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Delay-independent stability via reset loops

A. Baños, F. Pérez Rubio, S. Tarbouriech, L. Zaccarian

1 Introduction

An important aspect that must be taken into account in many control applications is

the presence of delay in the loop, which can be the source of performance degrada-

tion or even instability (see, for example, [17], [18] and references therein).

A control architecture that received much attention in recent years is that of reset

control. Reset control systems can be represented by means of different hybrid sys-

tems formulations. Many of the previous work about systems with resets has been

done by using the impulsive state dependent state formulation of [10]. Alternatively,

the hybrid formulation developed in [7, 8] has been also used for describing reset

control systems, and formal stability results have been already obtained (see, e.g.,

[15, 14, 19]). This last framework has also been used for systems with time delays in

the recent work [13], that is inspiring for the notation followed in this chapter. This

formulation will be first used for stability analysis of reset control system with time

delays, and with a new characterization of flow and jump sets, inspired by [6], that

allows us to state a Lyapunov-Krasovskii theorem for delay-independent stability of

the reset control system.
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From a historical perspective, the idea of reset compensation dates back to the

seminal works of Clegg and Horowitz [5, 12], where simple reset compensators

such as the Clegg integrator or the First Order Reset Element (FORE) were first

proposed with the main motivation of overcoming fundamental limitations of linear

time-invariant compensators in control practice. Intuitively, within this quest, since

it was observed already in [5] (see also [2]) that reset compensation introduces phase

lead without significantly increasing the loop gain, it seems to be appropriate to

propose reset compensation for systems with time-delays due to the evident time

lag introduced by the delay effect. In [1], a delay-independent stability analysis of

reset control system is first performed, that has been extended to the more general

delay-dependent case in [4, 2] and in [9].

In this chapter, we are interested in studying the stability of closed loops in-

dependently of the delay. In particular, our work is focused on the design of hybrid

reset rules based on Lyapunov conditions and applied to time-delay continuous-time

plants in order to eliminate possible instability arising from the linear interconnec-

tion. We propose a kind of hybrid controller that can guarantee delay-independent

stability of the closed loop. The class of systems that we address combines two in-

gredients: 1) the continuous-time dynamics of a linear time-delay plant and a linear

controller, enforced when the overall state belongs to a certain flow set F and 2) a

discrete dynamics corresponding to an impulsive action performed on the controller

state when the overall state belongs to a certain jump set J [8]. It is important to

emphasize that few works are dedicated to the study of hybrid time-delay systems.

Notable exceptions comprise the reset systems work in [1], [9] and the framework

recently proposed in [13].

The scheme proposed in this chapter arises from adapting the hybrid augmen-

tation paradigm recently proposed in [16, 6]. Moreover, to prove our main result,

we also formulate a Lyapunov-Krasovskii theorem that complements the results is-

sued from [1] and [9], by using a different definition of flow and jumps sets and an

additional dwell-time logic.

In the sequel we first introduce the problem under consideration in Section 2.

Then we describe the proposed closed loop with resets in Section 3. Subsequently

we prove suitable stability properties of the control scheme in Section 4 and finally

we discuss a simulation example in Section 5.

2 Problem data and standing assumption

Consider the following strictly proper linear time-delay plant:

P :

{
ẋp(t) = Apxp(t)+Apdxp(t −θ )+Bpuc(t)
yp(t) =Cpxp(t),

(1)

where xp ∈ R
np is the state of the plant, θ ∈ R≥0 is a known state delay, yp ∈ R

ny

is the output available for measurement and uc is the control input to be used in the
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controller design. It is costumary to denote the infinite dimensional state of plant (3)

as

xpt = {xp(s),s ∈ [t −θ , t]}, (2)

and to use the shortcut notation xpd(t) = xp(t−θ ) so that equation (3) can be written

in compact from as

P :

{
ẋp = Apxp +Apdxpd +Bpup

yp =Cpxp.
(3)

For plant (3) we assume that a linear time invariant controller has been designed

to ensure suitable closed-loop properties under certain operating conditions:

C :

{
ẋc = Acxp +Bcyp

up =Ccxc
(4)

where xc ∈ R
nc is the state of the controller. Controller (4) has been designed for

plant (3) disregarding the effect of delay, namely in such a way to stabilize the delay-

free dynamics corresponding to the transition matrix Ap+Apd , which corresponds to

plant (3) in the special case θ = 0. Then the goal of this paper is to introduce suitable

reset rules on the controller states that ensure recovery of closed-loop asymptotic

stability for any known value of the delay θ . Since we do not need the requirement

that controller (4) stabilizes the plant when θ = 0, we don’t make this as an explicit

assumption.

In this work we will use Lyapunov-Krasovskii techniques to assess asymptotic

stability of the closed loop for any value of the time delay θ , that is, stability inde-

pendent of the delay. Due to this fact, we will require the following assumption on

the plant data.

Assumption 1 Given the matrices in (3) there exist two positive definite matrices

Pp and Q, a gain Kp and a scalar εp > 0 such that

He

[
Pp(Ap +BpCcKp)+Q/2 PpApd

0 −Q/2

]
≤−2εp

[
Pp 0

0 Q

]
(5)

Assumption 1 ensures that it is possible to prestabilize plant (3) by way of the

state feedback gain up = Kpxp and obtain a delay-independent stable closed loop.

The following lemma clarifies that the search for parameters Pp, Q and Kp in (5) is

equivalent to a convex (LMI eigenvalue) problem.

Lemma 1. Assumption 1 holds if and only if the following LMI in the variables

Qp = QT
p > 0, S = ST > 0 and X is feasible:

He

[
ApQp +BpCcX + S/2 ApdQp

0 −S/2

]
< 0, (6)

Moreover, whenever (6) holds, a solution to Assumption 1 is given by Pp = Q−1
p ,

Q = PpSPp, Kp = XPp and a small enough εp.
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Proof. Consider equation (6) and perform the congruence transformation pre- and

post-multiplying by the block-diagonal symmetric matrix diag(Q−1
p ,S−1). Then the

following equivalent relation to (6) is obtained, with the definitions in the lemma:

He

[
Pp(Ap +BpCcKp)+Q/2 PpApd

0 −Q/2

]
< 0. (7)

Assume now that Assumption 1 holds, then obviously equation (7) holds too,

which is equivalent to (6). Viceversa, if (6) (therefore (7)) holds, then due to the

strict inequality in (7) there exists a small enough εp > 0 such that (5) holds with

the selections in the statement of the lemma.

Remark 1. Once the feasibility condition (6) is verified, it might be of interest to

seek for the solution to (5) corresponding to maximizing εp while imposing that the

gain Kp satisfies a prescribed bound |Kp| ≤ κM, for some fixed scalar κM > 0. This

solution can be computed by solving the following optimization problem:

ε∗p = max
Qp,X ,S,εp

εp subject to:

Qp ≥ I,

[
κMI X

XT κMI

]
≥ 0

He

[
ApQp +BpCcX + S/2 ApdQp

0 −S/2

]
≤−2εp

[
Qp 0

0 S

]
(8)

which is a generalized eigenvalue problem (namely a quasi convex optimization

problem) for which efficient numerical solution algorithms are available. The cor-

responding solution to (5) can then be computed as Pp = Q−1
p , Q = PpSPp and

Kp = XPp, just as in Lemma 1.

3 Hybrid closed-loop system

In this section we design a hybrid closed-loop system whose flow dynamics corre-

sponds to the interconnection between (3) and (4) and whose jump dynamics and

jump and flow sets are constructed, based on a solution to (5) in Assumption 1,

in such a way to guarantee uniform global asymptotic stability of the origin of the

plant-controller state space. Note that this property is non-trivial because no as-

sumption is made on the stability properties of the continuous-time interconnection

(3), (4)

Adopting the notation in [7, 8], we propose the following dwell-time hybrid aug-

mentation of the closed loop (3), (4), where for convenience of notation we denote

the aggregated (and transformed) state ξ = (xp,xpd,δ ) := (xp,xpd,xc −Kpxp):
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ẋp = Apxp +Apdxpd +BpCcxc

ẋc = Acxc +BcCpxp

τ̇ = 1− dz
(

τ
ρ

) (ξ ,τ) ∈ C × [0,2ρ ]






x+p = xp

x+c = Kpxp

τ+ = 0

(ξ ,τ) ∈ D × [ρ ,2ρ ],

(9a)

where dz(·) denotes the scalar unit deadzone function, the sets C and D are defined,

based on an arbitrary positive scalar ε < εp, as follows:

C :=




ξ : ξ T He




PpAR +Q/2 PpApd PpBpCc

0 −Q/2 0

0 0 0


ξ ≤−ε ξ T




Pp 0 0

0 Q 0

0 0 I


ξ




 (9b)

D :=




ξ : ξ T He




PpAR +Q/2 PpApd PpBpCc

0 −Q/2 0

0 0 0


ξ ≥−ε ξ T




Pp 0 0

0 Q 0

0 0 I


ξ




 . (9c)

In the sets C and D , AR is defined as AR := Ap+BpCcKp and matrices Pp and Q are

defined in Assumption 1.

Following [8] and inspired by the definitions in [13], we introduce the following

definitions to suitably characterize solutions to hybrid system (9). In particular, the

following definitions are slightly different from those in [13] because we are ex-

ploiting here the property that the memory of the time-delay system is only in the

directions of the plant state, which remains unchanged across jumps.

Definition 1. A subset E ⊂ R≥0 ×Z≥0 is called a compact hybrid time domain if

E =
J−1⋃

j=0

([t j, t j+1], j)

for some finite sequences of times 0= t0 ≤ t1 ≤ ·· · ≤ tJ , called “jump times”. The set

E is called a hybrid time domain if for all (T,J)∈ E , the set E∩([0,T ],{0,1, . . . ,J})
is a compact hybrid time domain.

Given a positive real θ > 0, a subset E0 ⊂ R≥−θ ×Z≤0 is called a hybrid time

domain with ordinary memory θ if

E0 = ([−θ ,0),0)∪E,

where E is a hybrid time domain.

A hybrid arc with ordinary plant memory θ is a triple consisting of a domain

domφ that is a hybrid time domain with ordinary memory θ , a continuous function

φp0(s), s ∈ [−θ ,0] representing the (infinite dimensional) initial condition of the

system in the plant state direction and a function φ : dom≥0φ → R
np×nc , where

dom≥0φ := domφ ∩ (R≥0 ×Z≥0), such that φ(·, j) is locally absolutely continuous

on I j = {t : (t, j) ∈ dom≥0φ}.
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Similar to [13, Def. 4], but for the special case where the memory of the time-

delay system is only in the ordinary time direction, given any hybrid arc φ = (φp,φc)
with ordinary plant memory θ , for each (t, j) ∈ dom≥0φ , we define the operator

µ[t, j]φp(s) that maps the hybrid arc φ into an ordinary memory arc of length θ
(this is a function of ordinary time only). In particular, domµ[t, j]φp = [−θ ,0] and

for each s ∈ [−θ ,0] we have µ[t, j]φp(s) = φp(t + s, i) for some i ∈ Z≥0 such that

(t − s, i) ∈ domφ . Note that such an i exists because the hybrid arc φ has ordinary

plant memory θ by assumption. Note also that the definition above has no ambiguity

because of the special structure in (9) where the p component of the solution remains

constant across jumps. Indeed, if there exist multiple values i1, i2, ∈ Z≥0 such

that (t − s, i1),(t − s, i2) ∈ domφ , then we have µ[t, j]φp(s) = φp(t + s, i1) = φp(t +
s, i2). Indeed, projecting the memory of the time-delay system only on the ordinary

time domain axis (by way of the operator µ[t, j]) greatly simplifies the forthcoming

derivations.

Based on the above characterization, we can formulate a class of hybrid time-

delay systems that generalizes the peculiar structure of (9) and that can be written

in compact form as follows:




ẋp

ẋc

τ̇


=




fp(xp,xc,µxp)
fc(xp,xc,µxp)

1− dz
(

τ
ρ

)


 ,

[ xp
xc

µxp
τ

]
∈ C̃ × [0,2ρ ],




x+p
x+c
τ+


=




xp

gc(xp,xc,µxp)
0


 ,

[ xp
xc

µxp
τ

]
∈ D̃ × [ρ ,2ρ ],

(xp(0,0),xc(0,0)) ∈ R
np×nc

µ[0,0]xp ∈ C 0([−θ ,0]),
(10)

where C 0(T ) denotes the set of continuous functions whose domain is T ⊂R, fp,

fc and gc are suitable linear functionals that, for system (9), correspond to:

fp(xp,xc,µxp) = Apxp +Apdµxp(−θ )+BpCcxc,

fc(xp,xc,µxp) = Acxc +BcCpxp

gc(xp,xc,µxp) = Kpxp.

Moreover, the flow and jump sets C̃ and D̃ are suitable infinite dimensional flow

and jump sets.

Based on Definition 1, a solution to hybrid time-delay system (10) is a hybrid arc

with ordinary plant memory θ satisfying the flow and jump constraints imposed by

the hybrid dynamics. A precise formulation of this can be obtained by following the

same paradigm as that used in [13, Def. 6].

Remark 2. The extension of the formalism in [7, 8] to the time-delay framework is

currently underdeveloped (a notable exception being the recent paper [13]). There-

fore, not much can be stated about existence of solutions or even nominal or robust

well posedness of solutions to these hybrid systems in the sense of [8, Ch. 6]. Results

on well posedness of a particular class of hybrid systems is given in [13], however

system (10) goes beyond this class because in [13] it is assumed that the flow and
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jump sets are subsets of the Euclidean spaces where xp and xc take values. Here we

have a new direction in the jump and flow sets depending on the (infinite dimen-

sional) memory of the plant state xp and it is not evident how to inherit the results of

[13]. However, at least from the existence viewpoint, the architecture (10) can still

inherit useful properties from the classical results in [11] and from the results in [8,

Ch. 6], as long as the initial condition µ[0,0]xp of the plant is continuous.

Remark 3. Note that differently from [6], the dwell-time logic is implemented in (9)

by forcing solutions not to jump unless τ ≥ ρ , while also not allowing them to flow

if their ξ component does not belong to the set C . Because of this fact, dwell time

is artificially enforced on solutions by possibly terminating defective solutions that

would jump too often. The natural question that arises is then whether system (9)

admits complete solutions for all initial conditions starting either in the jump or in

the flow set. This question is not addressed here, where we simply limit ourselves to

observing that the example treated in Sect. 5 exhibits complete solutions. We regard

tackling this important aspect as future work.

4 Stability properties of the reset control scheme

4.1 A Lyapunov-Krasovskii theorem

We state in this section a peculiar version of a Lyapunov-Krasovskii theorem for

system (10). Alternative instances of this type of result have appeared in the recent

literature. For example see [1, Prop. 3.1] or [9, Prop. 1]. We state here a different

formulation of the result, due to the special definitions and hybrid framework used

in the previous section.

Since we are not interested in the evolution of the timer τ within the compact set

[0,2ρ ] where it is confined, we will characterize stability properties of the following

compact attractor for dynamics (10):

A := {0}× [0,2ρ ]⊂ R
np+nc ×R. (11)

In particular, following standard derivations in the time-delay continuous-time sys-

tems framework, given any solution φ = (φx,φτ ) = (φp,φc,φτ ) to (10), we introduce

the following notion of distance from the set A in (11) for each (t, j) ∈ dom≥0φ :

‖φ(t, j)‖µ = max

{
|φx(t, j)|, max

s∈[−θ ,0]
|µ[t, j]φp(s)|

}
, (12)

where | · | denotes the Euclidean norm.

Since we are dealing with a special class of hybrid time-delay systems, we clarify

the meaning of stability in the following definition, which is inspired by [13] and [8,

§3.1].
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Definition 2. The compact set A in (11) is

1. Globally stable (GS) for (10) if there exists a class K∞ function α such that any

solution φ = (φx,φτ ) = (φp,φc,φτ) to (10) satisfies |φx(t, j)| ≤ α(‖φ(0,0)‖µ) for

all (t, j) ∈ dom≥0φ .

2. Uniformly globally attractive (UGA) for (10) if for each pair r,ε , there exists

T (r,ε) such that any solution φ satisfies:

‖φ(0,0)‖µ ≤ r ⇒ |φx(t, j)| ≤ ε, ∀(t, j) ∈ dom≥0φ such that t + j ≥ T (r,ε).
(13)

3. Uniformly globally asymptotically stable for (10) if it is GS and UGA.

Based on Definition 2 we can state a Lyapunov-Krasovskii result that only re-

quires the following mild uniform boundedness assumption on the functions ap-

pearing in the flow map of (10). This assumption is trivially satisfied by the linear

flow dynamics in (9).

Assumption 2 There exists a class K∞ function αM such that for each r ≥ 0 (where

we use x = (xp,xc)),

sup
(x,µxp)∈C s.t. ‖x‖µ≤r

[
fp(x,µxp)
fc(x,µxp)

]
≤ αM(r)

Proposition 1. Under Assumption 2, if there exist a function V , two class K∞ func-

tions α1, α2 and a positive definite function σ satisfying

α1(|x|)≤V ((x,τ),µxp)≤ α2(‖(x,τ)‖µ), ∀(x,µxp,τ) (14)

V̇ ((x,τ),µxp)≤−ρ(|x|), ∀(x,µxp,τ) ∈ C̃ × [0,2ρ ], (15)

V ((x+,τ+),µxp)−V((x,τ),µxp)≤ 0, ∀(x,µxp,τ) ∈ D̃ × [ρ ,2ρ ], (16)

then the compact attractor A in (11) is uniformly globally asymptotically stable for

(10).

Proof. The proof is omitted due to space constraints but can be found in [3].

4.2 Main stability result

We state next our main stability result for the hybrid dynamics (9). To properly state

the stability result,

Theorem 1. Consider a plant (3) satisfying Assumption 1 and a controller (4). Then

for the dwell-time hybrid time-delay dynamics (9) there exist a functional V and

class K∞ functions α1, α2 and σ satisfying (14)–(16). Namely, the set A in (11) is

globally asymptotically stable.
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Proof. Using Pp and Q of Assumption 1, consider the following Lyapunov-Krasovskii

functional for the plant state directions:

Vp(xp,µxp) = xT
p Ppxp +

∫ 0

−θ
µxT

p (s)Qµxp(s)ds. (17)

The derivative of Vp along the flow dynamics of (9) is (for notational compactness,

we use xpd := µxp(−θ ) in the rest of the proof):

V̇p = 2xT
p Pp

[
Apxp +BpCc (Kpxp + xc−Kpxp)+Apdxpd

]
+ xT

p Qxp − xT
pdQxpd

= 2xT
p Pp


(Ap +BpCcKp︸ ︷︷ ︸

AR

)xp +Apdxpd +BpCc(xc −Kpxp︸ ︷︷ ︸
δ

)


+ xT

p Qxp − xT
pdQxpd

=




xp

xpd

δ




T

He




PpAR +Q/2 PpApd PpBpCc

0 −Q/2 0

0 0 0








xp

xpd

δ



 .

(18)

Then, from the definition (9b) of the flow set C we have that

V̇p ≤−ε
(
|xp|

2
Pp
+ |xpd|

2
Q + |δ |2

)
, ∀(xp,xpd,δ ) ∈ C (19)

where |y|W =
√

yTWy.

Now consider the following Lyapunov-Krasovskii functional for the overall sys-

tem:

V =Vp(xp,µxp)+λ δ 2, (20)

where λ is a positive scalar selected later. We show next that this function satisfies

(14)–(16), so that the result follows from Proposition 1.

Proof of (14). The lower bound on the left comes from

xT
p Ppxp+λ δ 2 =

[
xp

xc

]T [
Pp +λ KT

p Kp −λ Kp

−λ KT
p λ I

]

︸ ︷︷ ︸
Σ

[
xp

xc

]
≥σm(Σ)

∣∣∣∣
[

xp

xc

]∣∣∣∣
2

=: α1

(∣∣[ xp
xc

]∣∣) ,

where σm(Σ) > 0 because Σ is positive definite.

For the upper bound we get:

V (x,µxp)≤
[ xp

xc

]T
Σ
[ xp

xc

]
+

∫ 0

−θ
σM(Q)|µxp(s)|

2ds

≤ σM(Σ)
∣∣[ xp

xc

]∣∣2 +θσM(Q) max
s∈[−θ ,0]

|µxp(s)|
2

≤ 2max{σM(Σ), θσM(Q)}‖(x,τ)‖2
µ =: α2(‖(x,τ)‖µ).
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where σM(·) and σm(·) denote, respectively, the maximum and minimum singular

values of their arguments.

Proof of (15). First, we may easily compute:

V̇ ≤ V̇p +λ δ ((Ac −KpBpCc︸ ︷︷ ︸
A1

)xc +(BcCp −KpAp︸ ︷︷ ︸
A2

)xp +(−KpApd︸ ︷︷ ︸
A3

)xpd). (21)

Since xc = δ +Kpxp, then using (19), equation (21) can be rewritten as

V̇ ≤ −ε|xp|
2
Pp
− ε|xpd|

2
Q − ε|δ |2 +λ δ (A1δ +(A1Kp +A2)xp +A3xpd)

≤ −εc|xp|
2 − εc|xpd|

2 − ε|δ |2 +λ c(|δ |2 + |δ | |xp|+ |δ | |xpd|),

where c = max{σM(A1), σM(A1Kp +A2), σM(A3)} and c = min{σm(Pp),σm(Q)}.

Finally, completing squares and choosing λ = ε min
{

c
c
, 1

4c

}
, we get

V̇ ≤ −

(
εc−

λ c

2

)
|xp|

2 −

(
−εc+

λ c

2

)
|xpd|

2 − (ε − 2λ c)|δ |2

≤ −
ε

2

∣∣∣∣
[

I 0

−Kp I

]∣∣∣∣
∣∣∣∣
[

xp

xc

]∣∣∣∣
2

=: −σ(|(xp,xc)|
2),

which implies the flow condition (15).

Proof of (16). Simply observe that xp remains constant across jumps, therefore

V (x+,µxp)−V(x,µxp) = λ ((δ+)2 − δ 2) =−δ 2 ≤ 0,

where we used the fact that δ is reset to zero at each jump.

5 Simulation example

Consider the following entries for the matrices in (3):

Ap =

[
−2 0

0 −0.9

]
, Apd =

[
−1 0

−1 −1

]
, Bp =

[
1

1

]
, Cp =

[
1 1

]
(22)

and the selection for controller (4):

Ac =

[
−1 0

1 0

]
, Bc =

[
1

0

]
, Cc =

[
0 −1

]
, (23)

which involves an integral action possibly to deal with constant references or dis-

turbances. When interconnecting plant and controller, we obtain a continuous-time

dynamics as in the upper equation of (9a) with
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Ap =

[
−2 0

0 −0.9

]
, Apd =

[
−1 0

−1 −1

]
, BpCc =

[
0 −1

0 −1

]
,

Ac =

[
−1 0

1 0

]
, BcCp =

[
1 1

0 0

]
.

(24)

Such a continuous-time dynamics is exponentially stable if θ = 0 (case with

no delay) but for larger delays, beyond the critical value θM = 1.6, the (linear)

continuous-time closed loop becomes unstable.

Plant (3), (22) satisfies Assumption 1, therefore we may follow our hybrid con-

struction to obtain GAS of the origin for any value of the delay, while preserving the

continuous-time dynamics induced by (4), (24). To this aim, we follow the design

paradigm in Remark 1 and compute a trade-off curve between the bound κM > 0

and the decrease rate ε∗p .

Fig. 1 shows the optimal values of ε∗p as a function of the bound κM on |Kp|.
Note that if κM is too small, then ε∗p is negative and the design cannot be performed.

Clearly, the curve is nondecreasing as increasing κM one enlarges the feasible set.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

ε p*

κ
M

Fig. 1 The optimal value ε∗p in (8) as a function of κM .

κm ε∗p Kp

Case 1 0.081 3.6 ·10−4
[

0.0148 −0.0001
−0.0591 −0.0542

]

Case 2 1 0.5976
[

0.4501 −0.1268
−0.6102 −0.7634

]

Case 3 2.65 0.7977
[

1.3365 −1.2358
−1.3268 −2.2350

]

Table 1 The three cases addressed in the simulation example.
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Table 1 shows the optimal values corresponding to the three circles reported in

Fig. 1. The first value is just after the stability limit and the two other ones corre-

spond to different trade-offs between ε∗p and κM. For these three cases we run a time

simulation selecting θ = 2.

0 1 2 3 4 5 6 7 8 9 10

−10

−5

0

5

10
x p1

Ordinary Time

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

20

Ordinary Time

x p2

 

 

Linear (no resets)
Case 1
Case 2
Case 3

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

Ordinary Time

u c

Fig. 2 States and input of the plant for the simulation test.

The simulation results for cases 1, 2, and 3, respectively, are shown in Figs. 2

and 3 using solid, dashed, and dotted curves, respectively. In the two figures, we

also show the linear response (no resets), which is diverging (dash-dotted curves)

because 2 > θM ≈ 1.6. For the simulations, we selected ρ = 0.01 s that turns out to

be well below the time elapsed between any pair of consecutive resets. Therefore,

with reference to Remark 3, the dwell-time logic does not prematurely terminate

our solutions.

The simulation results confirm the faster convergence rate (larger ε∗p) envisioned

for larger values of κM . Quite interestingly, this faster convergence is obtained by

resetting earlier, rather than using a larger control input. Indeed, for larger values of
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0 1 2 3 4 5 6 7 8 9 10
−20

−10
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10

20

Ordinary Time

x c1

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

Ordinary Time

x c2

Fig. 3 States of the controller for the simulation test.

κM, we observe a reduced amplitude of the control input uc (see the bottom plot in

Fig. 2).
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