
HAL Id: hal-01857265
https://laas.hal.science/hal-01857265v3

Submitted on 29 Oct 2018 (v3), last revised 4 Dec 2018 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability results for infinite-dimensional linear control
systems subject to saturations

Swann Marx, Yacine Chitour, Christophe Prieur

To cite this version:
Swann Marx, Yacine Chitour, Christophe Prieur. Stability results for infinite-dimensional linear con-
trol systems subject to saturations. European Control Conference (ECC 2018), Jun 2018, Limassol,
Cyprus. �hal-01857265v3�

https://laas.hal.science/hal-01857265v3
https://hal.archives-ouvertes.fr


Stability results for infinite-dimensional linear control systems subject
to saturations

Swann Marx1, Yacine Chitour2 and Christophe Prieur3

Abstract— This article deals with the stability analysis
and the derivation of ISS-Lyapunov functions for infinite-
dimensional linear systems subject to saturations. Two cases
are considered: 1) the saturation acts in the same space as the
control space; 2) the saturation acts in another space, especially
a Banach space. For the first case, an explicit ISS-Lyapunov
function can be derived. For the second case, we prove the
global asymptotic stability of the origin when considering all
weak solutions.

I. INTRODUCTION

In recent decades, a great deal of effort has been dedicated
to the development of tools for the analysis of systems with
a saturated control in a finite-dimensional framework (see
[?], for a nice introduction to the topic as well as the main
techniques used). It is well known, in the finite-dimensional
framework, that without any Lyapunov stability property
for the open-loop system, the origin cannot be globally
asymptotically stable when closing the loop with a saturated
feedback law. Moreover, even if the open-loop system is
Lyapunov stable, simply saturating a stabilizing feedback can
lead to undesirable behavior for the asymptotic stability of
the closed-loop system (see e.g., [?]). In these cases, the
feedback-law has to be designed taking into account the
nonlinearity (see e.g. the famous nested saturation solution
given in [?] for the chain of integrators and generalized in
[?], and [?] for another solution based on optimization).

To the best of our knowledge, analysis of infinite-
dimensional systems subject to saturations started with [?]
and [?] and it is only very recently that appeared other
works such as [?] and [?]. In [?] and [?], global asymptotic
stability of the closed-loop system is tackled using nonlinear
semigroup theory. Moreover [?] and [?] use similar results,
but for a wider class of saturations. In [?], a nonlinear
partial differential equation, namely the Korteweg-de Vries
equation, is considered and some Lyapunov arguments are
used to conclude on the global asymptotic stability of the
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closed-loop system. Finally, some nonlinear open-loop ab-
stract control systems are studied in [?], where a LaSalle
Invariance Principle is applied to prove global asymptotic
stability.

A system subject to disturbances is said to be input-
to-state stable (for short ISS) if its state is bounded by
the norm of the disturbances. It implies that the state is
bounded if the disturbances are bounded, and converges to
0 if the disturbances goes to 0. Such a notion, introduced
in [?] for finite-dimensional systems, is an important tool
to design robust feedback laws or even observers. This
kind of properties has been studied for finite-dimensional
control systems subject to saturations (see e.g., [?]). Note that
the ISS notion has been extended for infinite-dimensional
systems (see e.g., [?], [?] and [?]).

The aim of this paper is to study linear infinite-dimensional
systems subject to saturations and disturbances, therefore to
analyse the asymptotic stability and to find ISS-Lyapunov
functions for such systems. Two cases are considered: 1) the
saturation acts in the same space as the control space; 2) the
saturation acts in another space, especially a Banach space.
For the first case, we provide an ISS-Lyapunov function
inspired by [?]. For the second case, we just prove the
global asymptotic asymptotic stability of the origin, when
considering all weak solutions of the nonlinear infinite-
dimensional system.

The paper is organized as follows. In Section II, the
problem is stated, some useful definitions are introduced and
the main result is provided. In Section III, some definitions
and technical lemmas are given together with the proof of
the main result. Some numerical simulation are collected in
Section IV for the linearized Korteweg-de Vries equation.
Finally, Section V collects some concluding remarks.

II. PROBLEM STATEMENT AND MAIN RESULTS

A. Some remarks on the linear system
Let H and U be real Hilbert spaces equipped with the

scalar product 〈·, ·〉H and 〈·, ·〉U , respectively. Let A :
D(A) ⊂ H → H be a (possibly unbounded) linear operator
whose domain D(A) is dense in H . Suppose that A gener-
ates a strongly continuous semigroup of linear contractions
denoted by etA. Let B : U → H be a bounded operator.
The operators A? and B? denote the adjoint operators of A
and B, respectively. The aim of this paper is to study the
following abstract control system

d

dt
z = Az +Bu,

z(0) = z0.
(1)



Suppose that we have the output y = B?z. Therefore, in
this case, a natural feedback law for (1) is u = −B?z. One
needs the following assumption.

Assumption 1. [Linear feedback law] The feedback law u =
−B?z makes the origin of the closed-loop system

d

dt
z = (A−BB?)z,

z(0) = z0.
(2)

globally exponentially stable.

It is easy to see that, under Assumption 1, A − BB?

generates a strongly continuous semigroup of contractions
(see [?] for a precise proof of this result). In the remaining
sections of this paper, the following notation will be used.

Ã := A−BB? (3)

Let us denote the strongly continuous semigroup of contrac-
tions generated by ÃK by etÃ.

From [?, Theorem 5.1.3, page 217], Assumption 1 holds
if and only if there exist a self-adjoint and definite positive
operator P ∈ L(H) and a positive value C such that

〈Ãz, Pz, 〉H + 〈Pz, Ãz〉H ≤ −C‖z‖2H , ∀z ∈ D(Ã), (4)

where D(Ã) is the domain of Ã (by (3) and the boundedness
of B, it coincides with the domain of A). In other words,
this inequality implies that there exists a Lyapunov function
for the closed-loop system (2), given by

V (z) := 〈Pz, z〉H . (5)

B. Saturation functions

In this section, the case where the feedback law is bounded
is studied. As explained in introduction, the feedback laws
rely on the use of a saturation function defined next.

Definition 1. [Saturation functions on S] Let S be a real
Banach space equipped with the norm ‖ · ‖S . Assume more-
over that (U, S) is a rigged Hilbert space. In other words, S
is a dense subspace of U and the following inclusions hold

S ⊆ U ⊆ S′. (6)

In particular, the duality pairing between S and S′ is
compatible with the inner product on U , in the sense that

(v, u)S′×S = 〈v, u〉U , ∀u ∈ S ⊂ U, ∀v ∈ U = U ′ ⊂ S′.
(7)

A function σ : S → S is said to be a saturation function on
S admissible for U if it satisfies the following properties

1. For any s ∈ S, the following holds

‖σ(s)‖S ≤ 1; (8)

2. For any s, s̃ ∈ S, the following holds

〈σ(s)− σ(s̃), s− s̃〉U ≥ 0; (9)

3. For any s, s̃ ∈ S, there exists a positive value k such
that the following holds

‖σ(s)− σ(s̃)‖U ≤ k‖s− s̃‖U ; (10)

4. There exist positive values

and

such that, for any s ∈ U , the following holds

‖σ(s)− s‖S′ ≤ 〈σ(s), s〉U . (11)

5. There exists a positive value C0 such that, for any s, s̃ ∈
U , the following holds

〈s, σ(s+ s̃)− σ(s)〉U ≤ C0‖s̃‖U . (12)

Example 1. [Examples of saturations] Here are examples of
saturations borrowed from [?] or [?].

1. Suppose that S := L∞(0, 1) and U = L2(0, 1). In this
case, S′ is the space of Radon measures. It contains
strictly the space L1(0, L). In particular, the norm of
S′ is identified by the norm of L1(0, L). Hence, (U, S)
is a rigged Hilbert space.
The classical saturation, which is used in practice, can
be defined as follows:

L∞(0, 1)→ L∞(0, 1),

s 7→ satL∞(0,1)(s),
(13)

where

satL∞(0,1)(s)(x) = satR(s(x)) (14)

and

satR(s) :=

 −1 if s ≤ −1,
s if − 1 ≤ s ≤ 1,
1 if s ≥ 1,

(15)

All the items of Definition 1 are proved in [?] and [?].
2. Suppose that S := U . The saturation, studied in [?], [?]

and [?], is defined as follows, for all s ∈ U

satU (s) :=

{
s if ‖s‖U ≤ 1,
s
‖s‖U if ‖s‖U ≥ 1.

(16)

It may be proven that satU satisfies all items of Defi-
nition 1 for an admissible saturation map.

C. Discussion on the well-posedness

1) Case without disturbance: We aim at studying the
following closed-loop system

d

dt
z = Az −Bσ(B?z) := Aσz,

z(0) = z0,
(17)

where the operator Aσ is defined as follows

Aσ : D(Aσ) ⊂ H → H

z 7→ Aσz,
(18)

with D(Aσ) = D(A).
From [?, Lemma 2.1., Part IV, Page 165.], we have the

following proposition

Proposition 1. [Well-posedness] The operator Aσ generates
a strongly continuous semigroup of contractions, which we
denote by (Wσ(t))t≥0. Hence, there exists a unique strong



solution to (17) and, for all z0 ∈ D(Aσ), the following
functions

t 7→ ‖Wσ(t)z0‖H , t 7→ ‖AσWσ(t)z0‖H (19)

are nonincreasing.

2) Case with disturbance: In this paper, we will also
consider the case with a perturbation. The system under
consideration is the following

d

dt
z = Az −Bσ(B?z + d),

z(0) = z0,
(20)

where d : R≥0 → U is the perturbation. Note that d belongs
to U := L2((0,∞);U). For this system, we study only weak
solution.

Let us introduce two notions related to stability.

Definition 2. [Global asymptotic stability and ISS property]
1. The origin of (17) is globally asymptotically stable, if
there exists a class KL function β such that for any weak
solution z(.) to (17), it holds

‖z(t)‖H ≤ β(‖z(0)‖H , t) , ∀t ≥ 0 ;

2. A positive definite function V : H → R≥0 is said to be
an ISS-Lyapunov function with respect to d if there exist two
class K∞ functions α and ρ such that, for any weak solution
to (20)

d

dt
V (z) ≤ −α(‖z‖) + ρ(‖d‖U ).

D. Input-to-state stability result

We are now in position to state our main result. Here is
its statement.

Theorem 1. Suppose that Assumption 1 holds and let P ∈
L(H) be the self-adjoint and positive operator P ∈ L(H)
satisfying (4). Let σ be a saturation function satisfying all
the items of Definition 1. Then, the following holds.

1. If S = U , there exists an ISS-Lyapunov function for
(20).

2. If S 6= U , assume that the following holds, for any
s ∈ D(A),

‖B?s‖S ≤ cS‖s‖D(A). (21)

Then, the origin of (17) is globally asymptotically for
any weak solution.

III. PROOF OF THE MAIN RESULT

A. Definitions and techninal lemmas

Before proving Theorem 1, let us give some useful defini-
tions and results to prove Theorem 1, especially the case
where S 6= U . When S 6= U , the properties given in
Definition 1 do not hold when considering weak solutions.
Therefore, the following result is needed to link the attractiv-
ity for strong and weak solutions. Note that its proof, which
relies on a density argument, can be found in [?] and [?].

Lemma 1. Let (Wσ(t))t≥0 be a strongly continuous semi-
group of contractions on H , a Hilbert space. Let D(A) be
dense in H . If for all z0 ∈ D(A), the following holds

lim
t→+∞

‖Wσ(t)z0‖H = 0, (22)

then, for all z0 ∈ H ,

lim
t→+∞

‖Wσ(t)z0‖H = 0. (23)

Thanks to this latter lemma, proving the global asymptotic
stability of the origin of (17) for every weak solution reduces
to proving it for every strong solution to (17). We need
another definition of stability before proving the global
asymptotic stability.

Definition 3. The origin of (17) is said to be semi-globally
exponentially stable if, for any positive value r and any initial
condition satisfying ‖z0‖D(Aσ) ≤ r, there exist two positive
values µ := µ(r) and K := K(r) such that, for every strong
solution to (17)

‖Wσ(t)z0‖H ≤ Ke−µt‖z0‖H , ∀t ≥ 0, (24)

where (Wσ(t))t≥0 is the strongly continuous semigroup of
contractions generated by the operator Aσ .

This definition is inspired by [?]. One has also the follow-
ing result, whose proof is omitted due to lack of space.

Lemma 2. If the origin of (17) is semi-globally exponen-
tially stable, then it is globally asymptotically stable.

B. Proof of Theorem 1
Proof of Theorem 1: We split the proof of Theorem 1

into two cases. Firstly, we prove Item 1. of Theorem 1 and
then Item 2. Indeed, the Lyapunov functions considered in
both cases are different.

Case 1: S = U .
Let us consider the following candidate Lyapunov function

V1(z) :=〈Pz, z〉H +
2M

3
‖z‖3H

=V (z) +
2M

3
‖z‖3H ,

(25)

where P ∈ L(H) is defined in (4) and M is a sufficiently
large positive value that will be chosen later. This function,
inspired by [?], is clearly positive definite and tends to
infinity if the H-norm of z does. Firstly applying Cauchy-
Schwarz inequality, one has, along the strong solutions to
(20),
d

dt
V (z) =〈Pz, Ãz〉H + 〈PÃz, z〉H

+ 〈PB(B?z − σ(B?z), z〉H
+ 〈Pz,B(B?z − σ(B?z)〉H
+ 〈PB(σ(B?z)− σ(B?z + d)), z〉H
+ 〈z, PB(σ(B?z)− σ(B?z + d))〉H
≤− C‖z‖2H + 2‖B?z‖U‖P‖L(H)‖B?z − σ(B?z)‖U

+ 2〈σ(B?z)− σ(B?z + d), B?Pz〉U ,
≤− C‖z‖2H + 2‖B?z‖U‖P‖L(H)‖B?z − σ(B?z)‖U

+ 2k‖d‖U‖B?‖L(H,U)‖P‖L(H)‖z‖H ,



where (4) and Item 3. of Definition 1 have been used to
get this inequality. Using Item 4. of Definition 1, Cauchy-
Schwarz inequality and the fact that B? is bounded in U
yields

d

dt
V (z) ≤−

(
C −

‖B?‖2L(H,U)‖P‖
2
L(H)

ε1

)
‖z‖2H

+ 2‖B?z‖U‖P‖L(H)‖B?z − σ(B?z)‖U
+ k2ε1‖d‖2U ,

≤−

(
C −

‖B?‖2L(H,U)‖P‖
2
L(H)

ε1

)
‖z‖2H

+ 2‖B?‖L(H,U)‖P‖L(H)‖z‖H (〈σ(B?z), B?z〉U
+〈B?z, σ(B?z)〉U )

+ k2ε1‖d‖2U

≤−

(
C −

‖B?‖2L(H,U)‖P‖
2
L(H)

ε1

)
‖z‖2H

+ 2‖B?‖L(H,U)‖P‖L(H)‖z‖H (〈σ(B?z), B?z〉U
+〈B?z, σ(B?z)〉U ) + k2ε1‖d‖2U ,

where ε1 is a positive value that will be selected later.
Secondly, using the dissipativity of the operator Aσ , Item
5. of Definition 1 and Young inequality, one has

2M

3

d

dt
‖z‖3H =M‖z‖(〈Az, z〉H + 〈z,Az〉H)

− 2M‖z‖H〈Bσ(B?z + d), z〉H
≤− 2M‖z‖H(〈σ(B?z), B?z〉U

+ 〈σ(B?z)− σ(B?z + d), B?z〉U )

≤− 2M‖z‖H(〈σ(B?z), B?z〉U )

+ 2MC0‖z‖H‖d‖U
≤− 2M‖z‖H(〈σ(B?z), B?z〉U )

+
2MC0

ε2
‖z‖2H + 2MC0ε2‖d‖2U ,

where ε2 is a positive value that has to be selected. Hence,
if one chooses M , ε1 and ε2 as follows

M ≥ 2‖B?‖L(H,U)‖P‖L(H),

2MC0

ε2
+
‖B?‖2L(H,U)‖P‖

2
L(H)

ε1
≤ C,

one obtains

d

dt
V1(z) ≤−

(
C − 2M

ε2
−
‖B?‖2L(H,U)‖P‖

2
L(H)

ε1

)
‖z‖2H

+ (C02Mε2 + k2ε1)‖d‖2U .

With an appropriate choice of ε1 and ε2, it concludes the
proof of Item 1. of Theorem 1.

Case 2: S 6= U . In the case where S 6= U , we will prove
that the origin of (17) is semi-globally exponentially stable.
Using Lemma 2, it proves that the origin of (17) is globally
asymptotically stable.

Pick a positive value r. Consider any strong solution to
(17) starting from z0 satisfying

‖z0‖D(A) ≤ r. (26)

Now, focus on the following Lyapunov function

V2(z) :=〈Pz, z〉H + M̃r‖z‖2H
=V (z) + M̃r‖z‖2H

(27)

where M̃ is a sufficiently large positive value that will be
selected later.

Firstly, using Assumption 1, one has

d

dt
V (z) =〈Pz, Ãz〉H + 〈PÃz, z〉H

+ 〈PB(B?z − σ(B?z), z〉H
+ 〈Pz,B(B?z − σ(B?z)〉H

≤− C‖z‖2H + 〈B?z − σ(B?z), B?Pz〉U
+ 〈B?Pz,B?z − σ(B?z)〉U .

Since (U, S) is a rigged Hilbert space, one has the following
equality

〈B?z − σ(B?z)), B?Pz〉U + 〈B?Pz,B?z − σ(B?z)〉U =

2(B?z − σ(B?z), B?Pz)S′×S .

Hence, applying Cauchy-Schwarz’s inequality, one obtains

d

dt
V (z) ≤ −C‖z‖2H + 2‖B?Pz‖S‖B?z − σ(B?z)‖S′

Using Item 4. of Definition 1 yields

d

dt
V (z) ≤− C‖z‖2H

+ 4cS‖Pz‖D(A)(〈B?z, σ(B?z)〉U ), (28)

where, in the second line, it has been used the assumption
given in (21).

Now, using (26) together with the monotonicity of the
function in (19), along the strong solutions to (17), we have

‖Wσ(t)z0‖D(A) ≤ ‖z0‖D(A). (29)

Therefore, noticing that ‖Pz‖D(A) := ‖Pz‖H +‖PAz‖H ≤
‖P‖L(H)‖z‖D(A), and using (28) and (21), one obtains

d

dt
V (z) ≤− C‖z‖2H

+ 4cSr‖P‖L(H)(〈z,Bσ(B?z)〉H).

Moreover, one has, using the dissipativity of the operator A

d

dt
M̃r‖z‖2H =M̃r〈Az, z〉H + 〈z,Az〉H

− M̃r (〈z,Bσ(B?z)〉H + 〈Bσ(B?z), z〉H)

≤− 4M̃r (〈z,Bσ(B?z)〉H) .

Hence, if one selects M̃ such that

M̃ > 2cS‖P‖L(H),

it follows
d

dt
V2(z) ≤ −C‖z‖2H . (30)



Note that, from (27), we have, for all z ∈ H ,

M̃r‖z‖2H ≤ V2(z) ≤ (‖P‖L(H) + M̃r)‖z‖2H (31)

It yields

d

dt
V2(z) ≤− C

‖P‖L(H) + M̃r
V2(z) (32)

Applying Grönwall’s inequality, one obtains

V2(Wσ(t)z0) ≤ e−µtV2(z0), ∀t ≥ 0, (33)

where µ := C
‖P‖L(H)+M̃r

.
Therefore, using (31) yields

‖Wσ(t)z0‖2H ≤
‖P‖L(H) + M̃r

M̃r
e−µt‖z0‖2H . (34)

Hence, the origin of (17) is semi-globally exponentially
stable for any strong solution to (17). It yields that the origin
is globally asymptotically stable from Lemma 2. Moreover,
using Lemma 1, the origin of (17) is globally asymptotically
for any weak solution to (17). Therefore, this concludes the
proof of Item 2. of Theorem 1. 2

IV. EXAMPLE: A KORTEWEG-DE VRIES EQUATION

A. Applying Theorem 1

The Korteweg-de Vries equation (for short KdV) describes
long waves in water of relatively shallow depth. It has
been deeply studied in recent decades (see e.g., [?] for a
nice introduction to the KdV equation in the context of the
control).

The linearized version of the controlled KdV equation can
be written as follows

zt + zx + zxxx = u, (t, x) ∈ R≥0 × [0, L],

z(t, 0) = z(t, L) = 0, t ∈ R≥0
zx(t, L) = 0, t ∈ R≥0
z(0, x) = z0(x), x ∈ [0, L].

(35)

Given

H = U = L2(0, L),

D(A) := {z ∈ H3(0, L) | z(0) = z(L) = z′(L) = 0},

one can describe (35) as an abstract control system with the
following operators

A : z ∈ D(A) ⊂ H 7→ −z′ − z′′′ ∈ H, B = IH , (36)

where IH denotes the identity operator for H . A simple
computation shows that

〈Az, z〉H ≤ 0, 〈A?z, z〉H ≤ 0.

These inequalities together with the fact that A is a closed
operator allow us to apply the Lümer-Phillips theorem.
Therefore, A generates a strongly continuous semigroup of
contractions.

If one sets u = −B?z = −z, then Assumption 1 holds.
Indeed, the associated Lyapunov function is

V (z) =
1

2
‖z|2H . (37)

Its derivative along the solutions to (35) satisfies

d

dt
V (z) ≤ −V (z). (38)

Therefore, the operator P given by (4) reduces to the identity.
Now, focus on the case where the control is saturated and

where S 6= U . Let S = L∞(0, L) and σ be given by (13).
In [?], the following lemma has been proved

Lemma 3. [[?], Lemma 4.] There exists a positive value ∆
such that, for all z ∈ D(A),

‖z‖H1
0 (0,L)

≤ ∆‖z‖D(A). (39)

Using the above mentionned result together with the
fact that the space H1

0 (0, L) is continuously embedded in
L∞(0, L), one obtains that

‖z‖S ≤ ∆‖z‖D(A). (40)

Since B? = IH , one has

‖B?z‖S ≤ ∆‖z‖D(A). (41)

Therefore, (21) holds for the linear Korteweg-de Vries equa-
tion (35).

Finally, since all the properties needed to apply Theorem 1
hold, this proves that the origin of
zt + zx + zxxx = −satL∞(0,L)(z), (t, x) ∈ R≥0 × [0, L],

z(t, 0) = z(t, L) = 0, t ∈ R≥0
zx(t, L) = 0, t ∈ R≥0
z(0, x) = z0(x), x ∈ [0, L],

(42)
is globally asymptotically stable.

B. Numerical simulations

Let us discretize the PDE (43) by means of finite differ-
ence method (see e.g. [?] for an introduction on the numerical
scheme of a generalized Korteweg-de Vries equation). The
time and the space steps are chosen such that the stability
condition of the numerical scheme is satisfied.

By applying Theorem 1 Case 2, we know that the origin
of (43) is globally asymptotically stable. A natural question
is to inspect if Case 1 applies, that is, if
zt + zx + zxxx = −satL∞(0,L)(z + d), (t, x) ∈ R≥0 × [0, L],

z(t, 0) = z(t, L) = 0, t ∈ R≥0
zx(t, L) = 0, t ∈ R≥0
z(0, x) = z0(x), x ∈ [0, L],

(43)
is ISS with respect to d. To check that on numerical simula-
tions, we choose L = 2π, T = 9, z0(x) = (1− cos(x)) for
all x ∈ [0, 2π] and d(t) = 0.05 cos(t). Let us numerically
compute the corresponding solution to (43).

Figure 1 (top) gives the time-evolution of this solution
to (43), where the convergence property could be checked.
Since the disturbance is bounded, one can check that the
solution is also, which is one of the property of ISS. Figure
1 illustrates the Lyapunov function ‖z‖2L2(0,L) with respect



Fig. 1. Top: time-evolution of the solution to (43). Down: L2-norm of the
solution to (43) (in blue) and of the solution to (43) without saturation and
without perturbation (in red).

to the time and the solution without perturbation and without
saturation. One can see that the L2-norm of the solution to
(43) is bounded, and thus that the origin of (43) seems to be
ISS with respect to d.

V. CONCLUSION

In this paper, the analysis of a stabilizing feedback law
modified via a saturation function has been tackled using
Lyapunov theory for infinite-dimensional systems. The sat-
uration under consideration might render the feedback-law
bounded in another space than the one where the origin is
stabilized. Assuming a stabilizability property and depending
on the set where the saturation acts, an ISS property has
been derived, or a weaker property, as the global asymptotic
stability of the origin in the infinite-dimension nonlinear
system.

For future research lines, it would be interesting to prove
an ISS property for both case of Theorem 1 and to study
the case of unbounded control operators as considered for
instance in [?], [?] or [?]. The case of nonlinear open-loop
systems, as it is considered in [?], could be also challenging.
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