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Stabilizability and control co-design for
discrete-time switched linear systems

Mirko Fiacchini, Marc Jungers, Antoine Girard and Sophie Tarbouriech

Abstract In this work we deal with the stabilizability property for discrete-time
switched linear systems. First we provide a constructive necessary and sufficient
condition for stabilizability based on set-theory and the characterization of a uni-
versal class of Lyapunov functions. Such a geometric condition is considered as the
reference for comparing the computation-oriented sufficient conditions. The classi-
cal BMI conditions based on Lyapunov-Metzler inequalities are considered and ex-
tended. Novel LMI conditions for stabilizability, derived from the geometric ones,
are presented that permit to combine generality with convexity. For the different
conditions, the geometrical interpretations are provided and the induced stabilizing
switching laws are given. The relations and the implications between the stabiliz-
ability conditions are analyzed to infer and compare their conservatism and their
complexity. The results are finally extended to the problem of the co-design of a
control policy, composed by both the state feedback and the switching control law,
for discrete-time switched linear systems. Constructive conditions are given in form
of LMI that are necessary and sufficient for the stabilizability of systems which are
periodic stabilizable.
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1 Introduction

Switched systems are characterized by dynamics that may change along the time
among a finite number of possible dynamical behaviors. Each behavior is deter-
mined by a mode and the active one is selected by means of a function of time,
or state, or both, and referred to as switching law. The interest that such a kind of
systems rose in the last decades lies in their capability of modeling complex real sys-
tems, as embedded or networked ones, and also for the theoretical issues involved,
see [22, 24, 32].

Several conditions for stability have been proposed in the literature based on:
switched Lyapunov functions [11]; the joint spectral radius [18]; path-dependent
Lyapunov functions [21]; and the variational approach [25]. If the existence of poly-
hedral, hence convex, Lyapunov functions has been proved to be necessary and suf-
ficient for stability [26, 4], convex functions result to be conservative for switched
systems with switching law as control input, see [6, 32]. Thus, nonconvex functions
must be considered for addressing stabilizability. Sufficient conditions for stabiliz-
ability have been provided in literature, mainly based on min-switching policies
introduced in [34], developed in [22, 20] and leading to Lyapunov-Metzler inequal-
ities [17, 16]. The fact that the existence of a min-switching control law is necessary
and sufficient for exponential stabilizability has been claimed in [32]. In the same
work, as well as in [6], it has been proved that the stabilizability of a switched
system does not imply the existence of a convex Lyapunov function. Thus, for sta-
bilizability, nonconvex Lyapunov functions might be considered, see for instance
[17, 32].

We present here some recent results, mostly based on set-theory and convex
analysis, on stabilizability and control co-design for switched linear systems, see
[13, 14, 15]. We first propose a stabilizability approach based on set-theory and
invariance, see [2, 19, 5]. A geometric necessary and sufficient condition for stabi-
lizability and sufficient one for non-stabilizability of discrete-time linear switched
systems are presented in [13]. A family of nonconvex, homogeneous functions is
proved to be a universal class of Lyapunov functions for switched linear systems.

The geometric condition in [13] might, nonetheless, result to be often compu-
tationally unaffordable, although such a computational complexity appears to be
inherent to the problem itself, hence unavoidable. In the literature, computation-
oriented sufficient conditions for stabilizability have been provided that are based on
min-switching policies and lead to nonconvex control Lyapunov functions in form
of minimum of quadratics. Such functions are obtained as solutions to Lyapunov-
Metzler BMI conditions, [17, 1], and through an LQR-based iterative procedure,
[32]. New LMI conditions for stabilizability, which could conjugate computational
affordability with generality, are proposed here, see [14]. The LMI conditions are
proved to admit a solution if and only if the system is periodic stabilizable. More-
over, we provide geometrical and numerical insights on different stabilizability con-
ditions to quantify their conservatism and the relations between them and with the
necessary and sufficient ones.



Stabilizability and control co-design for discrete-time switched linear systems 3

The problem of co-designing both the switching law and the control input is
even more involved than the problem of stabilizability of autonomous switched sys-
tems. This problem has been addressed in several works based on Lyapunov-Metzler
BMI conditions, as in [12], or on techniques based on LQR control approximation
in [35, 36, 1]. Constructive LMI conditions are given here that are necessary and
sufficient for the stabilizability of systems which are periodic stabilizable, [15]. The
conditions are constructive and provide the switching law and a family of state feed-
back gains stabilizing the system, although their complexity grows combinatorially
with the maximal length of modes sequences considered.

Notation: Given n ∈ N, define Nn = { j ∈ N : 1 ≤ j ≤ n}. The Euclidean-norm
in Rn is ‖x‖. The i-th element of a finite set of matrices is denoted as Ai. We use
the shortcut P > 0 (resp. P≥ 0) to define a symmetric positive definite (resp. semi-
definite) matrix, i.e. such that P = PT and its eigenvalues are positive (resp. non-
negative). Given P ∈ Rn×n with P > 0, define E (P) =

{
x ∈ Rn : xT Px≤ 1

}
. Given

θ ∈ R, R(θ) ∈ R2 is the rotation matrix of angle θ . The set of q switching modes
is I = Nq, all the possible sequences of modes of length N is I N = ∏

N
j=1 I , and

|σ | = N if σ ∈ I N . Given N,M ∈ N with N ≤ M, denote I [N:M] =
⋃M

i=N I i and
then NI = ∑

N
k=1 qk is the number of elements in I [1:N]. Given σ ∈ I N , define:

Aσ = ∏
N
j=1 Aσ j = AσN · · ·Aσ1 , and define ∏

N
j=M Aσ j = I if M > N. Given a ∈ R,

the maximal integer smaller than or equal to a is bac. The set of Metzler matri-
ces of dimension N, i.e. matrices π ∈ RN×N whose elements are nonnegative and
∑

N
j=1 π ji = 1 for all i ∈ NN , is MN . Throughout the chapter,

2 Stabilizability of discrete-time linear switched systems

Consider the discrete-time switched system

xk+1 = Aσ(k)xk, (1)

where xk ∈ Rn is the state at time k ∈ N and σ : N → Nq is the switching law
that, at any instant, selects the transition matrix among the finite set {Ai}i∈Nq , with
Ai ∈ Rn×n for all i ∈ Nq. Given the initial state x0 and a switching law σ(·), we
denote with xσ

N(x0) the state of the system (1) at time N starting from x0 by applying
the switching law σ(·), that can be state-dependent, i.e. σ(k) = σ(x(k)) with slight
abuse of notation.

Assumption 1 The matrices Ai, with i ∈ Nq, are nonsingular.

Remark 1. Assumption 1 is not restrictive. In fact, the stable eigenvalues of the ma-
trices Ai are beneficial from the stability point of view of the switched systems and
poles in zero are related to the most contractive dynamics. Moreover, the results
presented in the following can be extended to the general case with appropriate con-
siderations.
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A concept widely employed in the context of set-theory and invariance is the C-
set, see [4, 5]. A C-set is a compact and convex set with 0 ∈ int(Ω). We define an
analogous concept useful for our purpose. For this, we first recall that a set Ω is a
star-convex set if there exists x0 ∈ Ω such that every convex combination of x and
x0 belongs to Ω for every x ∈Ω .

Definition 1. A set Ω ⊆Rn is a C∗-set if it is the union of a finite number of C-sets.
The gauge function of a C∗-set Ω ⊆ Rn is ΨΩ (x) = min

α≥0
{α ∈ R : x ∈ αΩ}.

Notice that every C∗-set is star-convex, i.e. there is z ∈ Ω such that every convex
combination of x and z belongs to Ω for all x ∈ Ω , but the converse is not true in
general. Some basic properties of the C∗-sets and their gauge functions are listed
below, see also [30].

Property 1. Any C-set is a C∗-set. Given a C∗-set Ω ⊆ Rn, we have that αΩ ⊆ Ω

for all α ∈ [0,1], and the gauge function ΨΩ (·) is: homogeneous of degree one, i.e.
ΨΩ (αx) = αΨΩ (x) for all α ≥ 0 and x ∈ Rn; positive definite; defined on Rn and
radially unbounded.

The gauge functions induced by C-sets have been used in the literature as Lya-
punov functions candidates, see [3]. In particular, it has been proved that they pro-
vide a universal class of Lyapunov functions for linear parametric uncertain sys-
tems, [26, 4], and switched systems with arbitrary switching, [24]. We prove that
the gauge functions induced by C∗-sets form a universal class of Lyapunov function
for switched systems with switching control law. For this, we provide a definition
of Lyapunov function for the particular context, analogous to the one given in [4].

Definition 2. A positive definite continuous function V : Rn → R is a global con-
trol Lyapunov function for (1) if there exist a positive N ∈ N and a switching law
σ(·), defined on Rn, such that V is non-increasing along the trajectories xσ

k (x) and
decreasing after N steps, i.e. V (xσ

1 (x))≤V (x) and V (xσ
N(x))<V (x), for all x ∈ Rn.

Definition 2 is a standard definition of global control Lyapunov function except
for the N-steps decreasing requirement. On the other hand, such a function implies
the convergence of every subsequence in j ∈ N of the trajectory, i.e. xσ

i+ jN(x) for
all i < N, then also the convergence of the trajectory itself. This, with the stability
assured by V (xσ

1 (x))≤V (x), ensures global asymptotic stabilizability.

Definition 3. The system (1) is globally exponentially stabilizable if there are c≥ 0
and λ ∈ [0,1) and, for all x ∈Rn, there exists a switching law σ : N→Nq, such that

‖xσ
k (x)‖ ≤ cλ

k‖x‖, ∀k ∈ N. (2)

A periodic switching law is given by σ(k) = ip(k) and p(k) = k−M bk/Mc+1,
with M ∈N and i∈I M , which means that the sequence given by i repeats cyclically.
We will consider conditions under which system (1) is stabilized by a periodic σ(·).
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Definition 4. The system (1) is periodic stabilizable if there exist a periodic switch-
ing law σ : N→ Nq, c≥ 0 and λ ∈ [0,1) such that (2) holds for all x ∈ Rn.

For stabilizability the switching function might be state-dependent whereas for
periodic stabilizability it must be not dependent on the state.

Lemma 1. The system (1) is periodic stabilizable if and only if there exist M ∈ N
and i ∈I M such that Ai is Schur.

2.1 Geometric necessary and sufficient condition

It is proved in [26] that for an autonomous linear switched system, the origin is
asymptotically stable if and only if there exists a polyhedral Lyapunov function,
see also [4, 24]. Analogous results can be stated in the case where the switching
sequence is a properly chosen selection, that is considering it as a control law. This
contribution is based on the following algorithm.

Algorithm 1 Computation of a contractive C∗-set for (1) satisfying Assumption 1.

• Initialization: given the C∗-set Ω ⊆ Rn, define Ω0 = Ω and k = 0;
• Iteration for k ≥ 0: Ωk+1 =

⋃
i∈Nq

Ω
i
k+1 with Ω i

k+1 = A−1
i Ωk for all i ∈ Nq;

• Stop if Ω ⊆ int
( ⋃

j∈Nk+1

Ω j

)
; denote Ň = k+1 and

Ω̌ =
⋃

j∈NŇ

Ω j. (3)

From the geometrical point of view, Ω i
k+1 is the set of x mapped in Ωk through

Ai. Then Ωk+1 is the set of x ∈ Rn for which there exists a selection i(x) ∈ Nq such
that Ai(x)x ∈ Ωk. Thus, Ωk is the set of x that can be driven in Ω in at most k steps
and hence Ω̌ the set of x that can reach Ω in Ň or less steps.

Proposition 1. The sets Ωk for all k ≥ 0 are C∗-sets.

Algorithm 1 provides a C∗-set Ω̌ contractive in Ň steps, for every initial C∗-set
Ω ∈ Rn, if and only if the switched system (1) is stabilizable, as stated below.

Theorem 1 ([13]). There exists a Lyapunov function for the switched system (1) if
and only if Algorithm 1 ends with finite Ň.

Then finite termination of Algorithm 1 is a necessary and sufficient condition
for the global asymptotic stabilizability of the switched system (1). An alternative
formulation of such a necessary and sufficient condition is presented below.
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Theorem 2 ([13]). There exists a Lyapunov function for the switched system (1) if
and only if there exists a C∗-set whose gauge function is a Lyapunov function for the
system.

Theorem 2 states that the existence of a C∗-set induced Lyapunov function is a
necessary and sufficient condition for stabilizability of switched systems. Hence,
such functions, nonconvex and homogeneous of order one, form a class of universal
Lyapunov functions for the switched systems.

Remark 2. The Algorithm 1 terminates after a finite number of iterations only if the
switched system is stabilizable, there is no guarantee of finite termination in general
(which means it is a semi-algorithm, to be exact). An analogous, but just sufficient,
constructive condition ensuring that there is not a switching law such that the system
(1) converges to the origin is given in [13].

Besides a Lyapunov function, Algorithm 1 provides a stabilizing switching con-
trol law for system (1), if it terminates in finite time.

Proposition 2 ([13]). If Algorithm 1 ends with finite Ň then Ψ
Ω̌

: Rn→ R is a Lya-
punov function for the switched system (1) and given the set valued map

Σ̌(x) = argmin
(i,k)
{Ψ

Ω i
k
(x) : i ∈ Nq, k ∈ NŇ} ⊆ Nq×NŇ , (4)

any switching law defined as (σ̌(x), ǩ(x)) ∈ Σ̌(x), is a stabilizing switching law.
Furthermore, one gets Ψ

Ω̌
(xσ̌

ǩ(x)
(x))≤ λ̌Ψ

Ω̌
(x) and Ψ

Ω̌
(xσ̌

j (x))≤Ψ
Ω̌
(x) for all j ∈

Nǩ(x), with λ̌ = min
λ

{λ ≥ 0 : Ω ⊆ λΩ̌}< 1.

It could be reasonable, to speed up the convergence of the trajectory of the system
to origin, to select among the elements of Σ(x), those whose k is minimal.

Remark 3. If the system is stabilizable, then the algorithm ends with finite Ň for all
initial C∗-set Ω . Clearly, the value of Ň and the complexity of the set Ω̌ depend
on the choice of Ω . In particular, if Ω is the Euclidean norm ball (or the union of
ellipsoids), the sets Ω i

k and Ωk, with i∈Nq and k ∈NŇ , are unions of ellipsoids, and
Ω̌ also. Then, the switching law computation reduces to check the minimum among
xT Pjx with j ∈ M̌, where {Pj} j∈M̌ are the M̌ positive definite matrices defining Ω̌ ,

with M̌ = q+ · · ·+qŇ = (qŇ+1−q)/(q−1), for q > 1 and M̌ = Ň for q = 1.

2.2 Duality robustness-control of switched systems

In this section, we recall some results from the literature on the stability of a
switched linear system with arbitrary switching law σ(·) to highlight the analogies
with the approaches proposed here for stabilizability.
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Consider the linear switched system (1) and assume that the switching law is ar-
bitrary. This would mean that the switching law might be regarded as a parametric
uncertainty and the results in [26, 3, 4] on robust stability apply with minor adap-
tations, see also [24]. The following algorithm provides a polytopic contractive set,
and then an induced polyhedral Lyapunov function, for this class of systems, see [5].

Algorithm 2 Computation of a λ -contractive C-set for (1) with arbitrary switching.

• Initialization: given the C-set Γ ⊆ Rn and λ ∈ [0,1), define Γ0 = Γ and k = 0;
• Iteration for k ≥ 0: Γk+1 = Γ ∩

⋂
i∈Nq

λA−1
i Γk;

• Stop if Γk ⊆ Γk+1; denote N̂ = k and Γ̂ = Γk.

The set Γ̂ is the maximal λ -contractive set in Γ for the switched system with
arbitrary switching law. Provided that Algorithm 2 terminates with finite N̂, it can
be proved that the system is globally exponentially stable, see [4].

Remark 4. Notice the analogies between Algorithms 1 and 2: they share the same
iterative structure and they both generate contractive sets which induce Lyapunov
functions if they terminate in a finite time. The main substantial difference resides in
the use of intersection/union operators and in the family of sets generated, C∗-sets
by Algorithm 1 and C-sets by Algorithm 2. Interestingly, the C-sets are closed under
the intersection operation whereas C∗-sets are closed under the union.

Finally, for linear parametric uncertain systems, the existence of a polyhedral
Lyapunov function is a necessary and sufficient condition for asymptotic stability.

Theorem 3 ([26, 4]). There is a Lyapunov function for a linear parametric uncer-
tain system if and only if there is a polyhedral Lyapunov function for the system.

The result in Theorem 3 holds for general parametric uncertainty and applies also
for switched systems with arbitrary switching law, as remarked in [24].

Remark 5. As for the duality of Algorithms 1 and 2 highlighted in Remark 4, evi-
dent conceptual analogies hold between Theorems 2 and 3. Then the class of gauge
functions induced by C∗-sets is universal for linear switched systems with switch-
ing control law, in analogy with the class of polyhedral functions (i.e. induced by
C-sets) for the case of arbitrary switching law, [3, 4].

3 Novel conditions for stabilizability and comparisons

As seen above, system (1) is stabilizable if and only if there exists N ∈ N such that

Ω ⊆ int
( ⋃

i∈I [1:N]

Ωi

)
with Ωi = Ωi(Ω) = {x ∈ Rn : Aix ∈Ω}. (5)
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Since the stabilizability property does not depend on the choice of the initial C∗-set
Ω , even if N does, focusing on the case Ω = B and ellipsoidal pre-images entails
no loss of generality, see [13]. Then condition (3) can be replaced by

B⊆ int
( ⋃

i∈I [1:N]

Bi

)
with Bi = {x ∈ Rn : xTAT

i Aix≤ 1}, (6)

for what concerns stabilizability, although the value N might depend on the choice of
Ω . The set inclusions (5) or (6) are the stopping conditions of the algorithm and then
must be numerically checked at every step. The main computational issue consists in
determining if a C∗-set Ω is included into the interior of the union of some C∗-sets.
This problem is very complex in general, also in the case of ellipsoidal sets where
it relates to quantifier elimination over real closed fields [7]. On the other hand, the
condition given by Theorem 1 provides an exact characterization of the complexity
inherent to the problem of stabilizing a switched linear system.

The objective here is to consider alternative conditions for stabilizability to pro-
vide geometrical and numerical insights and analyze their conservatism by compar-
ison with the necessary and sufficient one given in Theorem 1.

3.1 Lyapunov-Metzler BMI conditions

The condition we are considering first is related to the Lyapunov-Metzler inequali-
ties that is sufficient and given by a set of BMI inequalities involving Metzler ma-
trices.

Theorem 4 ([17]). If there exist Pi > 0, with i ∈I , and π ∈Mq such that

AT
i

(
q

∑
j=1

π jiPj

)
Ai−Pi < 0, ∀i ∈I , (7)

holds, then the switched system (1) is stabilizable.

As proved in [17], the satisfaction of (7) implies that the homogeneous function
induced by the set

⋃
i∈I E (Pi) is a control Lyapunov function. A first relation be-

tween the Lyapunov-Metzler condition (7) and the geometric one (5) is provided
below. We prove that the satisfaction of (7) implies that the condition given by The-
orem 1 holds for the particular case of Ω =

⋃
i∈I AiE (Pi) and N = 1.

Proposition 3 ([14]). If the Lyapunov-Metzler condition (7) holds then (5) holds
with N = 1 and Ω =

⋃
i∈I AiE (Pi).

Proposition 3 provides a geometrical meaning of the Lyapunov-Metzler condi-
tion and a first relation with the necessary and sufficient condition given in The-
orem 1. In fact, for the general case of q ∈ N the Lyapunov-Metzler condition is
just sufficient for

⋃
i∈I AiE (Pi) ⊆ int(

⋃
i∈I E (Pi)) to hold. Moreover, it is proved

in [14] that the condition is also necessary for q = 2.
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3.2 Generalized Lyapunov-Metzler conditions

Two generalizations of the Lyapunov-Metzler condition can be given, by relaxing
the intuitive but unnecessary constraint stating that the number of ellipsoids and the
number of modes are equal.

Proposition 4 ([14]). If there exist M ∈N and Pi > 0, with i∈I [1:M], and π ∈MMI

such that

AT
i

(
∑

j∈I [1:M]

π jiPj

)
Ai−Pi < 0, ∀i ∈I [1:M],

holds, then the switched system (1) is stabilizable.

Proposition 4 extends the Lyapunov-Metzler condition (7), which is recovered for
M = 1. Another possible extension is obtained by maintaining the sequence length
in 1 but increasing the number of ellipsoids involved.

Proposition 5 ([14]). If for every i ∈ I there exist a set of indices Ki = Nhi , with
hi ∈N; a set of matrices P(i)

k > 0, with k ∈Ki, and there are π
(p,i)
m,k ∈ [0,1], satisfying

∑p∈I ∑m∈Kp π
(p,i)
m,k = 1 for all k ∈Ki, such that

AT
i

(
∑

p∈I
∑

m∈Kp

π
(p,i)
m,k P(p)

m

)
Ai−P(i)

k < 0, ∀i ∈I, ∀k ∈Ki,

holds, then the switched system (1) is stabilizable.

Geometrically, Proposition 5 provides a condition under which there exists a C∗-
set composed by a finite number of ellipsoids that is contractive.

3.3 LMI sufficient condition

The main drawback of the necessary and sufficient condition for stabilizability is its
inherent complexity. The Lyapunov-Metzler-based approach leads to a more practi-
cal BMI sufficient condition. Nevertheless, the complexity could be still computa-
tionally prohibitive, see [33]. Our next aim is to formulate an alternative condition
that could be checked by convex optimization algorithms.

Theorem 5 ([14]). The switched system (1) is stabilizable if there exist N ∈ N and
η ∈ RNI such that η ≥ 0, ∑i∈I [1:N] ηi = 1 and

∑
i∈I [1:N]

ηiAT
i Ai < I. (8)

We wonder now if the sufficient condition given in Theorem 5 is also necessary.
The answer is negative, in general, as proved by the following counter-example.
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Example 1. The aim of this illustrative example is to show a case for which the
inclusion condition (6) is satisfied with N = 1, but there is not a finite value of N̂ ∈N
for which condition (8) holds. Consider the three modes given by the matrices

A1 =

[
a 0
0 a−1

]
, A2 =

[
a 0
0 a−1

]
R
(

2π

3

)
, A3 =

[
a 0
0 a−1

]
R
(
−2π

3

)
,

with a = 0.6. Set Ω = B. By geometric inspection, condition (6) holds at the first
step, i.e. for N = 1, see [14]. On the other hand, Ai are such that det(AT

i Ai) =
a2a−2 = 1 and tr(AT

i Ai) = a2 + a−2 = 3.1378 while the determinant and trace of
the matrix defining B are 1 and 2, respectively. Notice that a2 +a−2 > 2 for every a
different from 1 or −1 and a2 +a−2 = 2 otherwise.

For every N and every Bi with i∈I [1:N], the related Ai is such that det(AT
i Ai) =

1 and tr(AT
i Ai) ≥ 2. Notice that, for all the matrices Q > 0 in R2×2 such that

det(Q) = 1, then tr(Q) ≥ 2 and tr(Q) = 2 if and only if Q = I, since the determi-
nant is the product of the eigenvalues and the trace its sum. Thus, for every subset
of the ellipsoids Bi, determined by a subset of indices K ⊆ I [1:N], we have that
∑i∈K ηiAT

i Ai < I, cannot hold, since either tr(AT
i Ai) > 2 or AT

i Ai = I. Thus the
LMI condition (8) is sufficient but not necessary.

Another interesting implication that follows from Example 1 concerns the stabi-
lizability through periodic switching sequences.

Proposition 6 ([14]). The existence of a stabilizing periodic switching law is suffi-
cient but not necessary for the stabilizability of the system (1).

In the proof of Proposition 6 we used the fact that the existence of a stabilizing
periodic switching law implies the satisfaction of the LMI condition, see [14]. One
might wonder if there exists an equivalence relation between periodic stabilizability
and condition (8). The answer is provided below.

Theorem 6 ([14]). A stabilizing periodic switching law for the system (1) exists if
and only if condition (8) holds.

Note that, although periodic stabilizability and condition (8) are equivalent from
the stabilizability point of view, the computational aspects and the resulting controls
are different. Indeed, checking periodic stabilizability consists of an eigenvalue test
for a number of matrices exponential in M, see Lemma 1, while condition (8) is
an LMI that grows exponentially with N. On the other hand, M is always greater
or equal than N, much greater in general. Finally, notice that the periodic law is in
open loop whereas (8) leads to a state-dependent switching law.

The LMI condition (8) can be used to derive the controller synthesis techniques.
If (8) holds, then there is µ ∈ [0,1) such that

∑
i∈I [1:N]

ηiAT
i Ai ≤ µ

2I. (9)

A stabilizing controller does not necessarily select at each time step k ∈N the input
to be applied. This can be done only at {kp}p∈N with k0 = 0, and kp < kp+1≤ kp+N,
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for all p ∈ N. At time kp, the controller selects the sequence of inputs to be applied
up to step kp+1−1. The instant kp+1 is also determined by the controller at time kp.
More precisely, the controller acts as follows for all p ∈ N, let

ip = arg min
i∈I [1:N]

(xT
kp
AT

i Aixkp). (10)

Then, the next instant kp+1 is given by

kp+1 = kp + l(ip), (11)

with l(ip) length of ip, and the controller applies the sequence of inputs

σkp+ j−1 = ip, j, ∀ j ∈ {1, . . . , l(ip)}. (12)

Theorem 7 ([14]). Assume that (8) holds, and consider the control given by (10),
(11), (12). For all x0 ∈ Rn and k ∈ N, we have ‖xk‖ ≤ µk/N−1LN−1‖x0‖, where
L≥‖Ai‖, for all i∈I and L≥ 1, and the controlled system is globally exponentially
stable.

From Theorem 7, the LMI condition (8) implies that the switched system with
the switching rule given by (10), (11), (12) is globally exponentially stable. Nev-
ertheless, neither the Euclidean norm of x nor the function min

i∈I [1:N]
(xTAT

i Aix) are

monotonically decreasing along the trajectories. On the other hand a positive defi-
nite homogeneous nonconvex function decreasing at every step can be inferred for
a different switching rule.

Proposition 7 ([14]). Given the switched system (1), suppose there exist N ∈ N and
η ∈RNI such that η ≥ 0, ∑i∈I [1:N] ηi = 1 and (8) hold. Then there is λ ∈ [0,1) such
that the function

V (x) = min
i∈I [1:N]

(xT
λ
−niAT

i Aix), (13)

where ni is the length of i ∈I [1:N], satisfies V (Aσ(x)x)≤ λV (x) for all x ∈Rn, with

i∗(x) = arg min
i∈I [1:N]

(xT
λ
−niAT

i Aix), (14)

and σ(x) = i∗1(x).

Remark 6. If the LMI (8) has a solution, then there exists a scalar µ ∈ [0,1), such that
(9) is verified. The value of µ induces the rate of convergence λ for the Lyapunov
function (13). Thus one might solve the optimization problem minµ2,η µ2 subject to
(9), to get higher convergence rate.
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3.4 Stabilizability conditions relations

The implications between the stabilizability conditions, whose proofs can be found
in [14], are summarized in Figure 1. Remark that, compared to the Lyapunov-
Metzler inequalities (7), the LMI condition (8) concerns a convex problem and it
is less conservative. On the other hand, the dimension of the LMI problem might
be consistently higher than the BMI one. The direct extension to the case of output-
based switching design is not straightforward and requires further research. Never-
theless, since the LMI condition and the periodic stabilizability are equivalent, if (8)
has a solution then an open-loop stabilizing switching sequence can be designed,
and no output is necessary to stabilize the system.

LMI conditionGeometric condition

Generalized 

Lyapunov-Metzler 

 condition II

Lyapunov-Metzler 

condition

Stabilizability
Periodic 

stabilizability

Generalized

Lyapunov-Metzler

condition I

Fig. 1 Implications diagram of stabilizability conditions.

4 Control co-design for discrete-time switched linear systems

Consider now the discrete-time controlled switched linear system

xk+1 = Aσk xk +Bσk uk, (15)

where xk ∈Rn and uk ∈Rm are the state and the control input at time k ∈N, respec-
tively; σ : N→I is the switching law and {Ai}i∈I and {Bi}i∈I , with Ai ∈ Rn×n

and Bi ∈Rn×m for all i∈I . A time-varying control policy ν :Rn×N→I ×Rm×n,
is such that ν(x,k) =

(
σ(x,k), K(x,k)

)
∈I ×Rm×n, where K(x,k) is the state feed-

back gain that may change at every instant, i.e. such that uk(xk) = K(xk,k)xk.

Remark 7. As proved in [35], see Theorems 5 and 7 in particular, the attention can
be restricted without loss of generality to static control policies of the form

ν(x) =
(
σ(x), K(x)

)
∈I ×Rm×n, (16)
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such that ν(ax) = ν(x) for all x ∈ Rn and a ∈ R, and to piecewise quadratic Lya-
punov functions. Moreover K(x) belongs to a finite set, i.e. K(x) ∈K = {κi}i∈NM .

The switched system in closed loop with (16) reads

xk+1 =
(
Aσ(xk)+Bσ(xk)K(xk)

)
xk, (17)

where σ(xk) = σk. We denote with xν
k (x0)∈Rn the state of the system (15) at time k

starting from x(0) = x0 by applying the control policy ν . Given σ ∈I D we denote
with xσ

k (x0) the state of (17) at time k≤D starting at x0 under the switching sequence
σ . The dependence of xν

k and xσ
k on the initial conditions will be dropped.

Definition 5. The system (15) is globally exponentially stabilizable if there are a
control policy ν(x) as in (16), c ≥ 0 and λ ∈ [0,1) such that ‖xν

k (x0)‖ ≤ cλ k‖x0‖,
for all x0 ∈ Rn, with xk state of (17).

In Sections 3.3 and 3.4 we proved that, for autonomous systems as (1), periodic
stabilizability is more conservative than generic stabilizability. On the other hand,
the equivalent condition is much more computationally tractable. Indeed, the con-
dition in case of periodic stabilizability is an LMI in the parameter N that might
by much smaller than the periodic cycle length. Hereafter we focus on a condition
analogous to the LMI one (8) for the controlled switched system (15) to determine
a stabilizing control policy (16) for periodic stabilizable systems.

From Remark 7, the problem of co-design is equivalent to determine a stabilizing
static control policy as in (16), with finite number of feedback gains, and a piecewise
quadratic Lyapunov function for the system (17). Applying Theorem 6, the objective
is to search for sequences of modes and feedback gains, fulfilling the LMI condition
(8) in the context of co-design. That is, given a sequence ϑ ∈I , of length J, and a
time instant j ∈ NJ , a gain among the finite set K can be applied, denoted as Kϑ

j
and whose value has to be designed. Then, with a slight abuse of notation, given
J ∈ N and a sequence ϑ ∈I J , we denote

Fϑ =
J

∏
j=1

Fϑ j= FϑJ . . .Fϑ1=(AϑJ+BϑJ Kϑ
J ) . . .(Aϑ1+Bϑ1K

ϑ
1 ). (18)

Thus a set of NI = ∑
N
k=1 qk matrices Fϑ , one for every ϑ ∈I [1:N], can be defined

as in (18) that are parameterized in the gains {Kϑ
j } j∈N|ϑ | . We focus on the control

policy for (15) of the form (16) where K(x) belongs to one of the elements of a
sequence associated to a mode in I [1:N]. Then, K(x) is a gain among the ∑

N
k=1 kqk

possible, i.e. K(x) ∈K where

K = {κi}i∈NM = {Kϑ
j ∈ Rm×n : ϑ ∈I [1:N], j ∈ N|ϑ |}, (19)

with M = ∑
N
k=1 kqk. Given a switching law ϑ : N→I and a sequence of feedback

gains Kϑ : N→ Rm×n, we denote with xϑ
k (x) the state at time k starting at x if the

control νk = (ϑk,Kϑ
k ) is applied at k for all k ∈ N. As for the case without control

input, the concept of periodic ϑ -stabilizability can be given for the system (15).
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Definition 6. The system (15) is periodic ϑ -stabilizable if there exist: a periodic
switching law ϑ : N→ I and a periodic sequence Kϑ : N→ Rm×n, both of cycle
length D ∈ N; c≥ 0 and λ ∈ [0,1) such that ‖xϑ

k (x)‖ ≤ cλ k‖x‖ holds for all x ∈ Rn

and k ∈ N.

Clearly periodic ϑ -stabilizability is sufficient for exponential stabilizability of
(15) as in Definition 5. From Definition 6 and Theorem 6, the conditions

∑
i∈I [1:N]

ηi = 1, (20)

∑
j∈I [1:N]

η jFT
j F j < I, (21)

are necessary and sufficient for periodic ϑ -stabilizability of system (15). Thus, con-
dition (21) is an LMI that provides the exact characterization of ϑ -stabilizability,
together with (20). Below we give a convex condition equivalent to (21).

Proposition 8 ([15]). Given N ∈ N, η ∈ RNI with η > 0, and the set of gains (19),
condition (21) holds if and only if for every j ∈I [1:N] there exist | j|−1 nonsingular
matrices G j,k ∈ Rn×n with k ∈ N| j|−1 and R j ∈ Rn×n such that R j = RT

j > 0 and

η jI X j,| j| 0 . . . 0 0 0
XT

j,| j| Yj,| j|−1 X j,| j|−1 . . . 0 0 0
0 XT

j,| j|−1 Yj,| j|−1 . . . 0 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . Yj,2 X j,2 0
0 0 0 . . . XT

j,2 Yj,1 X j,1

0 0 0 . . . 0 XT
j,1 R j


> 0 (22)

for every j ∈I [1:N] with X j,1 = η jF j1 and X j,k+1 = F jk+1G j,k and Yj,k = G j,k +GT
j,k

for all k ∈ N| j|−1 and

∑
j∈I [1:N]

R j < I. (23)

The following theorems, based on Proposition 8, provide a necessary and suffi-
cient LMI condition for periodic ϑ -stabilizability of the controlled system (15), see
their proofs in [15]. Moreover, the explicit form of the control law (16) is given.

Theorem 8 ([15]). The system (15) is periodically ϑ -stabilizable if and only if there
exist N ∈N; η ∈RNI such that η > 0 and (20) holds; and for every j ∈I [1:N] there
are:

• | j|−1 nonsingular matrices G j,k ∈ Rn×n, with k ∈ N| j|−1;
• | j| matrices Z j,k ∈ Rm×n with k ∈ N| j|;
• a symmetric positive definite matrix R j ∈ Rn×n;
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such that (22) and (23) hold with

X j,1 = η jA j1 +B j1Z j,1,
X j,k+1 = A jk+1G j,k +B jk+1Z j,k+1, ∀k ∈ N| j|−1,
Yj,k = G j,k +GT

j,k, ∀k ∈ N| j|−1,
(24)

and gains
K j

1 = η
−1
j Z j,1,

K j
k+1 = Z j,k+1G−1

j,k , ∀k ∈ N| j|−1,
(25)

for all j ∈I [1:N].

The following theorem provides a ϑ -stabilizability condition, a control policy
and a bound on the decreasing of the Euclidean norm every N steps at most.

Theorem 9 ([15]). Suppose there exist α > 1 and N ∈N; η ∈RNI such that η > 0;
matrices G j,k ∈ Rn×n with k ∈ N| j|−1, Z j,k ∈ Rm×n with k ∈ N| j| and R j ∈ Rn×n as
defined in Theorem 8 such that (22)-(23) and (24) hold and

∑
i∈I [1:N]

ηi = α. (26)

Then system (15) is periodically ϑ -stabilizable and ‖Fϑ(x)x‖2 < λ‖x‖2 holds for all
x ∈ Rn, with

ϑ = ϑ(x) = arg min
j∈I [1:N]

(xTFT
j F jx),

and λ = α−1/2. Given x(t) = x, the stabilizing control policy is defined from (25)
within an horizon of length |ϑ | as

ν(x,k) = (σ(x,k), K(x,k)) =
(

ϑk, Kϑ
k

)
(27)

to be applied at time t + k−1, for all k ∈ N|ϑ |.

From Theorem 9, the value α is related to λ and then could serve for obtaining
the fastest decreasing rate, for a given N, by solving the following LMI problem

α = sup
α,η ,G j,k,Z j,k,R j

∑
j∈I [1:N]

η j

s.t. (22)− (23)− (24),
(28)

with η ,G j,k,Z j,k,R j as defined in Theorem 8.

Remark 8. A nonconvex control Lyapunov function V (x), decreasing at every step,
analogous to (13), and a state-dependent control policy ν(x) as in (16) can be defined
by solving on-line an LMI problem, see [15].

The interested reader is referred to [15] for a detailed comparison analysis, in
terms of conservatism and complexity, of this approach with respect to methods
from the literature, such as those presented in [35, 36] and in [17, 12].
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5 Numerical examples

Some illustrative examples, taken from [13, 14, 15], follow.

Example 2. Consider the system (1) with q = 4, n = 2 and

A1 =

[
1.5 0
0 −0.8

]
, A2 = 1.1R(

2π

5
) A3 = 1.05R(

2π

5
−1), A4 =

[
−1.2 0

1 1.3

]
.

The matrices Ai, with i ∈N4, are not Schur, which implies that the system (1) is not
stabilizable by any constant switching law. We apply Algorithm 1 with Ω =B2. The

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

x
1

x
2

0 5 10 15 20 25 30 35 40
0

2

4

6

0 5 10 15 20 25 30 35 40

1

2

3

4

Fig. 2 Left: ball B2 in dashed and
⋃

k∈N5
Ωk in solid line. Trajectory starting from x0 = (−3,3)T

in dotted line. Right: Lyapunov function and switching control law in time.

algorithm stops at the fifth iteration. Figure 2 left, emphasizes that B2 is included in⋃
k∈N5

Ωk. A stabilizing switching law and the related Lyapunov function are given
in Figure 2 right, for the initial condition x0 = (−3,3)T .

Example 3. Consider the system (1) with q = 2, n = 2 and

A1 =

[
1.3 0
0 0.9

]
R(θ), A2 =

[
1.4 0
0 0.8

]
,

non-Schur. From Figure 3, left, one can infer that the system is not stabilizable if
θ = 0. Nevertheless, taking θ = π

5 , Algorithm 1 stops after seven steps implying the
stabilizability of the system, see Figure 3, right.

Example 4. Consider (1) with q= 2, n= 2, x0 = [−3,3]T and the non-Schur matrices

A1 = 1.01R
(

π

5

)
, A2 =

[
−0.6 −2

0 −1.2

]
.
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Fig. 3 Ball B2 in dashed and ∪k∈Ni Ωk, for i ∈Ni in solid line for Example 3, with θ = 0 (left) and
θ = π

5 (right).

Four switching laws are designed and compared: the geometric condition given
in Theorem 1, proving the stabilizability of the system; the min-switching strat-
egy (10)-(12) related to the LMI condition (8); the switching control law given in
Proposition 7 and the periodic switching law, that exists from Theorem 6.

As noticed in [17, 13], for systems with q = 2 the Lyapunov-Metzler inequalities
become two linear matrix inequalities once two parameters, both contained in [0,1],
are fixed. Such LMIs have been checked for this example to be infeasible on a grid
of these two parameters, with step of 0.01. It is then reasonable to conclude that the
Lyapunov-Metzler inequalities are infeasible for this numerical example.

Then, an iterative procedure is applied to determine N ∈ N such that (6) is sat-
isfied. The result is that (6) holds with N = 5 and then the homogeneous function
induced by the obtained set is a control Lyapunov function and the related min-
switching rule is a stabilizing law. The state evolution and the switching law are
depicted in Figure 4, left.
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Fig. 4 State evolution and switching control induced by the geometric condition (6) (left), and
min-switching control (10)-(12) (right).
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The LMI condition (8) is solved with N = 7 and the min-switching law (10)-
(12) is applied to the system at first. The control results in the concatenation of
elements of I [1,7], respectively of lengths {7,6,5,7,7, . . .}. The time-varying length
of the switching subsequences is a consequence of the state dependence of the min-
switching strategy. The resulting behavior is depicted in Figure 4, right. Then, the
control law defined in Proposition 7, namely (14) with λ = 0.9661, is applied and
the result is shown in Figure 5, left. The value of λ is obtained by solving the
optimization problem described in Remark 6.
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Fig. 5 State evolution and min-switching control (14) (left) and periodic switching control with
M = 4 (right).

The periodic switching law of length M = 4 is then obtained, by searching the
shorter sequence of switching modes which yields a Schur matrix Ai. The resulting
evolution is represented in Figure 5, right.

Finally a comparison between the switching laws is provided in Figure 6, where
the time-evolution of the Euclidean distance of the state from the origin is depicted.

Example 5. Consider Example 2 in [35], that is a 4-dimensional system with 4
modes whose matrices are

A1 =


0.5 −1 2 3
0 −0.5 2 4
0 −1 2.5 2
0 0 0 1.5

, A2 =


−0.5 −1 2 1

0 1.5 −2 0
0 0 0.5 0
−2 −1 2 2.5

,A3 =


1.5 0 0 0
1 1 0.5 −0.5
0 0.5 1 −0.5
1 0 0 0.5


A4 =


0.5 1 0 0
0 0.5 0 0
0 0 0.5 0
0 2 −2 0.5

, B1 =


1
2
3
4

, B2 =


4
3
2
1

, B3 =


4
3
2
1

, B4 =


1
2
3
4

 .
(29)

The conditions of Theorem 9 are satisfied with horizon N = 3. Besides the inher-
ent computational benefit of having a stabilization condition in form of LMI with
respect to the algorithmic method presented in [35], also the control obtained is
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Fig. 6 Comparison between the evolution of the Euclidean norm of the state for the different
switching laws: induced by geometric condition (6) (star); min-switching law (10)-(12) (cross);
min-switching control (14) (circle) and periodic rule (square).

substantially simpler and more efficient. Actually, in [35] stabilizability is proved
by means of an algorithm which inspects control horizons of length 7 resulting in
a piecewise quadratic function determined by 13 matrices. Moreover, a much faster
convergence rate is obtained by solving the LMI problem (28), if compared with the
results in [35], see Figure 7 where x0 = [1 1 0 −1]T and Figure 4 in [35], top.

0 1 2 3 4 5 6 7 8 9
0

2
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k

0 1 2 3 4 5 6 7 8 9
0

2

4
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8

k
Fig. 7 Evolutions of ‖x‖2 with control (27), in solid, with min-switching of Remark 8 in dashed
and with the periodic control in dotted with (29) (top) and with A4 multiplied by 2.5, (bottom). In
the top figure the solid and dotted lines are overlapped.
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Finally, A4 being Schur, with 4 eigenvalues equal to 0.5, a trivial stabilizing so-
lution exists. Then we define a new A4 by multiplying the one in (29) by 2.5. All the
eigenvalues of the new A4 are then equal to 1.25. The evolutions of the Euclidean
norm of the state, for x0 = [1 1 0 −1]T , under the obtained controls are depicted in
Figure 7, bottom.

6 Conclusions

We considered the problems of stabilizability and control co-design for switched
linear systems. Via a set-theory approach, a geometric necessary and sufficient con-
dition for the stabilizability have been provided, proving that the family of noncon-
vex, homogeneous functions induced by a C∗-set is a universal class of Lyapunov
functions. Then, a novel LMI condition has been presented that overcomes the com-
putational issues related to the geometric condition. Such a condition, together with
others from the literature, have been analyzed and compared in terms of conser-
vatism and computational complexity. Finally, an LMI condition is given for con-
trol co-design that is proved to be necessary and sufficient for the stabilizability of
switched systems that admit periodic control policies.
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