N

N

Evaluating the Impact of Traffic Sampling on AATAC’s

DDoS Detection
Gilles Roudiere, Philippe Owezarski

» To cite this version:

Gilles Roudiere, Philippe Owezarski. Evaluating the Impact of Traffic Sampling on AATAC’s DDoS
Detection. Workshop on Traffic Measurements for Cybersecurity (2018 WTMC), Aug 2018, Budapest,
Hungary. pp.27-32, 10.1145/3229598.3229605 . hal-01862765

HAL Id: hal-01862765
https://laas.hal.science/hal-01862765
Submitted on 30 Aug 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://laas.hal.science/hal-01862765
https://hal.archives-ouvertes.fr

Evaluating the Impact of Traffic Sampling on
AATAC’s DDoS Detection

Gilles Roudiere, Philippe Owezarski
CNRS, LAAS, 7 avenue du colonel Roche Toulouse Cedex 4, France
{gilles.roudiere, philippe.owezarski} @laas.fr

Abstract—As Distributed Denial of Service (DDoS) attack are
still a severe threat for the Internet stakeholders, they should
be detected with efficient tools meeting industrial requirements.
In a previous paper, we introduced the AATAC detector, which
showed its ability to accurately detect DDoS attacks in real
time on full traffic, while being able to cope with the several
constraints due to an industrial operation. However, in a realistic
scenario, network monitoring is done using sampled traffic. Such
sampling may impact the detection accuracy or the pertinence
of produced results. Consequently, in this paper, we evaluate
AATAC over sampled traffic. We use five different count-based
or time-based sampling techniques, and show that AATAC’s
resources consumption is in general greatly reduced with little
to no impact on the detection accuracy. Obtained results are
succinctly compared with those from FastNetMon, an open-
source threshold-based DDoS detector.

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks consist in
numerous hosts sending fake requests towards a victim’s
network. Those requests exhaust the victim’s system resources,
either its available computing power, networking bandwidth or
even some protocol implementation specific resources. Thus,
they can cause up to the system’s total inability to handle legit-
imate clients’ requests, and thus should be detected. However,
appropriate detectors have to meet the industry requirements
(real-time operation, accuracy, autonomy...)

As today’s bandwidths are very large, most actual monitor-
ing systems sample the traffic in order to reduce the size of the
data to be processed, limiting the computational resources used
for monitoring purposes. ! Consequently, a realistic DDoS
detector should be efficient even when processing sampled
traffic.

In a previous paper we introduced AATAC (Autonomous
Algorithm for Traffic Anomaly Characterization), a fully au-
tonomous anomaly detector that focuses on DDoS attacks.
We proved, on some full traffic traces, that it can perform
an efficient detection while consuming a very limited amount
of resources. However, to be used in an industrial context,
AATAC should also be able to perform efficiently over
sampled traces. This is why in this paper we evaluate the
AATAC algorithm over sampled traffic. We use several types
of sampling techniques and rates, the aim being to understand
which sampling techniques would be the most appropriate for

IThis processing is often performed on the switches/routers whose main
task is to switch/route packets, and are then largely loaded by this main task.
Other tasks must then consume resources parsimoniously.

maximizing the DDoS detection using AATAC. The results
are compared with those from FastNetMon, the only publicly
available DDoS detector we manage to install on our testbed.

The remaining of this paper is organized as follows. In
section II we introduce other detectors built to operate over
sampled traces. Our detector AATAC is briefly introduced
in section III, while its evaluation over sampled traces is
discussed in sections IV and V. Section VI concludes the paper
and discusses possible future works.

II. RELATED WORKS

In this section, we present related works that study the
impact of sampling on several monitoring tools, but mainly
focus on the network anomaly detection.

Several related approaches rely on a flow-based sampling.
Bartos et al. [1] study the impact of sampling on network
anomaly detection. They propose an adaptive flow-level sam-
pling technique that manages to limit the impact of sampling
on the performance of a network behavioural anomaly detec-
tor. Other flow-based sampling techniques are presented by
Jadidi et al. [2] or Andriolakis [3]. The problem with such
approaches is that extracting flows from the traffic is already
a complex task that has to deal with already packet sampled
traffic. The main bottleneck for monitoring system is definitely
situated at the packet level, even for systems that provide flow
based information. Thus, we instead focus on packet sampling
techniques as they are the most likely to significantly impact
the computational cost reduction.

A framework to evaluate the impact of packet sampling over
several various tools is presented in [4]. The author discusses
the very generic performances of each sampling algorithm.
They propose a set of metrics that allow the evaluation of each
technique’s ability to produce a sampled traffic that efficiently
represents the original one. Their results are really generic
and do not target the network anomaly detection problem
specifically, they thus might not apply in our situation. An
extension of this study is presented in [5].

Jun et al. [6] propose an adaptive sampling technique
that intends to keep the amount of sampled traffic below a
maximum inspection capability. They use the SDN technology
to distribute the sampling over several switches. They perform
their evaluation using Snort [7] and Suricata [8], two detectors
based on Deep Packet Inspection. As such techniques focus on
the packets content, instead of more encompassing statistical



features of the traffic, the technique might not suit all detection
algorithms (including AATAC).

In an older paper, Brauckhoff et al. [9] evaluate the impact
of sampling over anomaly detection metrics. Their evaluation
uses traces containing the Blaster worm to evaluate several
detection techniques at various sampling rates. With a detector
they propose, and thanks to an entropy-based summarization
technique, authors achieve a good detection independently
from how high is the sampling rate. The paper also shows that
flow-based detection is more impacted by the packet sampling
than packet-based detection.

III. AATAC ALGORITHM OVERVIEW

AATAC is a balanced solution to the DDoS detection
problem. It provides a real-time detection with low computing
resources while still producing pertinent and eloquent results.
It is a fully autonomous detector relying on unsupervised
machine learning techniques, requiring very few configuration
or updates. In this section we present only a brief overview of
the algorithm. For more technical details, please refer to the
original publication [10].

AATAC’s processing is illustrated on Figure 1. It is split into
two distinct parts: a continuous and a discrete one. The first
one quickly handles instances and maintain a data structure
representing the traffic in real time. The second one uses this
data structure to store, at a regular interval, a snapshot of the
traffic. Those snapshots are then stored and used to detect
anomalies in the traffic. As those snapshots can be plotted
into a set of two-dimensional graphs, they provide the network
administrator with a dynamic and pertinent view of the traffic
properties when the anomaly occurs.

A. Continuous processing

To build a representation of the traffic at any time, the
continuous processing relies on a statistical analysis on the
traffic. Its processing is inspired from D-Stream [11], a grid-
based clustering algorithm.

To characterize the traffic properties, AATAC uses grids.
Those grids are either grouped as histograms, to characterize
a traffic feature distribution, or alone, to characterize a global
feature of the traffic. Whenever AATAC processes a traffic
instance (here a traffic flow and its associated characteristics),
AATAC determines a set of grids it falls in. It then increases
a density value assigned each of those grids (any instance
might be weighted depending on the monitored feature). This
processing is done in an incremental manner, which speeds up
the processing and limits the computational resources required.

Over time, the density of each grid exponentially decays
towards 0. How fast the densities decays is determined by the
decay factor (\). For reasons made explicit in [10], A is set
using the R parameter, defined as R = \2T, where AT is
the parameter defining the time interval between two snapshot
creations.

This incremental weighting technique inherently gives much
more weight to recent instances in the model than to the older
ones. Thus, at a given instant, all grids together form a short-
term complete characterization of the traffic.

B. Discrete processing

The discrete processing is executed at a regular interval AT,
it can be split into three steps. First, it updates the continuous
processing data structure, it then creates a traffic snapshot and
finally detects anomalous behaviours.

As the continuous processing is incremental, the whole set
of grids’ densities might not create a consistent characteriza-
tion at a given instant. The grids’ densities are thus updated
to be consistent with each other. Also, to avoid the number of
stored grids to overgrow in the memory, several grids having
a density lower than a really low value D; are removed from
the data structure.

For performance reasons, AATAC’s data structure cannot be
stored as is. Grids organized as histograms are thus simplified,
and transformed into histogram prototypes, a lighter and faster
to process data structure. The traffic snapshot is created
by storing all histogram prototypes along with the up-to-
date densities characterizing global traffic features. This set
constitutes the snapshot features.

Finally in the anomaly detection phase, AATAC compares
the lastly created snapshot to the set of N last snapshots.
This is done using the k Nearest-Neighbour (kKNN) algorithm
applied for each analyzed snapshot feature. KNN produces an
outlierness score that AATAC uses to determine how different
is the lastly created snapshot from the previously created ones.
Note that the scores are normalized.

The final anomaly detection is performed by detecting if
the kNN score goes over a given threshold for any snapshot
feature. If so, an alarm is raised. As the histogram prototypes
and the global densities can be plotted, this alarm is given to
the network administrator along with a set of graphs allowing
him the have a pertinent and dynamic view of the traffic
features when the anomaly occurs.

IV. EVALUATING THE IMPACT OF SAMPLING ON THE
DDOS DETECTION

In this section, we describe the testbed we used to evaluate
AATAC’s performances over sampled traffic.

A. Sampling techniques

Basically, a packet sampling algorithm aims at selecting
whether or not a packet should be sampled for further analysis.
To evaluate AATAC’s performances in various situations, we
used five different sampling techniques with several sampling
rate: systematic count-based, probabilistic, 1-out-of-N, system-
atic time-based and random time-based. Those techniques can
be split into two categories: count-based or time-based. They
cover the full range of common techniques for traffic sampling.

1) Count-based selection techniques: Count-based selec-
tion techniques give all packets the same probability to get
sampled, independently from their content or arrival time.
Statistically, this implies selecting one packet out of V.

The first approach we use is the systematic approach. It
consists in systematically selecting a packet every N packets.
This approach is pretty straightforward to implement and gives
an accurate representation of the traffic in most situations.
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Fig. 1: An overview of the AATAC algorithm

However, it might suffer from a bias if the monitored features
exhibit a periodic behaviour.

The random probabilistic sampling runs a random test
whenever a packet arrives and selects it with a given prob-
ability p. As it is does not require an analysis of the packet’s
content, our approach uses a uniform probabilistic sampling
that selects each packet with the same probability.

The last random count-based technique we use is the n-
out-of-N sampling. Every N packets, this technique chooses a
random set of n indexes between 0 and N — 1. Those indexes
correspond to the indexes of the n packets that will be selected
among the next N packets. In most cases, n is set to 1. The
1-out-of-N sampling is easier to implement while showing
similar performances as any other n values.

2) Time-based techniques: Time-based techniques operate
by defining a set of dates when a packet selection should be
triggered. They generally do that by computing a waiting time
interval between each selection. Unlike count-based sampling,
time-based sampling does not produce an output that is pro-
portional to the input in terms of number of packets. They
instead smooth the variations of the traffic, which might not
suit all detection techniques.

If the time between two selections is constant, such ap-
proach is said systematic. Like the count-based systematic
approach, this technique might suffer from a bias if the traffic
exhibits a periodic behaviour.

Other time-based techniques might randomly select the
time to wait between two triggers. The technique we use
generates an inter-selection interval following an exponential
distribution.

3) Other techniques: Various other techniques have been
proposed in the literature. For example, adaptive sampling
techniques adapt the sampling rate depending on the load of
the system (CPU, memory, bandwidth...). Other techniques,
said hybrid, use a combination of two other techniques. While

being interesting, those techniques do not suit our requirements
as they introduce several other parameters that would have
made difficult a generalization of the results. Also, such
techniques are in fact not common in an industrial context.
They require either a knowledge database, or setting up a
feedback loop from a performance monitoring system to the
sampling hardware, which is not easy to set up and maintain.

B. The testbed

To evaluate the performances of AATAC, we implemented
it using C++. The experiments are run on a standard com-
puter, featuring a 3.00GHz Intel Xeon CPU (E5-2623 v3). It
features 8 cores but our implementation does not handle multi-
threading.

In the context of the ONTIC project, we built the Syn-
thONTS labelled dataset to evaluate our algorithm. It contains
a one hour long, payload-free and anonymized real traces
captured at the entrance of a large cloud service provider. In
an emulated network, we generated 12 realistic attacks and
inserted them into the dataset. This set mainly includes DDoS
attacks, such as fraggle attacks, smurf attacks, Syn flooding
and UDP flooding attacks. The dataset is publicly available on
the website of the ONTIC project [12].

We sampled the traces thanks to a custom tool called
PCAPsampler [13]. For count-based algorithms, we used the
sampling rate of one packet out of 500, 1000, 2000, 5000
or 10000 packets. For time-based algorithms, we picked one
packet every 1, 0.1, 0.01 or 0.001 seconds. As the average
packet rate is around 67k packets per-seconds in the dataset,
this corresponds to values between picking one packet out of
67000, to one out of 67. According to our industrial partners,
a sampling rate of one out of 2000 is a common value used
on operation. Those value ranges were thus chosen consid-
ering this information, but still wide enough for significantly
covering different sampling rates.



Regarding the parameters of AATAC, we used the pa-
rameters exhibiting the better performances in our previous
evaluation [10]. Thus, we set N = 500, AT = 1 s and
R = 0.9. To adapt to the sampling rate, the computed instances
weights are multiplied according to the sampling rate.

While our implementation of AATAC is able to directly
operate from pcap files, this is not possible with FastNetMon.
We thus had to replay the whole set of traces (the 1h long
traces multiplied by the 12 attacks to evaluate) to evaluate
its accuracy. As this requires some time, we only evaluated
FastNetMon’s performances with the 1-out-of-N sampling
algorithm considering a sampling rate of one packet out of
2000.

C. Evaluation methodology

To measure the accuracy of the detector, we run both
implementations over the sampled traces. We consider an
alarm as a true positive if it is raised while the anomaly is
occurring, a false positive if it is not. To analyse the results, we
use the well known Receiver Operating Characteristic (ROC)
curve. However, as they suffer from the base-rate fallacy [14],
we complete our evaluation by plotting the IDS operation
curve of the detector. This method proposed by Nasr et al. [15],
consists in plotting the positive predictive value (PPV') along
with the false positive rate. Each plotted curve is compared
to the zero reference curve (ZRC), the operation curve of an
ideal detector that should detect all anomalies while producing
an increasing number of false positives.

The intrusion detection effectiveness (Erp € [0, 1]), is then
extracted from this curve. It corresponds to the normalized
area between the actual IDS operation curve and the ZRC for
a FPR between 0 and a maximum acceptable false positive
rate Trp. The lower the E7p, the more effective the detector.

To evaluate how sampling impacts the computational re-
sources required to run the algorithm, we measure how much
time our implementation spends into either the continuous or
the discrete parts of the algorithm. For the continuous part,
we plot the time required to process one second of traffic, and
for the discrete part, we measure the time required to create
a single snapshot.

V. RESULTS
A. Detection accuracy

Figure 2 shows the ROC curves we obtain for the five
sampling algorithms. All count-based sampling techniques
achieve good results, but the 1-out-of-N technique seems to
produce better and more stable results than other ones. From
the time-based sampling techniques, the systematic sampling
achieves the best results. For high sampling rates, the system-
atic time-based approach seems to produce better results than
the unsampled traffic while for lower sampling rates, with one
packet every 100ms or 1s, the results are not as good. Indeed,
those sampling rates correspond to one packet every 6700 or
67000 packets. The count-based sampling algorithms produce
better results for similar sampling rates, as they detect more
attacks for equivalent false-positive rate.

Unsampled Systematic count-based

1/1000 172000 1/5000
0.1023 0.1197 0.1051
0.0819 0.0789 0.0958

0.0208 0.0163 0.0263

1/500
0.0853
0.1026
0.2602

1/10000
0.1568
0.1053
0.0256

Trp
0.01
0.001
0.0001

0.0680

0.1543
0.0155

1-out-of-N Probabilistic
1/500 1/1000 1/2000 1/5000 1/10000| 1/500 1/1000 1/2000 1/5000 1/10000
0.0804 0.0903 0.0968 0.1371 0.1204| 0.0758 0.0822 0.0909 0.1285 0.2127
0.0910 0.0804 0.0851 0.0902 0.0899| 0.0661 0.0649 0.1014 0.1092 0.2328
0.0286 0.0197 0.0274 0.0351 0.0654| 0.0232 0.0136 0.0276 0.0390 0.0610|

Trp
0.01
0.001
0.0001

Random time-based

100ms Is
0.2954  0.2402
0.1580  0.1607
0.0274  0.0927

Systematic time-based
10ms  100ms Is Ims
0.0394 0.2959 0.8424 | 0.0851
0.0242 02113 1.0000 | 0.1364
0.0101  0.1238  1.0000 | 0.2495

10ms
0.0939
0.1127
0.0207

TFP 1ms
0.01 | 0.0631
0.001 | 0.2308
0.0001 | 0.8993

TABLE I: Intrusion Detection Effectiveness for all 2sampling
techniques and several values of Trp.

As we can see from the curves, once the false-positive value
reaches a given value, AATAC seems to perform better with
the sampled traffic than with the unsampled one. As stated
before, we multiplied the weight of instances depending on
the sampling rate. This has increased the detector’s sensitivity.

That being said, the results are more significant with the
lowest values of the FPR. Indeed, as we run a test every
second, even a FPR of 0.001 means raising a false positive
every 17 minutes, which is not acceptable in a real situation.
With very low false positive rates, such as 10~%, AATAC
performs better with unsampled traffic or high sampling rates.
The IDS curves in Figure 3 confirm this analysis. Considering
the PPV wvalues for acceptable false-positive rate (below
Trp = 1073), AATAC’s with unsampled traffic IDS operation
curves stays above the other ones. However, regardless of the
sampling algorithm, the efficiency decrease stays very low.
This is shown in Table I: the Intrusion Detection Effectiveness
only increases by a very low amount when the sampling rate
reduces. This table also confirms that the /-out-of-N technique
has the most stable results, especially for Trp = 1073,

From those results, time-based sampling stands out. With
high sampling rates, AATAC achieves a detection that is
exceptionally good, looking better than with unsampled traffic.
This may be explained by the fact that time-based sampling
tends to smooth out the short term variations of the traffic,
reducing the FPR. Also, AATAC relies on densities that
depend on the number of packet received per second. Making
this rate constant makes the detection less dependent on the
packet rate itself, and more on other properties of the traffic.
This has probably enhanced the detection.

Regarding the impact of sampling over FastNetMon accu-
racy, our evaluation showed that FastNetMon was completely
unable to perform its detection over sampled traffic. Indeed,
with standard sampling rate of one packet out of 2000,
FastNetMon generated 7 false positives in our evaluation,
while detecting no attacks out of 12. Decreasing the threshold
only increased the number of false positives generated by Fast-
NetMon. The detector’s inability to detect DDoS is probably
due to the fact it operates at an IP address level. Indeed, at
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Fig. 2: ROC curves for the several sampling algorithms and multiple sampling rates.

such sampling rates, the amount of data corresponding to a
specific IP address is too low for the detector to take a pertinent
decision. This implies raising more false positive.

As a conclusion, we can see that AATAC performs an
accurate detection independently for the sampling technique
used. It even performs better at high sampling rates with time-
based sampling. The sampling rate has a very limited impact
on the quality of AATAC’s detection, which is not the case for
FastNetMon, which was totally unable to operate with sampled
traffic at a standard sampling rate.

B. Computing power requirements

The calculated processing time of AATAC for each sam-
pling algorithm are depicted on Figure 4. To process the traffic
in real time, the continuous processing was designed to process
the traffic with a linear complexity regarding the number of
instances. This is confirmed on Figures 4a and 4b. As the
X axis corresponds to the inverse of how many packets are
processed per second, the processing time follows a x %
pattern.

Regarding the discrete processing, we can see on Figures 4c
and 4d that the sampling has little impact on the time required
to create a snapshot. Indeed there is no specific reason why
the treatment should be more complex with a snapshot built
from a sampled traffic than with unsampled ones. However,
we can see a slight increase of the processing time when few
packets per second are sampled. This is probably due to the
fact that a stronger sampling implies that the impact of each
instance has to be higher on the model. This thus produces a
more varying characterization of the traffic which might create

more complex histogram prototypes. This impact is however
minimal.

We can also see from the several curves that only the
sampling rate has an impact on the processing time, while
the sampling technique has none.

This evaluation proved that using AATAC with sampled traf-
fic is possible and allows a significant resource consumption
reduction, proportional to the sampling rate.

VI. CONCLUSION

In this paper, we evaluated the AATAC DDoS detector’s
performances over sampled traffic. For sampling rates going up
to 1 packet out 2000, AATAC has shown an almost unchanged
detection accuracy while benefiting from a substantial reduc-
tion of the required computational resources. From the several
sampling techniques used, count-based sampling techniques
produce results less dependent on the sampling rate (especially
for the I-out-of-N technique). However, at very high sampling
rates, time-based sampling techniques tend to produce better
results, as they smooth the short-term variations of the traffic.
For further studies, it thus would be interesting to study a
new sampling technique. A ideal one would probably use an
adaptive mechanism, combining both time-based sampling for
high sampling rates and count-based for lower ones.
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