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The Pinocchio C++ library
A fast and flexible implementation of rigid body dynamics algorithms

and their analytical derivatives

Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent Lamiraux,
Olivier Stasse and Nicolas Mansard

Abstract— We introduce Pinocchio, an open-source software
framework that implements rigid body dynamics algorithms
and their analytical derivatives. Pinocchio does not only include
standard algorithms employed in robotics (e.g., forward and
inverse dynamics) but provides additional features essential for
the control, the planning and the simulation of robots. In this
paper, we describe these features and detail the programming
patterns and design which make Pinocchio efficient. We
evaluate the performances against RBDL, another framework
with broad dissemination inside the robotics community. We
also demonstrate how the source code generation embedded in
Pinocchio outperforms other approaches of state of the art.

I. INTRODUCTION

Rigid Body Dynamics is a very useful tool in robotics.
Although the theory dates back to the 18th century [1],
current algorithms have been revisited recently [2]. They
allow to compute in an efficient way both the inverse
and forward dynamics of rigid body systems. These two
functions are indeed fundamental for both the control and the
simulation of robotic systems. Being able to compute them
in a fast and accurate manner is of paramount importance in
order to correctly plan and control the motion of complex
systems such as humanoid robots or quadruped robots.

Starting from the late 80’s, the first implementations
were mostly based on code-generation: a meta-program first
generates some source code dedicated to a specific robot
model given in input. The source code is then compiled
into an object code where model parameters are hard
coded. Many open and closed source frameworks follow
this philosophy: SD/Fast [3], ROBOTRAN [4], HuMAnS [5],
Symoro [6], METAPOD [7], RobCoGen [8] just to name
a few. This approach has the advantages of allowing
simplifications of math expressions therefore avoiding
unnecessary memory allocations or use of temporary
variables. But at the same time, this approach suffers from a
lack of flexibility: the code must be regenerated from scratch
if any slight modification of the robot model occurs.

As more computational resources have been made
available on desktop computers, another paradigm has
emerged which consists in generating once for all a compiled
library able to load at runtime a description file of the
robot model (kinematic chain, mass distribution, etc.). Many
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recent frameworks implement this paradigm: RBDL [9],
OpenHRP [10], SymBody [11], RigidBodyDynamics.jl [12],
Drake [13], Bullet [14], DART [15], etc. This second
approach is more versatile, allowing for instance to modify
at runtime the dynamical properties of the model or to
populate the model with new features. But it implies a
loss in computational efficiency, even though some of
these frameworks show execution times close to code
generation [7], [9].

In this paper, we introduce a new rigid body dynamics
framework called Pinocchio. Unlike all other existing
frameworks, Pinocchio follows the two aforementioned
paradigms all at once. Pinocchio is a dynamic library able
to load at runtime any robot model. The efficiency is then
comparable to other dynamic frameworks [7], [9] and nearly
matches code-generation frameworks. It is able to generate
robot-specific source code (also at runtime). In that case, it
outperforms any other existing frameworks.

In Section II, we give a global overview of the framework.
The details of the code implementation are provided
in Section III. An introductory tutorial to get started
with Pinocchio is given in Section IV. The performances
of Pinocchio against similar frameworks are reported in
Section V. In Section VI, a summary of projects which
are based or make use of Pinocchio is provided. Finally,
Section VII concludes the paper.

II. MAIN FEATURES OF PINOCCHIO

Pinocchio has been written in C++ for efficiency reasons
and uses the Eigen library [16] for linear algebra routines.
It comes with Python bindings for easy code prototyping.
In the rest of this section, we introduce the main features
implemented in Pinocchio.

A. Spatial algebra

Spatial algebra [2] is a mathematical notation commonly
employed in rigid body dynamics to represent and
manipulate physical quantities such as velocities,
accelerations and forces. Pinocchio is based on this
mathematical notation. Dedicated classes are provided to
represent coordinate transformations in the 3D Euclidean
space (named SE3), spatial motion vectors (Motion), spatial
force vectors (Force), and spatial inertias (Inertia). Along
with the available methods, this endows Pinocchio with an
efficient software library for spatial algebra calculations.

mailto:justin.carpentier@laas.fr


B. Model and data

A fundamental paradigm of Pinocchio is the strict
separation between model and data. By model, we mean
the physical description of the robot, including kinematic
and possibly inertial parameters defining its structure. This
information is held by a dedicated class which, once created,
is never modified by the algorithms of Pinocchio. By data,
we mean all values which are the result of a computation.
Data vary according to the joint configuration, velocity,
etc... of the system. It contains for instance the velocity
and the acceleration of each link. It also stores intermediate
computations and final results of the algorithms in order to
prevent dynamic memory allocation. With this splitting, all
the algorithms in Pinocchio follow the signature:

algorithm(model, data, arg1, arg2, ...)

where arg1, arg2, ... are the arguments of the
function (e.g. configuration or velocity vectors). Keeping
model and data separated reduces memory footprint when
performing several different tasks on the same robot, notably
when this involves parallel computation. Each process can
employ its own data object, while sharing the same model
object. The fact that a model object never changes within
an algorithm of Pinocchio enhances the predictability of the
code.

A model can be created using the C++ API or loaded from
an external file, which can be either URDF, Lua (following
the RBDL standard) or Python.

C. Supported kinematic models

Within a model, a robot is represented as a kinematic tree,
containing a collection of all the joints, information about
their connectivity, and, optionally, the inertial quantities
associated to each link. In Pinocchio a joint can have one
or several degrees of freedom, and it belongs to one of the
following categories: Revolute joints, rotating around a fixed
axis, either one of X,Y, Z or a custom one; Prismatic joints,
translating along any fixed axis, as in the revolute case;
Spherical joints, free rotations in the 3D space; Translation
joint, for free translations in the 3D space; Planar joints,
for free movements in the 2D space; Free-floating joints,
for free movements in the 3D space. Planar and free-floating
joints are meant to be employed as the basis of kinematic
tree of mobile robots (humanoids, automated vehicles, or
objects in manipulation planning). More complex joints can
be created as a collection of ordinary ones through the
concept of Composite joint.

D. Dealing with Lie group geometry

Each type of joints is characterized by its own
specific configuration and tangent spaces. For instance, the
configuration and tangent spaces of a revolute joint are
both the real axis line R, while for a Spherical joint
the configuration space corresponds to the set of rotation
matrices of dimension 3 and its tangent space is the space
of 3-dimensional real vectors R3. Some configuration spaces
might not behave as a vector space, but have to be endowed

with the corresponding integration (exp) and differentiation
(log) operators. Pinocchio implements all these specific
integration and differentiation operators.

E. Geometric models

Aside the kinematic model, Pinocchio defines a geometric
model, i.e. the volumes attached to the kinematic tree. This
model can be used for displaying the robot and computing
quantities associated to collisions. Like the kinematic model,
the fixed quantities (placement and shape of the volumes)
are stored in a GeometricModel object, while buffers and
quantities used by associated algorithms are defined in a
GeometricData object. The volumes are represented using
the FCL library [17]1. Bodies of the robot are attached to
each joint, while obstacles of the environment are defined in
the world frame. Collision and distance algorithms for the
kinematic trees are implemented, based on FCL methods.

F. Main algorithms

The implementation of the basic algorithms, including
all those listed in this section, is recursive. The
recursive formulation allows the software to avoid repeated
computations and to exploit the sparsity induced by the
kinematic tree. For the dynamics algorithms, we largely drew
inspiration from [2], with slight improvements.

a) Forward kinematics: Pinocchio implements direct
kinematic computations up to the second order. When a
robot configuration is given, a forward pass is performed
to compute the spatial placements of each joint and to store
them as coordinate transformations. If the velocity is given, it
also computes the spatial velocities of each joint (expressed
in local frame), and similarly for accelerations.

b) Kinematic Jacobian: the spatial Jacobian of each
joint can be easily computed with a single forward pass,
either expressed locally or in the world frame.

c) Inverse dynamics: the Recursive Newton-Euler
Algorithm (RNEA) [18] computes the inverse dynamics:
given a desired robot configuration, velocity and acceleration,
the torques required to execute this motion are computed
and stored. The algorithm first performs a forward pass
(equivalent to second-order kinematics). It then performs a
backward pass, computing the wrenches transmitted along
the structure and extracting the joint torques needed to obtain
the computed link motions. With the appropriate inputs, this
algorithm can also be employed to compute specific terms
of the dynamic model, such as the gravity effects.

d) Joint space inertia matrix: the Composite Rigid
Body Algorithm (CRBA) [19] is employed to compute the
joint space inertia matrix of the robot. We have implemented
some slight modifications of the original algorithm that
improve the computational efficiency.

e) Forward dynamics: the Articulated Body Algorithm
(ABA) [20] computes the unconstrained forward dynamics:
given a robot configuration, velocity, torque and external
forces, the resulting joint accelerations are computed.

1Pinocchio indeed uses a fork of FCL 0.3.1 version.



f) Additional algorithms: beside the algorithms above,
other methods are provided, most notably for constrained
forward dynamics, impulse dynamics, inverse of the joint
space inertia [21] and centroidal dynamics.

G. Analytical derivatives

Beside proposing standard forward and inverse
dynamics algorithms, Pinocchio also provides efficient
implementations of their analytical derivatives [22]. These
derivatives are for instance of primary importance in the
context of whole-body trajectory optimization or more
largely, for numerical optimal control. To the best of our
knowledge, Pinocchio is the first rigid body framework
which implements this feature natively.

H. Automatic differentiation and source code generation

In addition to analytical derivatives, Pinocchio supports
automatic differentiation. This is made possible through the
full scalar templatization of the whole C++ code and the use
of any external library that does automatic differentiation:
ADOL-C [23], CasADi [24], CppAD [25] and others. It is
important to keep in mind that these automatic derivatives
are often much slower than the analytical ones.

Another unique but central feature of Pinocchio is its
ability to generate code both at compile time and at
runtime. This is achieved by using another external toolbox
called CppADCodeGen2 built on top of CppAD [25]. From
any function using Pinocchio, CppADCodeGen is able to
generate on the fly its code in various languages: C,
Latex, etc. and to make some simplifications of the math
expressions. Thanks to this procedure, a code tailored for a
specific robot model can be generated and used externally to
Pinocchio.

III. WHAT MAKES PINOCCHIO FAST

In this section, we detail the programming paradigms that
we have implemented in Pinocchio, to make the framework
both efficient and versatile.

A. Handling the sparsity

Each joint by definition constrains the motion between
two bodies to be restricted to some particular directions
of movement. This particularly means that each joint can
be endowed with its own specific operators and state
representations, in order to achieve minimal memory print
and number of computations. For instance, the joint Revolute
transformation is represented by a single scalar value,
the rotation around its axis, while the joint Spherical
transformation is encoded as a rotation matrix. A similar
observation can be made for the other spatial quantities
that characterize the joint state, such as spatial velocities
or accelerations, joint constraint, etc. Hence, each joint in
Pinocchio is endowed with its own sparse description of the
spatial quantities. In combination with an overloading of the
spatial operators, this allows us to adequately exploit the
sparsity inherent to each joint at the computational level.

2https://github.com/joaoleal/CppADCodeGen

B. Static polymorphism

The concept of polymorphism then enables us to
adequately exploit the sparsity induced by the joints.
Pinocchio classes make extensive use of inheritance and
polymorphism. For instance, all different joint models are
implemented as subclasses of JointModelBase, which
defines the common API for all the joints. Methods and data
structures are then specialized in each joint model class.

In Pinocchio, we chose to implement this behavior
through static polymorphism, in contrast with dynamic
polymorphism, the traditional way of implementing
polymorphism in C++, by means of virtual methods. In
dynamic polymorphism, when a method is called, the
object class is deduced at runtime, and the appropriate
method is then executed. This has the main drawback of
breaking the prediction mechanisms of modern CPUs. In
static polymorphism, instead, the appropriate function is
selected directly at compile time. The adoption of this
paradigm improves efficiency in many ways. In the first
place, the double redirection which is typical of dynamic
polymorphism is avoided, as well as the runtime class
deduction. In the second place, since class information is
known at compile time, the compiler is allowed to optimize
the code to make it more efficient.

Static polymorphism is implemented through the so-called
Curiously Recurring Template Pattern (CRTP), which is
at the core of our framework. This is also the design
pattern employed in the Eigen library, greatly contributing
to its performances and versatility. We now introduce
the concept of CRTP with a simple example which
depicts the architecture of the joint classes in Pinocchio.
According to this design pattern, the joint model base class
JointModelBase that defines the common methods and
attributes for all the joints, is templated by its child class:

template<typename Derived>
struct JointModelBase<Derived> {
void calc(q,v)
{

〈call calc method of Derived class〉
static cast<Derived*>(this)->calc();

}
};

Then all the joint model classes inherit this base class, as
follows:

struct JointModelRevolute
: JointModelBase<JointModelRevolute> {

void calc(q,v)
{ 〈do specific computations〉 }

};

In this way, JointModelBase is employed to define
the prototypes of all joint model-specific operators, which
are then implemented in the child classes. In turn, this
allows developers to write generic code which works for
all subclasses, by simply writing templated functions. For
instance, all algorithms in Pinocchio are written as a
sequence of steps to execute over the joint models contained
in the model. A single step may be implemented as

https://github.com/joaoleal/CppADCodeGen


template<typename Derived>
void step(JointModelBase<Derived> joint, arg1, ...)
{

joint.calc(arg1,arg2); // Calling Derived::calc
...

}

where function step calls the method calc defined in
JointModelBase<Derived> which directly redirects
to the method calc of the Derived class performing the
computations. Since the value of Derived is known at
compile time, modern compilers are able to remove this
level of indirection and directly call the method in the
Derived class. The same happens with all other similarly
implemented methods employed within step. A different
version of step is then compiled for each joint class, each
statically linked to the joint-specific methods and avoiding
the use of dynamic redirection.

This enhanced performance comes with a loss of
flexibility. From a conceptual point of view, when using
this coding paradigm, two different derived classes do
not inherit from the same base class. For instance,
JointModelBase<JointModelRevolute> is
a base class of JointModelRevolute, while
JointModelBase<JointModelPlanar> is a
base class of JointModelPlanar. This means that
JointModelRevolute and JointModelPlanar
cannot be cast to a same parent class, as usually done with
dynamic polymorphism. Therefore, it is neither possible to
create a vector of JointModelBase objects, nor possible
to have joints whose type is unknown at compile time.

To recover the flexibility allowed by dynamic
polymorphism, we resort to the concept of variant.
A variant is a class which can be used to represent
any type of a finite predetermined set of types. Most
importantly, a variant keeps runtime information about the
represented type. In Pinocchio, we define a variant called
JointModelVariant, able to represent any joint. Joints
are stored within a Pinocchio model as a collection of
variant objects. In this way, when an algorithm is executed,
the appropriate steps are selected at runtime, depending on
the type of each joint. However, as explained above, each
individual step is fully optimized for the specific joint type
at hand.

Thanks to the combination of CRTP and of the variant
paradigm, the code flexibility is recovered, while for
each algorithm the overall runtime overhead due to class
redirection is reduced to the minimum.

IV. GETTING STARTED WITH PINOCCHIO

Pinocchio [26] is currently supported for most Linux
distributions and also Mac OS X, with plans to release
Windows versions soon. The project is fully open-source
under the BSD-2-Clause license and is currently hosted on
the following GitHub repository:

https://github.com/stack-of-tasks/pinocchio

A. Documentation and tutorials
Documentation for Pinocchio is available within the

package, as well as on the GitHub project page; the Python

interface is fully documented, while the C++ documentation
is still work in progress. Benchmark and unit tests are all
available within the package. Tutorials for Pinocchio can be
found in a dedicated GitHub repository

github.com/stack-of-tasks/pinocchio-tutorials

The tutorials are mostly in Python and are especially suited
as a support to educators in robotics classes.

B. Installation

Pinocchio releases are managed by robotpkg, a package
manager tailored for robotics software, available on most
Unix and BSD platforms. Details on the installation
procedure can be found on the GitHub project page. Here,
we only provide a sketch.

On Ubuntu, the software binaries of the packages managed
by robotpkg are directly available through the robotpkg apt
repository. After adding the repository to the list of available
sources, Pinocchio, its Python bindings and all the required
dependencies can be simply installed with

apt-get install robotpkg-py27-pinocchio

The tutorials include details about the installation procedure,
as well as a script which automatically performs all the
installation steps.

On Mac OS X, installation of Pinocchio through the
Homebrew package manager is supported. It is sufficient to
issue the following commands

brew tap gepetto/homebrew-gepetto
brew install pinocchio

Another option is to install the framework directly from
the source code, which can be downloaded from the official
GitHub repository of Pinocchio.

C. Small example: running RNEA on the ATLAS robot

In the following, we demostrate how Pinocchio can be
used in Python to compute the inverse dynamics of the
humanoid robot Atlas on random input values.
import pinocchio as se3, numpy as np
root = se3.JointModelFreeFlyer()
model = se3.buildModelFromUrdf(‘atlas.urdf’,root)
data = model.createData()

qmax = np.matrix(np.full([model.nq, 1], np.pi))
q = se3.randomConfiguration(model,-qmax,qmax)
v = np.matrix(np.random.rand(model.nv,1))
a = np.matrix(np.random.rand(model.nv,1))
tau = se3.rnea(model,data,q,v,a)

V. RESULTS

A. Setup

We first evaluate the performances of Pinocchio over 8
different robot models3 and for the main used algorithms,
namely RNEA (inverse dynamics), ABA (forward dynamics)

3 Tests are run with the 7-DoF manipulator KUKA LWR
4+ [27], a simple 22-DoF legged humanoid model, the humanoids
Nao (www.softbankrobotics.com/emea/en/robots/nao), Poppy
(www.poppy-project.org), Atlas (www.bostondynamics.com/atlas) and
TALOS [28], the quadruped HyQ [29], and the mobile manipulator TIAGo
(www.tiago.pal-robotics.com).

https://github.com/stack-of-tasks/pinocchio
https://github.com/stack-of-tasks/pinocchio-tutorials
https://www.softbankrobotics.com/emea/en/robots/nao
https://www.poppy-project.org
https://www.bostondynamics.com/atlas
http://tiago.pal-robotics.com
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Fig. 1. Performance of Pinocchio RNEA, ABA and CRBA on various
robots.
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Fig. 2. Comparison of performances of Pinocchio against RBDL for the
LWR robot (top) and the ATLAS robot (bottom) models.

and CRBA (mass matrix). The performances of Pinocchio
are also compared against RBDL [9], another popular and
efficient C++ framework. Each test case is run 100 000 times
with randomized input values on a standard laptop equipped
with an Intel Core I7 CPU @2.4 GHz.

B. Results

Absolute performances are plotted in Fig. 1 over the 8
robot models. Pinocchio requires about 1 µs for evaluating
the dynamics on manipulator robots and about 3 µs on
legged robots. Performances versus RBDL are reported in
Fig. 2 for 2 representative models. Pinocchio RNEA is
similar to RBDL but its ABA and CRBA implementations
outperform RBDL. This first set of results was obtained using
the dynamic loading of models.

We then compare these scores with the performances
when a dedicated source code is generated for a given input
model, as depicted in Fig. 3. The code generation divides the
computation time by 3 for complex robots such as humanoids
or quadruped up to 8 for simpler robots like the LWR arm
robot. The difference in execution timings is likely due to the
caching effects and the necessity of prediction. As a result,
it is possible to evaluate the dynamics of complex legged
robots in slightly more than 1µs. Another important can be
raised between the theory and the practice. Indeed, from a
theoretical point of view, it is known that ABA has a larger
complexity in terms of number of operations than RNEA [2].
Nonetheless, it appears that in practice and thanks to the
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Fig. 3. Performances of code generated by Pinocchio (compared to the
dynamic version of the same algorithms).
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Fig. 4. Performances of the derivatives of RNEA and ABA, for 4 robot
models, versus evaluation by finite differences.

code generation, RNEA, ABA and also CRBA have similar
computational costs.

Finally, Pinocchio also provides the implementation of the
derivatives of RNEA and ABA among others. We report in
Fig. 4 the performances of these algorithms when the model
is loaded dynamically.

VI. FRAMEWORK DISSEMINATION

Pinocchio was used in [30] and later in [31], [32] to
generate the whole body motion of the HRP-2 robot. This
experiment of climbing stairs with multiple contacts has been
run on the real hardware about 100 times with a rate of
success around 80 %. Thanks to its versatility, it is currently
used on the humanoid robot Pyrene (TALOS-01) [28] to
perform kinematic and dynamical tasks. It also has been
used in [33] to perform 150 RNEA runs in less than
1ms to implement a dynamical filter. This has been a key
point in order to improve the capabilities of the reactive
walking pattern generator. Pinocchio has been exploited
to generate whole-body optimal control both for codesign
approaches [34] and for fast walking motions [35]. It is also
used to perform manipulation planning in the Humanoid Path
Planner (HPP) software [36] on various robots: UR5, PR-2,
and Romeo. It has also been recently used inside the HPP
framework to plan dynamically feasible contact sequences
on HRP-2 [37], [38].

VII. CONCLUSIONS

We have introduced Pinocchio, a new, fast and flexible
framework that implements rigid body dynamics algorithms
and their analytical derivatives. Pinocchio demonstrates
equivalent or even better performances than all other similar
libraries when used dynamically. The gap is even increased



with the support of code generation, where the timings
outperforms the state of art.

As next milestones, we plan to integrate in Pinocchio both
the model of transmissions (gear, pulley, tendons, etc.) and
actuations (pneumatic muscles, biological muscles, electrical
motors, etc.) in order, for instance, to take into account
their physical effects in the dynamic equations of motion.
This will make Pinocchio not only able to deal with robotic
systems but also with the simulation of biological systems,
that is of primary importance to understand for instance the
foundations of anthropomorphic locomotion [39].
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