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Stability analysis of dissipative systems
subject to nonlinear damping via Lyapunov

techniques§

Swann Marx1, Yacine Chitour2 and Christophe Prieur3

August 13, 2018

Abstract

In this article, we provide a general strategy based on Lyapunov functionals to anal-
yse global asymptotic stability of linear infinite-dimensional systems subject to nonlin-
ear dampings under the assumption that the origin of the system is globally asymp-
totically stable with a linear damping. To do so, we first characterize, in terms of Lya-
punov functionals, several types of asymptotic stability for linear infinite-dimensional
systems, namely the exponential and the polynomial stability. Then, we derive a Lya-
punov functional for the nonlinear system, which is the sum of a Lyapunov functional
coming from the linear system and another term with compensates the nonlinearity.
Our results are then applied to the linearized Korteweg-de Vries equation and the 1D
wave equation.

1 Introduction

This paper is concerned with the asymptotic behavior analysis of infinite-dimensional
systems subject to a nonlinear damping. These systems are composed by abstract
operators generating a strongly continuous semigroup of contractions and a bounded
operator representing the control operator (see e.g., [34] or [26] for the introduction
of linear and nonlinear operators generating semigroups, respectively). These systems
might be for instance a hyperbolic PDE, or a parabolic one or even the linearized
Korteweg-de Vries equations. Assuming that a linear damping renders the origin of
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these systems globally asymptotically stable, we propose a general strategy to analyze
the asymptotic behavior of these systems when modifying the linear damping with
a nonlinearity. In contrast with the existing litterature, which uses either integral
inequalities(see e.g. [1], [2], [3], [21]) or a frequential approach (cf. [15], [9]) or even a
compactness uniqueness strategy ([35], [28], [23]), we propose here to design Lyapunov
functionals to characterize our results, extending to the infinite-dimensional setting a
strategy first deviced in [19] for finite-dimensional systems.

Lyapunov functionnals for infinite-dimensional linear systems In the
case where the origin of the linear system is globally exponentially stable, there exists a
direct way to construct the Lyapunov functional. It relies mainly on the result provided
in [12]. However, it is known that an equilibrium point for an infinite-dimensional
system that is globally asymptotically stable is not necessarily exponentially stable.
In some cases, this point is only polynomially stable, i.e., trajectories of the system
converge with a decay rate expressed as 1

(1+t)γ , where γ is a positive constant.
Most of the existing litterature analyzes this asymptotic behavior with some integral

inequalities [29], [2] or with a frequential approach [20]. In constrast with these papers,
we propose here to construct a Lyapunov functional in the case of polynomial stability.
At the best of our knowledge, such a result is new. Note moreover that it is crucial
in our approach, since this functional will be used in the case where the damping is
modified with a nonlinearity.

Nonlinear damping for infinite-dimensional systems There exist many
works dealing with nonlinear damping for infinite-dimensional systems. Some of them
tackle specific PDEs as for instance hyperbolic ones (see e.g., [14], [21] or [3]) and
others propose a general framework using abstract operators (see [32], [30], [18] and [8]
for a specific case of nonlinear damping, namely the saturation). These papers, which
deal with abstract operators, usually assume that the space where the damping takes
value, namely S, is the same as the control space, namely U . However, in practice,
this is not the case.

In constrast with existing works for abstract control systems, we aim here at giving
a general definition of nonlinear dampings when the nonlinear damping space S is not
necessarily equal to the control space U . With such a formalism, we are able to make a
link between the litterature on abstract operators and the one on hyperbolic systems.
At the best of our knowledge, this formalism has been introduced first in [25] in the
case where the nonlinear damping is a saturation.

In many works, specific PDEs subject to a nonlinear damping have been studied.
In [18], the origin of a wave equation subject to a nonlinear damping, either distributed
or located at the boundary, has been proved to be globally asymptotically stable, in
the case S = U . In [27], a similar result has been stated, but in the case where S 6= U .
In [10], the global asymptotic stability of a PDE coupled to an ODE with a saturated
feedback law at the boundary has been tackled. There exist also some papers dealing
with local asymptotic stability (see [17] or [16]). Note that both situations (S = U
and S 6= U) have been tackled for the specific nonlinear partial differential equation
Korteweg-de Vries equation in [23], in the case where the damping is a saturation.
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Contribution In this paper, we study two cases: either the origin of the infinite-
dimensional system with a linear damping is globally exponentially stable or it is
globally polynomially stable. In both cases, we derive a Lyapunov functional which
allows us to prove and even characterize the decay rate of the trajectories.

In the first case (i.e., the origin of the linear system is globally exponentially), we
derive a strict and global Lyapunov function if S = U . By global, we mean that the
Lyapunov function does not depend on the initial condition, neither the decay rate.
However, if S 6= U , we are not able to obtain such a result, but we prove that the
origin of the system is semi-globally exponentially stable, meaning in particular that
the decay rate of the trajectories depends on the initial condition.

In the second case (i.e., the origin of the linear system is globally polynomially
stable), only in the case where S = U , we prove that the origin of the system is semi-
globally polynomially stable. As in the exponential case, this means that the decay
rate of the trajectories depends on the initial condition.

Outline Section 2 provides some necessary and sufficient conditions in terms of
Lyapunov functionals for infinite-dimensional systems. In particular, we provide a new
Lyapunov functional in the case where the origin is globally polynomially stable. In
Section 3, nonlinear dampings for infinite-dimensional systems are introduced and our
main results are stated. Their proofs are then given in Section 4. These results are
illustrated in Section 5 on some examples, namely the linearized Korteweg-de Vries
equation and the 1D wave equation. Section 6 collects some concluding remarks and
further research lines to be investigated. Appendix 6 tackles the specific case of finite-
dimensional systems and provides also a decay rate characterization, that applies also
for the case S = U and the linear damping stabilizes exponentially the system.

Acknowledgements: The authors want to warmly thank Fatiha Alabau-Boussouira
and Enrique Zuazua for all the encouraging and interesting discussions and for having
pointed out a large number of crucial references. We would like to thank also Nicolas
Burq for the interest in the present work.

2 Lyapunov criteria for linear infinite-dimensional

systems

Let H be a real Hilbert space equipped with the scalar product 〈·, ·〉H . Let A : D(A) ⊂
H → H be a (possibly unbounded) linear operator whose domain D(A) is dense in H.
We suppose that A generates a strongly continuous semigroup of contractions denoted
by (etA)t≥0. We use A? to denote the adjoint operator of A.

In this section, we consider the linear system given by
d

dt
z = Az,

z(0) = z0.
(1)

Since A generates a strongly continuous semigroup of contractions, there exist both
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strong and weak solutions to (1). Moreover, the origin of (1) is Lyapunov stable1 in
H. Indeed, the property of contraction satisfied by (etA)t≥0 implies that

‖etAz0‖H ≤ ‖z0‖H . (2)

The origin is attractive in H if, for every z0 ∈ H, one has

lim
t→+∞

‖etAz0‖H = 0, (3)

and this property is also referred as strong stability (see e.g., [3, Section 1.3]). This
section aims at characterizing the decay rate of the trajectory when assuming that the
origin is attractive. We first consider global exponential stability :

Definition 1 (Global exponential stability). The origin of (1) is said to be globally
exponentially stable if there exist two positive constants C and α such that, for any
z0 ∈ H,

‖etAz0‖H ≤ Ce−αt‖z0‖H , ∀t ≥ 0. (4)

Remark 1. If the origin is of (1) is globally exponentially stable in H, then, provided
that the initial condition z0 is in D(A), the origin is also globally exponentially stable
in D(A). Indeed, since A generates a strongly continuous semigroup of contractions,
then, for any initial condition z0 ∈ D(A), AetAz0 ∈ H, for all t ≥ 0. Since (4) holds,
this means in particular that

‖etAAz0‖H ≤ Ce−αt‖Az0‖H , ∀t ≥ 0.

Note moreover that etAA = AetA (see e.g., [34, Proposition 2.1.5]) and ‖ · ‖D(A) :=
‖ · ‖H + ‖A · ‖H . Therefore,

‖etAz0‖D(A) ≤ Ce−αt‖z0‖D(A), ∀t ≥ 0.

Another characterization of attractivity is the polynomial stability. There exists
several possible definitions referring to polynomial stability in the litterature, cf. the
nice survey [3]. In any case, this is a weaker notion of attractivity than exponential
stability, because the initial condition usually belongs to a more regular space defined
as follows:

D(Aθ) = {z ∈ H | Aiz ∈ H, i = 1, . . . , θ}, (5)

where θ is a positive integer. We suppose with no further mention in the remaining
sections of the paper that, every time polynomial stability is at stake, then Aθ is
well-defined and D(Aθ) is dense in H for some positive integer θ.

This space is endowed with the following norm

‖ · ‖D(Aθ) :=
θ∑
i=0

‖Ai · ‖H . (6)

By Aiz, we mean that A is applied i times to z. We define A0 = IH so that we retrieve
the classical definition of the graph norm of the operator A. This definition is borrowed
from [34], just above Proposition 2.2.12.

1The origin of (1) is said to be Lyapunov stable in H if, for any positive δ, there exists a positive constant
ε = ε(δ) such that

‖z0‖H ≤ ε⇒ ‖etAz0‖H ≤ δ.
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Definition 2 (Global polynomial stability). Given θ a positive integer, the origin of
(1) is said to be polynomially stable if there exist two positive constants C and γ := γ(θ)
such that, for any initial condition z0 ∈ D(Aθ),

‖etAz0‖H ≤
C

(1 + t)γ
‖z0‖D(Aθ), ∀t ≥ 0. (7)

In recent decades, Lyapunov functions have been instrumental to characterize sta-
bility for either finite-dimensional or infinite-dimensional systems. The main result of
[12] is stated in the following proposition.

Proposition 1 (Exponential stability [12]). The origin of (1) is said to be globally
exponentially stable if and only if there exist a self-adjoint, positive definite and coercive
operator P ∈ L(H) and a positive constant C such that

〈Az, Pz〉H + 〈Pz,Az〉H ≤ −C‖z‖2H , ∀z ∈ D(A). (8)

One can choose P in the latter equation in the form

P =

∫ ∞
0

esA
?
esAds+ αIH , (9)

with α > 0. Note that this operator defines also a bounded operator of D(A).

Note that an operator P satisfying (8) has also been considered in the context of
the asymptotic stability analysis of linear switched systems in [13].

We next turn to a similar characterization of polynomial stability, i.e., in terms
of a Lyapunov function. To the best of our knowledge, polynomial stability seems to
have first been considered in [29] and [1]. Later on, it has been studied with spectrum
analysis in [20]. We propose a Lyapunov characterization of such a stability with the
following proposition.

Proposition 2 (θ-global polynomial stability). Given θ a positive integer, the origin
of (1) is said to be globally polynomially stable with γ > 1

2 if and only if there exist
a self-adjoint, positive-definite and coercive operator Pθ : D(Aθ) → D(Aθ) → and two
positive constants C and Cθ such that

〈Az, Pθz〉H + 〈Pθz,Az〉H ≤ −C‖z‖2H , ∀z ∈ D(A), (10)

and

〈etAz, PθetAz〉H ≤
Cθ

(1 + t)2γ−1
‖z‖2D(Aθ), ∀z ∈ D(Aθ), t ≥ 0. (11)

One can choose Pθ in the latter equation in the form

Pθ :=

∫ ∞
0

(esA)?esAds+ αID(Aθ), (12)

with α > 0.

Proof of Proposition 2: The proof is divided into two parts: the first part handles
the necessary condition of item (ii) (i.e., the ⇒ part), while the second part focuses on
the sufficient condition (i.e, the ⇐ part).
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(⇒): We assume that the origin of (1) is polynomially stable. This part of the
proof is inspired by [12].

Since the origin of (1) is θ-globally polynomially stable, then, for all z ∈ D(Aθ) and
every T > 0,∫ T

0
‖esAz‖2Hds ≤

∫ T

0

C

(1 + s)2γ−1
‖z‖2D(Aθ)ds ≤ C‖z‖

2
D(Aθ)

∫ ∞
0

ds

(1 + s)2γ−1

≤ C

2γ − 1
‖z‖2D(Aθ).

(13)

This implies that
∫∞

0 ‖e
sAz‖2Hds is convergent and strictly positive as long as z is

different from 0. Moreover, for every t ≥ 0, the operator

Qθ(t) =

∫ t

0
(esA)?esAds (14)

satisfies the following properties, for all z1, z2 in D(Aθ):

(i) the function t 7→ 〈Qθ(t)z1, z2〉 is well-defined;

(ii) if t1 ≤ t2, then 0 ≤ 〈Qθ(t1)z, z〉H ≤ 〈Qθ(t2)z, z〉H ;

(iii) 〈Qθ(t)z1, z2〉H = 〈z1, Qθ(t)z2〉H . We only provide an argument for itemm (i) since
the two others are straigthforward. One has

|〈Qθ(t)z1, z2〉|2 =

∣∣∣∣∫ t

0
〈esAz1, e

sAz2〉Hds
∣∣∣∣2

≤
(∫ t

0
‖esAz1‖H‖esAz2‖Hds

)2

≤
(∫ t

0
‖esAz1‖2Hds

)(∫ t

0
‖esAz2‖2Hds

)
≤
(∫ ∞

0
‖esAz1‖2Hds

)(∫ ∞
0
‖esAz2‖2Hds

)
.

Therefore, by the principle of uniform boundedness, it follows that

sup
0≤t≤∞

‖Qθ(t)‖L(D(Aθ),H) < +∞. (15)

Then, using items (ii) and (iii), it follows that there exists a self-adjoint and positive-
definite operator Qθ : D(Aθ)→ H such that, for each z ∈ D(Aθ)

lim
t→+∞

‖Qθ(t)z −Qθz‖H = 0. (16)

Define the function V : D(A)→ R+ by

V (z) = 〈Qθz, z〉H =

∫ ∞
0
‖eAsz‖2Hds. (17)

Clearly, one has, for every t ≥ 0, that

V (etAz) = 〈QθetAz, etAz〉H =

∫ ∞
0
‖eA(t+s)z‖2Hds

=

∫ ∞
t
‖esAz‖2Hds ≤

C2‖z‖2D(A)

(2γ(θ)− 1)(1 + t)2γ(θ)−1
.

(18)
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Since z ∈ D(Aθ), the derivative of V with respect to t exists and is given by

d

dt
V (etAz) =2〈QθAetAz, etAz〉H

=2 lim
τ→+∞

∫ τ

0
〈Ae(t+s)Az, e(t+s)Az〉Hds

= lim
τ→+∞

∫ τ

0

d

ds
‖e(t+s)Az‖2Hds

=− ‖etAz‖2H .

In addition, since the origin is polynomially stable, the following holds

V (etAz) =〈QθetAz, etAz〉H =

∫ ∞
0
‖e(t+s)A‖2Hd

=

∫ ∞
t
‖esAz‖2Hds ≤

C2‖z‖D(Aθ)

(2γ − 1)(1 + t)2γ−1
,

If one sets Pθ as
Pθ := Qθ + αID(Aθ), (19)

with α > 0, one gets a self-adjoint, positive-definite and coercive operator. Note that,
for every z ∈ D(Aθ), one has

〈Pθz, z〉H = V (z) + α‖z‖2H .

Hence, (10) is satisfied as well as (11) since d
dt‖z‖

2
H ≤ 0. This concludes the proof of

the first part.
(⇐): We assume that there exists Pθ : D(Aθ) → D(Aθ) such that (10) and (11)

hold. For z ∈ D(Aθ), set V (z) = 〈Pθz, z〉H . Using (10), the derivative of V along the
the dynamics (1) yields

d

dt
V (etAz) ≤ −C‖z‖2H . (20)

Using (11), one has
lim

t→+∞
V (etAz) = 0, ∀z ∈ D(Aθ). (21)

Then, integrating the latter equation between any non negative time t and ∞, one has

V (etAz) ≥ C
∫ ∞
t
‖esAz‖2Hds. (22)

Recalling that H-norm of (etA)t≥0 is non increasing, the following holds

‖etAz‖2H ≤ ‖esA‖2H , ∀s ∈ [t/2, t] , (23)

for t > 0. Integrating the latter inequality between t
2 and t yields

t

2
‖etAz‖2H ≤

∫ t

t
2

‖esAz‖2H . (24)

Noticing that 1 + t ≤ 2t, for t ≥ 1, then the following holds

(1 + t)‖etAz‖2H ≤4

∫ t

t
2

‖esAz‖2Hds ≤ 4

∫ ∞
t
2

‖esAz‖2H ≤
4

C
V (e

tA
2 z), (25)
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where we have used (22). Using (11), we obtain

‖etAz‖2H ≤ 4
Cθ
C

1

(1 + t)2γ
‖z‖2D(Aθ), (26)

which concludes the proof of the polynomial stability of (1) and that of Proposition 2.
2

3 Linear infinite-dimensional systems subject to

a nonlinear damping

In this section, we discuss the notion of nonlinear damping function and state our main
results, that is, roughly speaking, the following: when modifying a stabilizing linear
feedback law with a nonlinear damping function, we characterize the asymptotic decays
of corresponding trajectories.

3.1 Linear control system with collocated feedback law

Let H and U be real Hilbert spaces equipped with the scalar product 〈·, ·〉H and 〈·, ·〉U ,
respectively. Let A : D(A) ⊂ H → H be a (possibly unbounded) linear operator
whose domain D(A) is dense in H. We suppose moreover that A generates a strongly
semigroup of contractions denoted by (etA)t≥0. We denote by A? its adjoint. Finally,
let B be a bounded operator from U to H (i.e., B ∈ L(U,H)) and let us denote by B?

its adjoint.
We consider the infinite-dimensional linear control system given by

d

dt
z = Az +Bu,

z(0) = z0,
(27)

where u denotes the control. In addition, we will choose the following collocated
feedback law

u = −kB?z, (28)

where k is a positive constant.
The corresponding closed-loop system is then written as follows

d

dt
z = (A− kBB?)z := Ãz,

z(0) = z0.
(29)

Since B is a bounded operator, the domain of Ã coincides with D(A). Moreover, it is
easy to see that Ã generates a strongly continuous semigroup of contractions.

The asymptotic stability of the origin of (29) has to be precised. We then assume
that the origin of (29) is either globally exponentially stable or globally polynomially
stable. Both hypotheses are collected just below.

Hypothesis 1 (Exponential stability). Assume that the origin of (29) is globally ex-
ponentially stable.
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Example 1. Let us consider the following linear wave equation
ztt = 4z − a(x)zt, (t, x) ∈ R+ × Ω,

z(t, x) = 0, (t, x) ∈ R+ × Γ,

z(0, x) = z0(x), zt(0, x) = z1(x),

(30)

where Ω ⊂ Rn (n ≥ 1) is a bounded connected domain with a smooth boundary Γ := ∂Ω.
The damping localization function a(·) is smooth, nonnegative and there exists a positive
constant a0 such that a(x) ≥ a0 on a non empty open subset ω of Ω. In other words,
the open subset ω is actually the set where the control acts. The feedback control is
said to be globally distributed if ω = Ω and locally distributed if Ω \ ω has a positive
Lebesgue measure.

Equation (30) can be rewritten as an abstract control system (29) setting H :=
H1

0 (Ω)× L2(Ω), U = L2(Ω) and

A : D(A) ⊂ H → H[
z1 z2

]> 7→ [
z2 4z1

]
,

(31)

B : U → H,

u 7→
[
0
√
a(x)u

]>
,

(32)

where
D(A) := (H2(Ω) ∩H1

0 (0, 1))×H1
0 (Ω).

The adjoint operators of A and B are, respectively

A? : D(A) ⊂ H → H[
z1 z2

]> 7→ −A [z1 z2

]>
,

(33)

and

B? : H → U,[
z1 z2

]> 7→√
a(x)z2.

(34)

A straightforward computation, combined with some integrations by parts, shows that

〈Az, z〉H + 〈z,Az〉H ≤ 0, ∀z ∈ D(A).

Hence, applying Lümer-Phillips’s theorem, it follows that A generates a strongly con-
tinuous semigroup of contractions. Moreover, using [35, Theorem 2.1.], (30) is globally
exponentially stable provided that ω is a neighbourhood of Γ. In particular, using Propo-
sition 1, there exists a Lyapunov operator P ∈ L(H) such that a Lyapunov inequality
holds. Therefore, Hypothesis 1 holds for (30).

Hypothesis 2 (Polynomial stability). Assume that the origin of (29) is 1-globally
polynomially stable with γ > 1

2 .

Example 2. Consider again on the wave equation (30). Suppose that the condition
such that the exponential is not satisfied. Assume moreover that Ω is a torus (i.e., the
boundary conditions are uniformly equal). Then, under some regularity assumptions
on the damping function a, that are collected in [4, Theorem 2.6], the trajectory is
1-globally polynomially stable, with γ > 1

2 .
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3.2 Nonlinear damping functions

As it has been noticed at the beginning of the section, we want to study the asymptotic
behavior of the origin of (27) with (28) modified by a nonlinearity, namely the nonlinear
damping function. We provide next the definition of the nonlinear damping function.

Definition 3 (Nonlinear damping functions on S). Let S be a real Banach space
equipped with the norm ‖ · ‖S. Assume moreover that (U, S) is a rigged Hilbert space2,
i.e., S is a dense subspace of U and that the following inclusions hold

S ⊆ U ⊆ S′. (35)

In particular, the duality pairing between S and S′ is compatible with the inner product
on U , in the sense that

(u, v)S×S′ = 〈u, v〉U , ∀u ∈ S ⊂ U, ∀v ∈ U = U ′ ⊂ S′. (36)

A function σ : U → S is said to be a nonlinear damping function on U if there exists
positive constants C1 and C2 such that the following properties hold true.

1. The function σ is locally Lipschitz.

2. The function σ is maximal monotone, that is: for all s1, s2 ∈ U , σ satisfies

〈σ(s1)− σ(s2), s1 − s2〉U ≥ 0. (37)

3. For any s ∈ U , one has

‖σ(s)− C1s‖S′ ≤ C2h(‖s‖S)〈σ(s), s〉U , (38)

where h : R→ R+ is a continuous and non decreasing function satisfying h(0) >
0.

Example 3 (Some examples of nonlinear damping functions). We provide two sets of
examples depending on the fact that S = U or not.

1. Suppose that S := U . The saturation studied in [32], [18] and [23] is defined as
follows, for all s ∈ U ,

satU (s) :=


s

‖s‖U
s0 if ‖s‖ ≥ s0,

s if ‖s‖ ≤ s0

(39)

where the positive constant s0 is called the saturation level. This operator clearly
satisfies Item 1. of Definition 3. The fact that this operator is globally Lipschitz
is proven in [32]. Moreover, one verifies easily that this operator satisfies Item 3.
of Definition 3. In [30], this operator is proved to be m-dissipative, which implies
that it is maximal monotone.

2. Suppose that S := L∞(0, 1) and U = L2(0, 1). In this case, S′ is the space
of finitely additive measures3. It contains the space L1, and S′ is continuously

2We refer the interested reader to [?] for more details on rigged Hilbert spaces
3Let Σ be an algebra of sets of a given set Ω. A function λ : Σ → R̄ is said to be a finitely additive

signed measure if: (i) λ(∅) = 0; (ii) given K1,K2 ∈ Σ, disjoint subsets, λ(K1 ∪K2) = λ(K1) + λ(K2). The
corresponding space, which is a Banach space, is endowed with the norm of total variation.
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embedded in L1(0, 1) via the operator u 7→
∫ 1

0 udx (see [6, Remark 7, Page 102]).
Therefore, it is clear that (U, S) is a rigged Hilbert space. Moreover, one can write
via the latter embedding that

(u, v)S×S′ = (v, u)L1(0,1)×L∞(0,1) = 〈u, v〉L2(0,1). (40)

For this case, we give two examples: the first one is a saturation, while the second
one is borrowed from [21].

(i) (L∞-saturation) Standard saturation functions can be defined as follows:

L2(0, 1)→ L∞(0, 1),

s 7→ satL∞(0,1)(s),
(41)

where satL∞(0,1)(s)(·) = sat(s(·)), where sat : R → R is a non decreas-
ing, locally Lipschitz function verifying, for some positive constant C, that
|sat(s)−Cs| ≤ ssat(s) for every s ∈ R. For instance, arctan, tanh and the
standard saturation functions σ0(s) = s

max(1,|s|) are saturation functions. In

all these cases, the function h appearing in (38) can be taken equal to one.
Note moreover that the saturations are uniformly bounded.

(ii) We have also the following nonlinear damping function, also called weak
damping, and borrowed from [21, Theorem 2.]

σ(s) ≤ c|s|q,∀s ∈ R

with c ≥ 0 and q < 1 and such that σ(0) = 0 and σ′(0) ≥ 0. In this case, we
have h(|s|) = |s|q−1.

Consider now the following nonlinear dynamics
d

dt
z = Aσ(z),

z(0) = z0,
(42)

where the nonlinear operator Aσ is defined as follows

Aσ : D(Aσ) ⊂ H → H

z 7→ Az −
√
kBσ(

√
kB?z).

(43)

withD(Aσ) the domain of Aσ. Since B is bounded, one clearly has thatD(Aσ) = D(A).
For the latter system, there exist many results related to its well-posedness and the

asymptotic stability of its origin. The following theorem collects some of them.

Theorem 1 (Well-posedness and global asymptotic stability). (i) Suppose that σ is
a nonlinear damping. Therefore, there exist a unique strong solution to (42) for
every initial condition z0 ∈ D(A). Moreover, the following functions

t 7→ ‖Wσ(t)z0‖H , t 7→ ‖AσWσ(t)z0‖H , (44)

are nonincreasing.
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(ii) Supposing that all the assumptions of the latter item hold and assuming more-
over that D(A) is compactly embedded in H, then the origin of (42) is globally
asymptotically stable, i.e., for every z0 ∈ D(A),

lim
t→+∞

‖Wσ(t)z0‖2H = 0. (45)

The proof of the first item is provided in [31, Lemma 2.1, Part IV, page 165].
The second item has been proved in the specific case of hyperbolic systems in [11]
(differentiable nonlinear damping) and [14] (non differentiable nonlinear damping).
The proof of this item relies on the use of the LaSalle’s Invariance Principle. For the
well-posedness and the global asymptotic stability of the closed-loop system (42) in
the case where σ is a saturation, we refer the interested reader to [30], [32] or more
recently to [22].

Remark 2. In some cases, it is not immediate to check whether D(A) is compactly
embedded in H. For instance, we know that this holds for hyperbolic systems [14] or
the linearized Korteweg-de Vries equation [22]. Note that the global asymptotic stability
does not give any information on the decay rate of the trajectory of the systems. Here,
we do not aim at just proving that the origin of (42) is globally asymptotically stable,
but rather at characterizing the decay rate of trajectories.

3.3 Global asymptotic stability results

The remaining parts of the paper aim at characterizing precisely the stability properties
of the origin of (42). Before stating our main results, let us provide some stability
definitions.

Definition 4 (Semi-global exponential stability). The origin of (42) is said to be semi-
globally exponentially stable in D(A) if, for any positive r and any initial condition
satisfying ‖z0‖D(A) ≤ r, there exist two positive constants µ := µ(r) and K := K(r)
such that

‖Wσ(t)z0‖H ≤ Ke−µt‖z0‖H , ∀t ≥ 0. (46)

This definition is inspired by [23], which focuses on a particular nonlinear damping
function, namely the saturation. It is well known that a linear finite-dimensional system
subject to a saturated controller cannot be globally exponentially stabilized (see [33]).
The semi-global exponential stability written just below can be thought as a global
exponential stability that is not uniform with respect to the initial condition (i.e., the
constant C and µ depend on the bound of the initial condition). Note also that [21,
Theorem 2] corresponds exactly to a semi-global exponential stability result.

A similar definition can be stated for the case of the polynomial stability.

Definition 5 (Semi-global polynomial stability). The origin of (42) is said to be semi-
globally polynomially stable in D(A) if there exists a positive constant γ and if, for
any positive r and any initial condition satisfying ‖z0‖D(A) ≤ r, there exists a positive
constant C := C(r) such that

‖Wσ(t)z0‖H ≤
C

(1 + t)γ
‖z0‖D(A), ∀t ≥ 0. (47)
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As for the semi-global exponential stability, the semi-global polynomial stability is
a global polynomial stability which is not uniform with respect to the initial condition.

We are now in position to state the main results of our paper. The first one is based
on Hypothesis 1.

Theorem 2 (Semi-global exponential stability). Consider that σ in (42) is a nonlinear
damping function satisfying Item 1. and 3. of Definition 3. Assume that Hypothesis 1
holds. Then, we have the following results

1. If S = U , there exists a strict and global Lyapunov function for (42).

2. If S 6= U , assume that σ is also maximal monotone (i.e., σ satisfies Item 2. of
Def 3) and that the following inequality holds

‖B?s‖S ≤ cS‖s‖D(A), ∀s ∈ D(A). (48)

Hence, the origin of (42) is semi-globally exponentially stable in D(A).

A similar theorem can be stated when assuming that Hypothesis 2 holds.

Theorem 3 (Semi-global polynomial stability). Consider that σ in (42) is a nonlinear
damping function satisfying all the items of Definition 3. Assume moreover that S = U
and Hypothesis 2 holds. Then, the origin of (42) is semi-globally polynomially stable
with γ = 1

2 .

Remark 3. The conclusion of Item 1. actually holds without the assumption of maxi-
mal monotonicity of the nonlinear damping function σ. Moreover, this case is entirely
similar to the finite-dimensional one, cf. Appendix 6 below.

Remark 4 (On the property (48)). In general, the property (48) should be weaken,
especially in the case of the wave equation in dimension higher than one. A more
general assumption would be the following: there exists a positive p ∈ N and a positive
constant cS such that

‖B?s‖S ≤ cS‖s‖D(Ap).

However, in that case, applying directly our strategy fails, because it would require
dissipativity of the semigroup in D(Ap), which is in general false in dimension higher
than 1 and for p ≥ 2.

Remark 5 (On the polynomial stability result). Theorem 3 states a result only for
the case where S = U . Indeed, the case S 6= U would need a dissipativity property in
D(A2), which is not true in general.

4 Proof of the main theorems

In this section, we provide the proof of Theorem 2 and the proof of Theorem 3. These
proofs are based on a Lyapunov strategy.
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4.1 Proof of Theorem 2

We split the proof of Theorem 2 into two cases. Firstly, we tackle Item 1. of Theorem
2 and then Item 2. Indeed, the Lyapunov functions considered in the two cases are
different. In both cases, each argument is itself divided into two steps. First, we find
a strict Lyapunov function and then we prove the asymptotic stability of the origin of
(42).

Case 1: S = U .
Set Ã = A−C1BB

?, where the positive constant C1 is given in (38) and P ∈ L(H)
is defined in (8). Consider the following candidate Lyapunov function

Ṽ (z) := 〈Pz, z〉H +M

∫ ‖z‖2
0

√
vh(‖B‖L(U,H)

√
v)dv, (49)

where M is a sufficiently large positive constant to be chosen later and h is the function
defined in Item 3 of Definition 3. This function, inspired by [19], is positive definite
and coercive. Indeed, since h(0) > 0,∫ ‖z‖2H

0

√
vh(‖B‖L(U,H)

√
v)dv ≥ h(0)

∫ ‖z‖2H
0

√
vdv =

2h(0)

3
‖z‖3H . (50)

Noticing that there exists α > 0 such that α‖z‖2 ≤ 〈Pz, z〉H ≤ ‖P‖L(H)‖z‖2, one has

α‖z‖2 +Mh(0)
2

3
‖z‖3H ≤ Ṽ ≤ ‖P‖L(H)‖z‖2 +M‖z‖3Hh(‖B‖L(U,H)‖z‖H). (51)

Applying Cauchy-Schwarz’s inequality, one has

d

dt
〈Pz, z〉H =〈Pz, Ãz〉H + 〈PÃz, z〉H (52)

+ 〈Pz,B(C1B
?z − σ(B?z)〉H + 〈PB(C1B

?z − σ(B?z), z〉H
≤− C‖z‖2H + 2〈B?Pz,C1B

?z − σ(B?z)〉U (53)

≤− C‖z‖2H + 2‖B?Pz‖U‖C1B
?z − σ(B?z)‖U ,

Using Item 3. of Definition 3 and the fact that B? is bounded in U , it yields

d

dt
〈Pz, z〉H ≤− C‖z‖2H + 2C2‖B?‖L(H,U)‖P‖L(H)‖z‖Hh(‖B?z‖U )〈B?z, σ(B?z)〉U

≤− C‖z‖2H + 2C2‖B?‖L(H,U)‖P‖L(H)‖z‖Hh(‖B‖L(U,H)‖z‖U )〈B?z, σ(B?z)〉U .

Secondly, using the dissipativity of the operator A, one has

M
d

dt

∫ ‖z‖2
0

√
vh(‖B‖L(U,H)

√
v)dv =M‖z‖Hh(‖B‖L(U,H)‖z‖H)(〈Az, z〉H

+ 〈z,Az〉 − 2〈B?z, σ(B?z)〉U )

≤− 2M‖z‖Hh(‖B‖L(U,H)‖z‖H)〈B?z, σ(B?z)〉U

Hence, if one chooses M as

M = C2‖B?‖L(H,U)‖P‖L(H), (54)
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one obtains, after adding the above two equations, that

d

dt
Ṽ (z) ≤ −C‖z‖2H . (55)

This concludes the proof of Theorem 2 in the case where S = U .
Case 2: S 6= U .
In this case, we are not able to control the term ‖C1B

?z − σ(B?z)‖U in (53) with
Item 3. of Definition 3. To tackle this term, the inequality (48) together with Item
1. of Theorem 1 will be used in order to prove that the origin of (42) is semi-globally
exponentially stable.

Let Ṽ (z) be the Lyapunov function candidate defined by

z ∈ D(A) 7→ Ṽ (z) := 〈Pz, z〉H +M‖z‖2H , (56)

where M > 0 will be selected later.
First, using the dissipativity of the operator A, one has

d

dt
M‖z‖2H ≤ −2M〈B?z, σ(B?z)〉U . (57)

Second, perfoming similar computations than in the case S = U , one obtains

d

dt
〈Pz, z〉H ≤ −C‖z‖2H + 2〈B?Pz,C1B

?z − σ(B?z)〉U . (58)

It remains now to control the term

2〈B?Pz,C1B
?z − σ(B?z)〉U .

We now assume that we have a strong solution for (42), whose initial condition z0 ∈
D(A) is such that

‖z0‖D(A) ≤ r, ‖z0‖H ≤ r, (59)

for some positive r. Since (U, S) is a rigged Hilbert space, hence the following holds

〈B?Pz,C1B
?z − σ(B?z)〉U = (B?Pz,C1B

?z − σ(B?z))S×S′ .

Hence, applying Cauchy-Schwarz’s inequality, one obtains

d

dt
〈Pz, z〉H ≤ −C‖z‖2H + 2‖B?Pz‖S‖C1B

?z − σ(B?z)‖S′ . (60)

Moreover, thanks to (48), one has

‖B?Pz‖S ≤ cS‖Pz‖D(A) (61)

and

‖C1B
?z − σ(B?z)‖S′ ≤C2h(‖B?z‖S)〈B?z, σ(B?z)〉U

≤C2h(‖B?‖‖z‖D(A))〈B?z, σ(B?z)〉U ,
(62)

where we have used the fact that h is non decreasing and Item 3. of Definition 3 in
the second one.
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Now, using (44), the fact that P ∈ L(D(A)) and the dissipativity of the strong
solution, which comes from Item 2. of Theorem 1 and which can be written as follows:

‖PWσ(t)z0‖D(A) ≤ ‖P‖L(D(A))‖z0‖D(A), ‖Wσ(t)z0‖D(A) ≤ ‖z0‖D(A), (63)

one has

d

dt
〈Pz, z〉H ≤ −C‖z‖2H + 2cSh(‖B?‖r)rC2‖P‖L(D(A)〈B?z, σ(B?z)〉U . (64)

Therefore, if one selects M such that

M = cSC2h(‖B?‖r)r‖P‖L(D(A)), (65)

it follows
d

dt
Ṽ (z) ≤ −C‖z‖2H . (66)

Note that we have, for all z ∈ H

〈Pz, z〉H ≤ ‖P‖L(H)‖z‖H . (67)

Hence, it yields

d

dt
Ṽ (z) ≤− C

2‖P‖L(H)
〈Pz, z〉H −

C

2
‖z‖2H

≤− µṼ (z),

(68)

where

µ := min

(
C

2‖P‖L(H)
,
C

2M

)
. (69)

After integration of the above differential inequality, one obtains

Ṽ (Wσ(t)z0) ≤ e−µtṼ (z0), ∀t ≥ 0. (70)

Hence,

‖Wσ(t)z0‖2H ≤
‖P‖L(H) +M

M
e−µt‖z0‖2H . (71)

Since M depends on the bound of the initial condition, the origin of (42) is semi-
globally exponentially stable for any strong solution to (42). It concludes the proof of
Item 2. of Theorem 2.

Remark 6. The Lyapunov functional used in the proof of the case S = U corresponds
to the one used in the finite-dimensional case, treated in Appendix 6. In particular, one
can characterize the asymptotic behavior of the trajectory in a similar manner than in
Remark 7.2 by setting λmin(P ) := α and K : X ∈ R+ 7→

∫ X
0

√
vh(‖B‖L(U,H)

√
v)dv ∈

R+. This implies in particular that we do not need the solution to be strong, which is
in contrast with the case where S 6= U , where the decay rate depends on the bound of
the initial condition in D(A).
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4.2 Proof of Theorem 3

We assume here that S = U and θ = 1. Set Ã = A − C1BB
?, P1 : D(A) → D(A)

defined in (10) and C1 is the positive constant defined in Item 2 of Definition 3.
Let us consider the following candidate Lyapunov function

Ṽ (z) = 〈P1z, z〉H +M‖z‖2H , (72)

where M is a positive constant that has to be chosen.
First, using the dissipativity of the operator A, one has

M
d

dt
‖z‖2H =M(〈Az, z〉H + 〈z,Az〉H + 2〈σ(B?z), B?z〉U ) ≤ −2M〈σ(B?z), B?z〉U .

(73)

Secondly, we have

d

dt
〈P1z, z〉H =〈P1Aσ(z), z〉H + 〈P1z,Aσ(z)〉H = 〈P1Ãz, z〉H + 〈P1z, Ãz〉H

+ 2〈P1B(C1B
?z − σ(B?z), z〉H ≤ −C‖z‖2H

+ 2〈C1B
?z − σ(B?z), B?P1z〉U ,

where we have used in the last line the Lyapunov inequality (10).
Applying Cauchy-Schwarz inequality and Item 3. of Definition 3, one obtains

d

dt
〈P1z, z〉H ≤− C‖z‖2H + 2‖C1B

?z − σ(B?z)‖U‖B?P1z‖U

≤− C‖z‖2H + 2C2h(‖B?z‖S)〈σ(B?z), B?z〉U‖B?P1z‖U
(74)

It remains to choose a constant M in (73) in order to compensate the term

C2h(‖B?z‖U )‖B?P1z‖U , (75)

which appears in the latter inequality.
We consider initial condition z0 in D(A) satisfying

‖z0‖D(A) ≤ r, (76)

for some positive r. Note that, since σ is a nonlinear damping, one can apply Item 1.
of Theorem 1. Therefore, for all z0 ∈ D(A),

‖Wσ(t)z0‖H ≤ ‖z0‖H , ‖AWσ(t)z0‖H ≤ ‖Az0‖H . (77)

This latter property together with (76) implies that

‖Wσ(t)z0‖D(A) ≤ r. (78)

Finally, using the fact that B? ∈ L(H,U) and that h is non decreasing, (75) becomes

C2h(‖B?z‖U )‖B?P1z‖U ≤C2h(‖B?‖L(H,U)‖z‖H)‖B?‖L(H,U)‖P1z‖H
≤C2Cθh(‖B?‖L(H,U)‖z‖H)‖B?‖L(H,U)‖z‖D(A).

(79)
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Then, using (78) and the fact that ‖z‖H ≤ ‖z‖D(A), one has

C2h(‖B?z‖U )‖B?P1z‖U ≤ C2Cθh(‖B?‖L(H,U)r)‖B?‖L(H,U)r. (80)

Finally, if one selects M such that

M = C2Cθh(‖B?‖L(H,U)r)‖B?‖L(H,U)r, (81)

the derivative of Ṽ along the trajectories of (42) satisfies

Ṽ (z) ≤ −C‖z‖2H , ∀z ∈ D(A). (82)

Note that Ṽ satisfies, for all z ∈ D(A)

α‖z‖2D(A) +M‖z‖2H ≤ Ṽ (z) ≤M‖z‖2H + Cθ‖z‖2D(A). (83)

First, integrating (82) between 0 and t, one obtains

Ṽ (Wσ(t)z0)− Ṽ (z0) ≤ −C
∫ t

0
‖Wσ(s)z0‖2Hds. (84)

Since Aσ is dissipative, one deduces from (84) that, for every t ≥ 0,

C(1 + t)‖Wσ(t)z0‖2H ≤ C‖z0‖2H + Ṽ (z0),

and hence,

‖Wσ(t)z0‖2H ≤
1

1 + t

M + Cθ + C

C
‖z0‖2H . (85)

This achieves the proof of Theorem 3.

5 Illustrative examples

5.1 Linearized Korteweg-de Vries equation with spatially
localized damping

As a first example, let us focus on the following partial differential equation,
zt(t, x) + zx(t, x) + zxxx(t, x) = −a(x)z(t, x), (t, x) ∈ R≥0 × [0, L],

z(t, 0) = z(t, L) = zx(t, L) = 0, t ∈ R≥0,

z(0, x) = z0(x), x ∈ [0, L],

(86)

where L is a positive constant, ω is a nonempty open subset of (0, L) and a(x) is a
smooth bounded nonnegative function satisfying a(x) ≥ a0 for all x ∈ ω for some
positive constant a0.

This equation can be written in an abstract way as in (29) if one sets H = L2(0, L),
U = L2(Ω),

A : D(A) ⊂ L2(0, L)→ L2(0, L),

z 7→ −z′ − z′′′,
(87)
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where
D(A) := {z ∈ H3(0, L) | z(0) = z(L) = z′(L) = 0}, (88)

and

B : L2(ω)→ L2(Ω)

u 7→
√
a(x)u.

(89)

4 The adjoint operators of A and B are, respectively

A? : D(A?) ⊂ H → H,

z 7→ z′ + z′′′,
(90)

with D(A?) := {z ∈ H3(0, L) | z(0) = z(L) = z′(0) = 0}, and

B? : L2(Ω)→ L2(ω)

z 7→
√
a(x)z.

(91)

A straightforward computation, together with some integrations by parts, shows that

〈Az, z〉H + 〈z,Az〉H ≤ 0, ∀z ∈ D(A). (92)

Since A is a closed linear operator and D(A) is dense in H, according to Lümer-
Phillips’ theorem (see e.g., [34, Theorem 3.8.4., Page 103]), it follows that A generates
a strongly continuous semi-group of contractions. Note that, according to [7, Section
4], Hypothesis 1 holds.

In the case where S = U , the result follows easily, since the operator B? does not
any regularity propert as in the case where S 6= U . Consider now the saturation σ
defined in (41), i.e. σ = satL∞(0,1). In order to check whether (40) holds, the following
result, obtained in [24], is needed:

Lemma 1 ([24], Lemma 4.). For all z ∈ D(A), there exists a positive constant ∆ such
that

‖z‖H1
0 (0,L) ≤ ∆‖z‖D(A).

Using the above mentionned result together with the fact that the space H1
0 (0, L)

is continuously embedded in L∞(0, L), that is due to Rellich-Kondaroch Theorem [6,
Theorem 9.16, page 285], one obtains that

‖z‖S ≤ ∆‖z‖D(A).

Since B? is bounded in L∞, there exists a positive constant cB such that ‖B?z‖S ≤
cB‖z‖S , and then

‖B?z‖S ≤ ∆‖z‖D(A).

Therefore, (48) holds for the linear Korteweg-de Vries equation.
Finally, since all the properties needed to apply Theorem 2 hold, this proves that

the origin of
zt(t, x) + zx(t, x) + zxxx(t, x) = −

√
a(x)satL∞(

√
a(x)z(t, x)), (t, x) ∈ R≥0 × [0, L],

z(t, 0) = z(t, L) = zx(t, L) = 0, t ∈ R≥0,

z(0, x) = z0(x), x ∈ [0, L],
(93)

is semi-globally exponentially stable in D(A).

4We refer to [14] for this definition in the case of hyperbolic system.

20



5.2 Wave equation

Consider Example 30 in the case where the damping is modified by a nonlinear damping
function satisfying all the items of Definition 3. Then, the equation reads as follows

ztt = 4z −
√
a(x)σ(

√
a(x)zt), (t, x) ∈ R+ × Ω,

z(t, x) = 0, (t, x) ∈ R+ × Γ,

z(0, x) = z0(x), zt(0, x) = z1(x),

(94)

As before, the case S = U follows easily. Therefore, assuming that Hypothesis 1
holds, there exists a strict and global Lyapunov function for (94) and, assuming that
Hypothesis 2 holds, the origin of (94) is semi-globally polynomially stable.

Assume now that S = L∞(Ω). Note that the inequality given by (48) does not
hold if the dimension of x is higher or equal to 2. Then, assume that Ω := [0, 1]. This
implies that

‖B?z‖S =‖a(·)zt(t, ·)‖L∞(Ω)

≤‖a(·)‖L∞(Ω)‖zt(t, ·)‖L∞(Ω).
(95)

Since H1
0 (Ω) embedds continuously in L∞(Ω) due to Rellich-Kondrachov theorem [6,

Theorem 9.16, page 285], there exists a positive constant CΩ such that

‖B?z‖S ≤ CΩ‖a(·)‖L∞(Ω)‖zt(t, ·)‖H1
0 (Ω). (96)

Noticing that
‖(z, zt)‖D(A) := ‖z‖H2(Ω)∪H1

0 (Ω) + ‖zt‖H1
0 (Ω), (97)

then
‖B?z‖S ≤ CΩ‖a(·)‖L∞(Ω)‖(z, zt)‖D(A). (98)

This implies that (48) holds for (30) with cS := CΩ‖a(·)‖L∞(ω). Hence, one can apply
Theorem 2. In particular, the origin of (94) is semi-globally exponentially stable in
D(A) for any nonlinear damping function σ satisfying all the items of Definition 3.

Remark 7. In [21], a similar result is provided for damped wave equations in dimen-
sion N ≤ 3. The strategy the authors follow in the paper does not rely on a Lyapunov
functional, but rather on a analysis of the natural energy of the wave equation in order
to obtain an integral inequality. Note that their result are better than ours for the wave
equation because they need an L∞ bound (unifrom in time along a trajectory) only for
z while we (essentially) need a similar bound for zt.

6 Conclusion

In this paper, we have characterized the asymptotic behavior of a family of linear
infinite-dimensional systems subject to a nonlinear damping. Assuming that the origin
of the system is globally exponentially stable or globally polynomially stable when the
damping is linear, we have built Lyapunov functionals for the nonlinear system. These
Lyapunov functionals are the sum of two terms: the first one is based on the Lyapunov
operator coming the stabilizability property of the linear system and the second term
is added in order to compensate the nonlinearities.

From this work, there exist many research lines which can be pursued further.
Below, we have listed some of them.
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• Unfortunetaly, our strategy in the case where S 6= U (i.e., S = L∞(Ω)) does
not work for the wave equation with a dimension higher than 2. It might be
interesting to investigate a weaker property than (48) in order to characterize
precisely the asymptotic behavior of the wave equation subject to a nonlinear
damping;

• In some papers (see e.g., [21]), the nonlinear damping function is not assumed to
be maximal monotone (i.e., it does not satisfy Item 2. of Definition 3). We believe
that our general strategy might also work without assuming such a property,
focusing on some particular partial differential equations.

• It might be also interesting to investigate ISS properties of such linear infinite-
dimensional systems subject to a nonlinear damping. The case where S = U has
been tackled in [25], but the case S 6= U seems harder to obtain.

• Our strategy might be also adapted for other nonlinearities, such as the dry
damping, which has been studied for instance in [5]. In contrast with the nonlinear
damping introduced in this paper, the dry damping is not smooth (it is described
with a sign function), which makes the well-posedness study of the closed-loop
system not trivial to tackle as well as an asymptotic behavior characterization.

7 Lyapunov functions for linear finite-dimensional

systems subject to a nonlinear damping

7.1 Deriving Lyapunov functions for the finite-dimensional
case

Let us consider the following linear finite-dimensional system

d

dt
z = Az +Bu, (99)

where z ∈ Rn, u ∈ Rm, and A and B of appropriate dimension. Let us denote by | · |
the Euclidian norm of Rn and |B| the induced norm of the matrix B. We use > to
denote the transpose of a matrix. We suppose that the following properties hold:

(i) the pair (A,B) is controllable;

(ii) A is dissipative, i.e., for every z ∈ Rn,

z>Az + z>A>z ≤ 0.

Then, for every k > 0, the feedback-law u = −kB>z stabilizes the origin of (99), i.e.
the matrix A− kBB> is Hurwitz. This means in particular that there exists a unique
symmetric positive-definite matrix P ∈ Rn×n such that

(A− kBB>)>P + P (A− kBB>) = −IRn . (100)

We aim at modifying the feedback control u = −kBB?z with a nonlinear damping
function given by Definition 3 and at building a strict Lyapunov function for the
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corresponding nonlinear system. Note that in this case S = U = Rm. This Lyapunov
function is based on the following function

K : X ∈ R+ 7→
∫ X

0

√
vh(|B|

√
v)dv ∈ R+. (101)

In particular, this function is positive, strictly increasing, vanishes at 0 and tends to
infinity as X tends to infinity.

Theorem 4. Consider a nonlinear damping function only satisfying Items 1. and 3. of
Definition 3, where S = U = Rm. Let P be the solution of (100) with k = C1 provided
in (38). Then, the positive definite function Ṽ : Rn → R+ given by

Ṽ (z) := z>Pz + C2|B| |P |K(|z|2), (102)

where C2 is provided in (38), is a strict Lyapunov function for the following nonlinear
system

d

dt
z = Az −Bσ(B>z) := Aσ(z), (103)

and, along its trajectories, one has

d

dt
Ṽ (z) ≤ −|z|2. (104)

Proof Set Ã = A − C1BB
?, where the positive constant C1 is given in (38) and

P is defined in (100). Consider the following candidate Lyapunov function Ṽ (z) :=
z>Pz + MK(|z|) where M is a sufficiently large positive constant to be chosen later
and h is the function defined in Item 2 of Definition 3. This function, inspired by [19],
is positive definite and coercive. Indeed, since h(0) > 0,∫ |z|2

0

√
vh(|B|

√
v)dv ≥ h(0)

∫ |z|2
0

√
vdv =

2h(0)

3
|z|3. (105)

Therefore, Ṽ ≥ 2h(0)
3 |z|

3 + λmin(P )|z|2, where λmin(P ) is the smallest eigenvalue of P .

It implies in particular that the Lyapunov function Ṽ is coercive. Moreover, noticing
that z>Pz ≤ |P ||z|2 and that h is increasing, one has therefore

λmin(P )|z|2 +
2Mh(0)

3
|z|3 ≤ Ṽ ≤ |P ||z|2 +M |z|3h(|B||z|). (106)

Applying Cauchy-Schwarz’s inequality, one has

d

dt
z>Pz =z>PÃz + z>PÃ>z + 2z>PB(C1B

>z − σ(B>z)

≤− |z|2 + 2C1|B>Pz| |B>z − σ(B>z)|
≤ − |z|2 + 2C2|B| |P | |z|h(|B>z|)z>B>σ(B>z),

where we have used in the last inequality Item 3. of Definition 3. Secondly, using the
dissipativity of the matrix Aσ, one has

M
d

dt

∫ |z|2
0

√
vh(|B|

√
v)dv =M |z|h(|B| |z|)(z>A>z + z>Az − 2z>Bσ(B>z))

≤− 2M |z|h(|B| |z|)z>Bσ(B>z).
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Hence, if one chooses M = C2|B| |P |, one obtains, after adding the two above inequal-
ities, the desired inequality (104). This achieves the proof of Theorem 4. 2

Remark 8. Damping functions are usually of the type z 7→ (σi(zi))1≤i≤m, where σi
is a real valued damping function. If σ(z)/z → 0 as |z| tends to infinity, then σ is
said to be a weak damping function, for instance C1s/(1 + |s|)k, with C1, k > 0. In
this case, up to a positive constant, the function h can be taken equal to one if k ≥ 1
and to (1 + ξ)k−1 if k ≥ 1. If moreover σ(·) admits non zero limits at infinity, then
σ is sometimes called a saturation function, for instance arctan(s) or tanh(s) and, in
this case, the function h is equal to a positive constant. The definition of damping
function is (essentially) known for saturation functions (cf. [19], [33]), especially the
key inequality (38), in which case the admissible function h is simply constant.

Remark 9. The behavior of a damping function at infinity is rather general but the
behavior at zero is linear. In the case of a real valued damping function, the results of
this paper can be easily generalized to the case where

0 < lim inf
z→0

σ(z)

z
≤ lim sup

z→0

σ(z)

z
<∞. (107)

The only modification occurs in (38), where the constant C1 must be replaced by a
positive function C1(·) bounded below and above by two positive constants.

7.2 Asymptotic behavior characterization

We claim that, once a trajectory enters the unit ball, then it converges exponentially
to the origin. Indeed, let t? the time such that:

|Wσ(t?)z0| = 1, (108)

where t? = 0 if |z0| ≤ 1. Since (Wσ(t))t≥0 is a strongly continuous semigroup of
contractions, one has

|Wσ(t)z0| ≤ |Wσ(t?)z0| ≤ 1, t ≥ t?. (109)

Note that, for all t ≥ t?, one has |Wσ(t)z0|3 ≤ |Wσ(t)z0|2. Therefore, since h is
increasing, (106) reduces in the unit ball to

λmin(P )|z|2Ṽ (z) ≤ (|P |+Mh(|B|))|z|2 (110)

and (104)

d

dt
Ṽ (z) ≤− CV Ṽ (z), ∀t ≥ t∗,

where CV := 1
|P |+Mh(|B|) . Then, one gets easily the claim.

Hence, it remains to characterize the behavior of trajectories of (103) before they
enter the unit ball. The function X 7→ K(X) + λmin(P )X is strictly increasing and
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hence defines a bijection from R+ to R+. It has a strictly increasing inverse function,
that we call g. Then, along any trajectory of (103),

d

dt
Ṽ (z) ≤ −g(Ṽ (z)). (111)

From here, one can characterize the asymptotic behavior of (103): there exist two
positive constants C3, C4 such that, for |z0| large enough,

|z(t)| ≤ C3

√
(g ◦G)(C4|z0| − t), ∀t ∈ [0, C3|z0| − 1] , (112)

where G is the function defined by

G(|z|) :=

∫ |z|
1

dv

g(v)
.

For instance, if the nonlinear damping function σ is given by any saturation function
satisfying (41), then h is the identity, and we have

|z(t)| ≤ C3(C4|z0| − t), ∀t ∈ [0, C4|z0| − 1] ,

which is a linear decay of the trajectories with large initial conditions. It is actually
optimal since one can prove a converse inequality as follows. Since A is dissipative, one
has that

d

dt
|z|2 = 2z>

d

dt
z = −2z>Bσ(B>z) ≥ −2Cσ|B||z|,

where Cσ is a constant bounding σ. Therefore, for all t ≥ 0

d

dt
|z| ≥ −2Cσ|B|. (113)

This implies that
|z| ≥ −2Cσ|B|t− |z0|. (114)

Hence, for a suitable positive constant C5 and C6 depending on C3, C4, Cσ and |B|
and for a sufficiently large initial condition, one therefore has

|z| = C5(C6|z0| − t), ∀t ∈ [0, C6|z0| − 1]. (115)

References

[1] F. Alabau. Stabilisation frontiere indirecte de systemes faiblement couplés.
Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 328(11):1015–
1020, 1999.

[2] F. Alabau-Boussouira. Indirect boundary stabilization of weakly coupled hyper-
bolic systems. SIAM Journal on Control and Optimization, 41(2):511–541, 2002.

[3] F. Alabau-Boussouira. On some recent advances on stabilization for hyperbolic
equations. In Control of partial differential equations, pages 1–100. Springer, 2012.
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