a solution to (5) in Assumption 1, in such a way to guarantee uniform global asymptotic stability of the origin of the plant-controller state space. Note that this property is non-trivial because no assumption is made on the stability properties of the continuous-time interconnection (3), [START_REF] Barreiro | Delay-dependent stability of reset systems[END_REF] Adopting the notation in [START_REF] Goebel | Hybrid dynamical systems[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF], we propose the following dwell-time hybrid augmentation of the closed loop (3), [START_REF] Barreiro | Delay-dependent stability of reset systems[END_REF], where for convenience of notation we denote the aggregated (and transformed) state ξ = (x p , x pd , δ ) := (x p , x pd , x c -K p x p ):

     ẋp = A p x p + A pd x pd + B p C c x c ẋc = A c x c + B c C p x p τ = 1 -dz τ ρ (ξ , τ) ∈ C × [0, 2ρ]    x + p = x p x + c = K p x p τ + = 0 (ξ , τ) ∈ D × [ρ, 2ρ], (9a) 
where dz(•) denotes the scalar unit deadzone function, the sets C and D are defined, based on an arbitrary positive scalar ε < ε p , as follows:

C :=    ξ : ξ T He   P p A R + Q/2 P p A pd P p B p C c 0 -Q/2 0 0 0 0   ξ ≤ -ε ξ T   P p 0 0 0 Q 0 0 0 I   ξ    (9b) D :=    ξ : ξ T He   P p A R + Q/2 P p A pd P p B p C c 0 -Q/2 0 0 0 0   ξ ≥ -ε ξ T   P p 0 0 0 Q 0 0 0 I   ξ    . (9c) 
In the sets C and D, A R is defined as A R := A p + B p C c K p and matrices P p and Q are defined in Assumption 1.

Following [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] and inspired by the definitions in [START_REF] Liu | Generalized solutions to hybrid systems with delays[END_REF], we introduce the following definitions to suitably characterize solutions to hybrid system [START_REF] Guo | Quadratic stability of reset control systems with delays[END_REF]. In particular, the following definitions are slightly different from those in [START_REF] Liu | Generalized solutions to hybrid systems with delays[END_REF] because we are exploiting here the property that the memory of the time-delay system is only in the directions of the plant state, which remains unchanged across jumps.

Definition 1. A subset E ⊂ R ≥0 × Z ≥0 is called a compact hybrid time domain if E = J-1 j=0 ([t j ,t j+1 ], j)
for some finite sequences of times 0 = t 0 ≤ t 1 ≤ • • • ≤ t J , called "jump times". The set E is called a hybrid time domain if for all (T, J) ∈ E, the set E ∩ ([0, T ], {0, 1, . . . , J}) is a compact hybrid time domain.

Given a positive real θ > 0, a subset E 0 ⊂ R ≥-θ × Z ≤0 is called a hybrid time domain with ordinary memory θ if

E 0 = ([-θ , 0), 0) ∪ E,
where E is a hybrid time domain.

A hybrid arc with ordinary plant memory θ is a triple consisting of a domain domφ that is a hybrid time domain with ordinary memory θ , a continuous function φ p0 (s), s ∈ [-θ , 0] representing the (infinite dimensional) initial condition of the system in the plant state direction and a function φ : dom ≥0 φ → R n p ×n c , where dom ≥0 φ := domφ ∩ (R ≥0 × Z ≥0 ), such that φ (•, j) is locally absolutely continuous on I j = {t : (t, j) ∈ dom ≥0 φ }.

Similar to [START_REF] Liu | Generalized solutions to hybrid systems with delays[END_REF]Def. 4], but for the special case where the memory of the timedelay system is only in the ordinary time direction, given any hybrid arc φ = (φ p , φ c ) with ordinary plant memory θ , for each (t, j) ∈ dom ≥0 φ , we define the operator µ [t, j] φ p (s) that maps the hybrid arc φ into an ordinary memory arc of length θ (this is a function of ordinary time only). In particular, domµ [t, j] φ p = [-θ , 0] and for each s ∈ [-θ , 0] we have µ [t, j] φ p (s) = φ p (t + s, i) for some i ∈ Z ≥0 such that (ts, i) ∈ domφ . Note that such an i exists because the hybrid arc φ has ordinary plant memory θ by assumption. Note also that the definition above has no ambiguity because of the special structure in [START_REF] Guo | Quadratic stability of reset control systems with delays[END_REF] where the p component of the solution remains constant across jumps. Indeed, if there exist multiple values i 1 , i 2 , ∈ Z ≥0 such that (ts, i 1 ), (ts, i 2 ) ∈ domφ , then we have µ [t, j] φ p (s) = φ p (t + s, i 1 ) = φ p (t + s, i 2 ). Indeed, projecting the memory of the time-delay system only on the ordinary time domain axis (by way of the operator µ [t, j] ) greatly simplifies the forthcoming derivations.

Based on the above characterization, we can formulate a class of hybrid timedelay systems that generalizes the peculiar structure of ( 9) and that can be written in compact form as follows:

  ẋp ẋc τ   =    f p (x p , x c , µx p ) f c (x p , x c , µx p ) 1 -dz τ ρ    , x p x c µx p τ ∈ C × [0, 2ρ],   x + p x + c τ +   =   x p g c (x p , x c , µx p ) 0   , x p x c µx p τ ∈ D × [ρ, 2ρ], (x p (0, 0), x c (0, 0)) ∈ R n p ×n c µ [0,0] x p ∈ C 0 ([-θ , 0]), (10) 
where C 0 (T ) denotes the set of continuous functions whose domain is T ⊂ R, f p , f c and g c are suitable linear functionals that, for system (9), correspond to:

f p (x p , x c , µx p ) = A p x p + A pd µx p (-θ ) + B p C c x c , f c (x p , x c , µx p ) = A c x c + B c C p x p g c (x p , x c , µx p ) = K p x p .
Moreover, the flow and jump sets C and D are suitable infinite dimensional flow and jump sets. Based on Definition 1, a solution to hybrid time-delay system (10) is a hybrid arc with ordinary plant memory θ satisfying the flow and jump constraints imposed by the hybrid dynamics. A precise formulation of this can be obtained by following the same paradigm as that used in [START_REF] Liu | Generalized solutions to hybrid systems with delays[END_REF]Def. 6].

Remark 2. The extension of the formalism in [START_REF] Goebel | Hybrid dynamical systems[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] to the time-delay framework is currently underdeveloped (a notable exception being the recent paper [START_REF] Liu | Generalized solutions to hybrid systems with delays[END_REF]). Therefore, not much can be stated about existence of solutions or even nominal or robust well posedness of solutions to these hybrid systems in the sense of [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Ch. 6]. Results on well posedness of a particular class of hybrid systems is given in [START_REF] Liu | Generalized solutions to hybrid systems with delays[END_REF], however system [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF] goes beyond this class because in [START_REF] Liu | Generalized solutions to hybrid systems with delays[END_REF] it is assumed that the flow and jump sets are subsets of the Euclidean spaces where x p and x c take values. Here we have a new direction in the jump and flow sets depending on the (infinite dimensional) memory of the plant state x p and it is not evident how to inherit the results of [START_REF] Liu | Generalized solutions to hybrid systems with delays[END_REF]. However, at least from the existence viewpoint, the architecture (10) can still inherit useful properties from the classical results in [START_REF] Hale | Introduction to functional differential equations[END_REF] and from the results in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Ch. 6], as long as the initial condition µ [0,0] x p of the plant is continuous. Remark 3. Note that differently from [START_REF] Fichera | Using Luenberger observers and dwelltime logic for feedback hybrid loops in continuous-time control systems[END_REF], the dwell-time logic is implemented in ( 9) by forcing solutions not to jump unless τ ≥ ρ, while also not allowing them to flow if their ξ component does not belong to the set C . Because of this fact, dwell time is artificially enforced on solutions by possibly terminating defective solutions that would jump too often. The natural question that arises is then whether system (9) admits complete solutions for all initial conditions starting either in the jump or in the flow set. This question is not addressed here, where we simply limit ourselves to observing that the example treated in Sect. 5 exhibits complete solutions. We regard tackling this important aspect as future work.

4 Stability properties of the reset control scheme

A Lyapunov-Krasovskii theorem

We state in this section a peculiar version of a Lyapunov-Krasovskii theorem for system [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF]. Alternative instances of this type of result have appeared in the recent literature. For example see [START_REF] Baños | Delay-independent stability of reset systems[END_REF]Prop. 3.1] or [START_REF] Guo | Quadratic stability of reset control systems with delays[END_REF]Prop. 1]. We state here a different formulation of the result, due to the special definitions and hybrid framework used in the previous section.

Since we are not interested in the evolution of the timer τ within the compact set [0, 2ρ] where it is confined, we will characterize stability properties of the following compact attractor for dynamics [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF]:

A := {0} × [0, 2ρ] ⊂ R n p +n c × R. (11) 
In particular, following standard derivations in the time-delay continuous-time systems framework, given any solution φ = (φ x , φ τ ) = (φ p , φ c , φ τ ) to [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF], we introduce the following notion of distance from the set A in [START_REF] Hale | Introduction to functional differential equations[END_REF] for each (t, j) ∈ dom ≥0 φ :

φ (t, j) µ = max |φ x (t, j)|, max s∈[-θ ,0] |µ [t, j] φ p (s)| , (12) 
where | • | denotes the Euclidean norm. Since we are dealing with a special class of hybrid time-delay systems, we clarify the meaning of stability in the following definition, which is inspired by [START_REF] Liu | Generalized solutions to hybrid systems with delays[END_REF] and [8, §3

.

Definition 2. The compact set A in ( 11) is 1. Globally stable (GS) for [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF] if there exists a class K ∞ function α such that any solution φ = (φ x , φ τ ) = (φ p , φ c , φ τ ) to (10) satisfies |φ x (t, j)| ≤ α( φ (0, 0) µ ) for all (t, j) ∈ dom ≥0 φ . 2. Uniformly globally attractive (UGA) for [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF] if for each pair r, ε, there exists T (r, ε) such that any solution φ satisfies:

φ (0, 0) µ ≤ r ⇒ |φ x (t, j)| ≤ ε, ∀(t, j) ∈ dom ≥0 φ such that t + j ≥ T (r, ε). (13 
) 3. Uniformly globally asymptotically stable for [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF] if it is GS and UGA.

Based on Definition 2 we can state a Lyapunov-Krasovskii result that only requires the following mild uniform boundedness assumption on the functions appearing in the flow map of [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF]. This assumption is trivially satisfied by the linear flow dynamics in (9).

Assumption 2 There exists a class K ∞ function α M such that for each r ≥ 0 (where we use x = (x p , x c )),

sup (x,µx p )∈C s.t. x µ ≤r f p (x, µx p ) f c (x, µx p ) ≤ α M (r) Proposition 1. Under Assumption 2, if there exist a function V , two class K ∞ func- tions α 1 , α 2 and a positive definite function σ satisfying α 1 (|x|) ≤ V ((x, τ), µx p ) ≤ α 2 ( (x, τ) µ ), ∀(x, µx p , τ) (14) 
V ((x, τ), µx p ) ≤ -ρ(|x|), ∀(x, µx p , τ) ∈ C × [0, 2ρ], (15)

V ((x + , τ + ), µx p ) -V ((x, τ), µx p ) ≤ 0, ∀(x, µx p , τ) ∈ D × [ρ, 2ρ], ( 16 
)
then the compact attractor A in [START_REF] Hale | Introduction to functional differential equations[END_REF] is uniformly globally asymptotically stable for [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF].

Proof. The proof is omitted due to space constraints but can be found in [START_REF] Baños | Delay-independent stability via reset loops[END_REF].

Main stability result

We state next our main stability result for the hybrid dynamics (9). To properly state the stability result, Theorem 1. Consider a plant (3) satisfying Assumption 1 and a controller [START_REF] Barreiro | Delay-dependent stability of reset systems[END_REF]. Then for the dwell-time hybrid time-delay dynamics [START_REF] Guo | Quadratic stability of reset control systems with delays[END_REF] there exist a functional V and class K ∞ functions α 1 , α 2 and σ satisfying ( 14)- [START_REF] Prieur | Lyapunov-based hybrid loops for stability and performance of continuous-time control systems[END_REF]. Namely, the set A in ( 11) is globally asymptotically stable.

Proof. Using P p and Q of Assumption 1, consider the following Lyapunov-Krasovskii functional for the plant state directions:

V p (x p , µx p ) = x T p P p x p + 0 -θ µx T p (s)Qµx p (s)ds. (17) 
The derivative of V p along the flow dynamics of ( 9) is (for notational compactness, we use x pd := µx p (-θ ) in the rest of the proof):

Vp = 2x T p P p A p x p + B p C c (K p x p + x c -K p x p ) + A pd x pd + x T p Qx p -x T pd Qx pd = 2x T p P p   (Ap + B p C c K p A R )x p + A pd x pd + B p C c (x c -K p x p δ )    + x T p Qx p -x T pd Qx pd =   x p x pd δ   T He   P p A R + Q/2 P p A pd P p B p C c 0 -Q/2 0 0 0 0     x p x pd δ   .
(18) Then, from the definition (9b) of the flow set C we have that

Vp ≤ -ε |x p | 2 P p + |x pd | 2 Q + |δ | 2 , ∀(x p , x pd , δ ) ∈ C (19) 
where |y| W = y T Wy. Now consider the following Lyapunov-Krasovskii functional for the overall system:

V = V p (x p , µx p ) + λ δ 2 , ( 20 
)
where λ is a positive scalar selected later. We show next that this function satisfies ( 14)-( 16), so that the result follows from Proposition 1.

Proof of [START_REF] Nešić | Stability and performance of SISO control systems with First Order Reset Elements[END_REF]. The lower bound on the left comes from

x T p P p x p +λ δ 2 = x p x c T P p + λ K T p K p -λ K p -λ K T p λ I Σ x p x c ≥ σ m (Σ ) x p x c 2 =: α 1 x p x c
, where σ m (Σ ) > 0 because Σ is positive definite.

For the upper bound we get:

V (x, µx p ) ≤ x p x c T Σ x p x c + 0 -θ σ M (Q)|µx p (s)| 2 ds ≤ σ M (Σ ) x p x c 2 + θ σ M (Q) max s∈[-θ ,0] |µx p (s)| 2 ≤ 2 max{σ M (Σ ), θ σ M (Q)} (x, τ) 2 µ =: α 2 ( (x, τ) µ ).
where σ M (•) and σ m (•) denote, respectively, the maximum and minimum singular values of their arguments. Proof of [START_REF] Nesic | Stability properties of reset systems[END_REF]. First, we may easily compute:

V ≤ Vp + λ δ ((A c -K p B p C c A 1 )x c + (B c C p -K p A p A 2 )x p + (-K p A pd A 3 )x pd ). (21) 
Since x c = δ + K p x p , then using [START_REF] Zaccarian | Analytical and numerical Lyapunov functions for SISO linear control systems with First Order Reset Elements[END_REF], equation ( 21) can be rewritten as

V ≤ -ε|x p | 2 P p -ε|x pd | 2 Q -ε|δ | 2 + λ δ (A 1 δ + (A 1 K p + A 2 )x p + A 3 x pd ) ≤ -εc|x p | 2 -εc|x pd | 2 -ε|δ | 2 + λ c(|δ | 2 + |δ | |x p | + |δ | |x pd |), where c = max{σ M (A 1 ), σ M (A 1 K p + A 2 ), σ M (A 3 )} and c = min{σ m (P p ), σ m (Q)}.
Finally, completing squares and choosing λ = ε min c c , 1 4c , we get

V ≤ -εc - λ c 2 |x p | 2 --εc + λ c 2 |x pd | 2 -(ε -2λ c)|δ | 2 ≤ - ε 2 I 0 -K p I x p x c 2 =: -σ (|(x p , x c )| 2 ),
which implies the flow condition [START_REF] Nesic | Stability properties of reset systems[END_REF].

Proof of [START_REF] Prieur | Lyapunov-based hybrid loops for stability and performance of continuous-time control systems[END_REF]. Simply observe that x p remains constant across jumps, therefore

V (x + , µx p ) -V (x, µx p ) = λ ((δ + ) 2 -δ 2 ) = -δ 2 ≤ 0,
where we used the fact that δ is reset to zero at each jump.

Simulation example

Consider the following entries for the matrices in (3):

A p = -2 0 0 -0.9 , A pd = -1 0 -1 -1 , B p = 1 1 , C p = 1 1 (22) 
and the selection for controller (4):

A c = -1 0 1 0 , B c = 1 0 , C c = 0 -1 , (23) 
which involves an integral action possibly to deal with constant references or disturbances. When interconnecting plant and controller, we obtain a continuous-time dynamics as in the upper equation of (9a) with

A p = -2 0 0 -0.9 , A pd = -1 0 -1 -1 , B p C c = 0 -1 0 -1 , A c = -1 0 1 0 , B c C p = 1 1 0 0 . (24) 
Such a continuous-time dynamics is exponentially stable if θ = 0 (case with no delay) but for larger delays, beyond the critical value θ M = 1.6, the (linear) continuous-time closed loop becomes unstable.

Plant (3), ( 22) satisfies Assumption 1, therefore we may follow our hybrid construction to obtain GAS of the origin for any value of the delay, while preserving the continuous-time dynamics induced by ( 4), (24). To this aim, we follow the design paradigm in Remark 1 and compute a trade-off curve between the bound κ M > 0 and the decrease rate ε * p . Fig. 1 shows the optimal values of ε * p as a function of the bound κ M on |K p |. Note that if κ M is too small, then ε * p is negative and the design cannot be performed. Clearly, the curve is nondecreasing as increasing κ M one enlarges the feasible set. Table 1 The three cases addressed in the simulation example.

Table 1 shows the optimal values corresponding to the three circles reported in Fig. 1. The first value is just after the stability limit and the two other ones correspond to different trade-offs between ε * p and κ M . For these three cases we run a time simulation selecting θ = 2. The simulation results for cases 1, 2, and 3, respectively, are shown in Figs. 2 and 3 using solid, dashed, and dotted curves, respectively. In the two figures, we also show the linear response (no resets), which is diverging (dash-dotted curves) because 2 > θ M ≈ 1.6. For the simulations, we selected ρ = 0.01 s that turns out to be well below the time elapsed between any pair of consecutive resets. Therefore, with reference to Remark 3, the dwell-time logic does not prematurely terminate our solutions.

The simulation results confirm the faster convergence rate (larger ε * p ) envisioned for larger values of κ M . Quite interestingly, this faster convergence is obtained by resetting earlier, rather than using a larger control input. Indeed, for larger values of κ M , we observe a reduced amplitude of the control input u c (see the bottom plot in Fig. 2).

Fig. 1

 1 Fig.1The optimal value ε * p in (8) as a function of κ M .

Fig. 2

 2 Fig. 2 States and input of the plant for the simulation test.

Fig. 3

 3 Fig.3States of the controller for the simulation test.
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