

Development of an ISFET-based analysis microsystem for nitrogen cycle monitoring in durum wheat crop

CIGR AGENG NJF 2016

M. Joly, S. Assie-Souleille, L. Mazenq, M. Marlet, P. Temple-Boyer,

C. Durieu, J. Launay

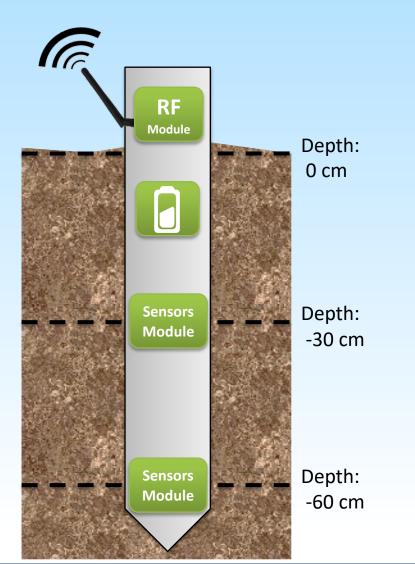
mjoly@laas.fr

Presentation

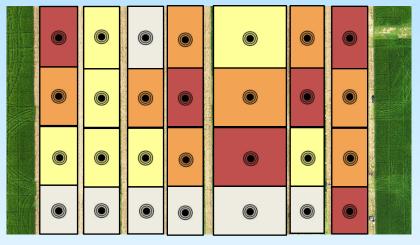
Matthieu Joly, PhD Student at LAAS-CNRS in Toulouse (France)

Team "Microsystems for Analysis": Electrochemical and optical sensors in liquid and gas phase in the fields of environment, health, biology or security

 \succ

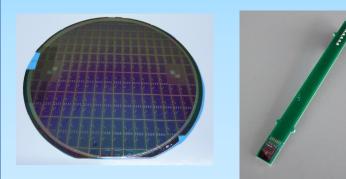


A medium-sized company specialized in plant nutrition



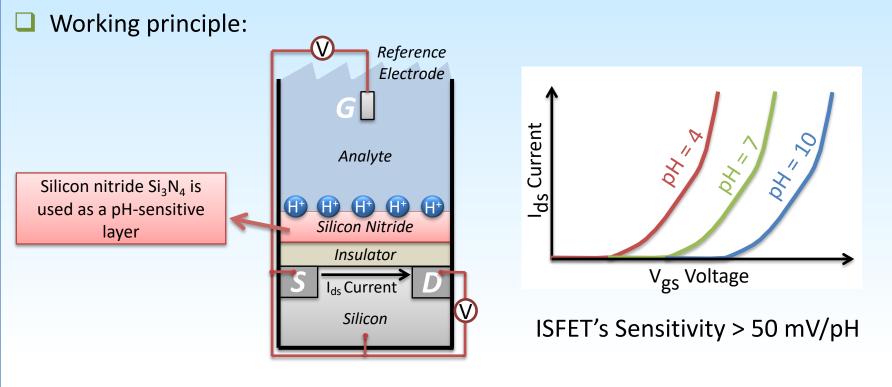
Goal: Improve nitrogen fertilizer efficiency with a time & site-specific tool

A wireless sensors network:

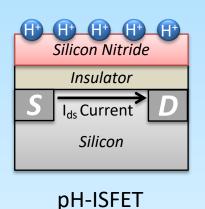


Each Micro-Sensors module measures:

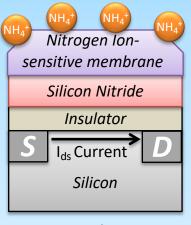
- Soil pH
- Soil Nitrate (NO₃⁻) concentration
- Soil Ammonium (NH₄⁺) concentration
- Soil Temperature
- Soil Ionic Conductivity


Ion-Sensitive Field Effect Transistor (ISFET) Technology

pH-ISFET microsensors are fabricated in a clean room using silicon technology


Advantages vs. pH glass electrodes:

- Non-glass body
 → Rugged, no broken glass problem
- Fast response
- Low-cost



Ion-Sensitive Field Effect Transistor (ISFET) Technology

pH-ISFET functionalization to Nitrate and Ammonium detection by adding an ionsensitive membrane

pNO3-ISFET / pNH4 ISFET

Challenges of using ISFET for monitoring in agriculture:

- Lifetime of ISFET must be long (> 5 months) in a complex environment
- Use of a sensor technology dedicated to liquid phase measurement in nonliquid soil

In-situ soil measurements with pH-ISFET

Effect of soil moisture on ISFET's detection capability:

Soil moisture given in % of maximum soil water holding capacity

ISFET's sensitive area must be in fine contact with soil paste

Conclusions:

 ISFET measurement is compatible with typical water contents during wheat growth

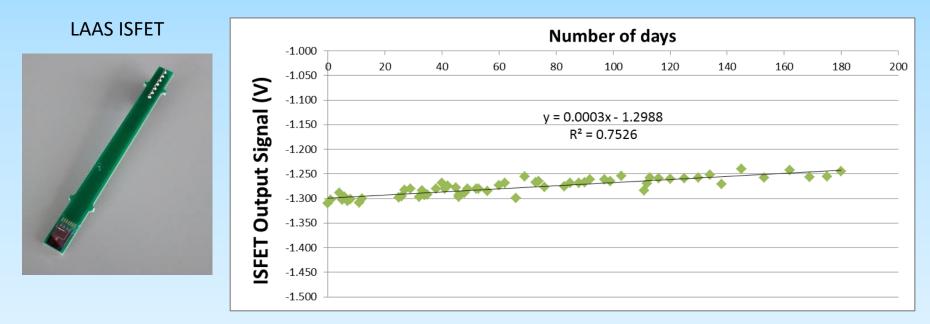
In-situ soil measurements with pH-ISFET

pH-ISFET measurements compared to standard laboratory method:

In a silty-clay soil of pH 4,7 Soil moisture ~ 75% of maximum water holding capacity

In a silty-clay soil of pH 8,4

Quick 3-points calibration of ISFET in buffer pH solutions


N° Measurement	1	2	3	4	5	Average	Standard deviation	Me	easurement Err	or
Soil pH = 4,7	4,99	4,75	5,35	5,5	5,19	5,15	0,26		0,45	
Soil pH = 8,4	7,98	8,40	8,04	8,06	8,45	8,19	0,19		0,21	

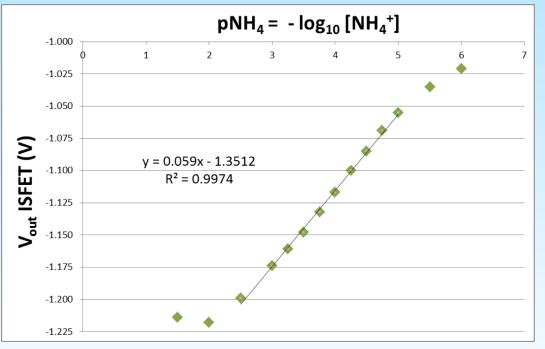
Conclusions:

Rapid in-situ pH-measurement in acid and basic soils leads to values in good accordance with standard laboratory results

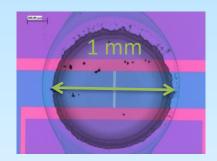
In-situ soil measurements with pH-ISFET

Study of ISFET and reference electrode potential drift and lifetime in a silty clay soil

> ISFET drift is little and predictive: Loss of 1 pH unit after 6 months


Conclusions:

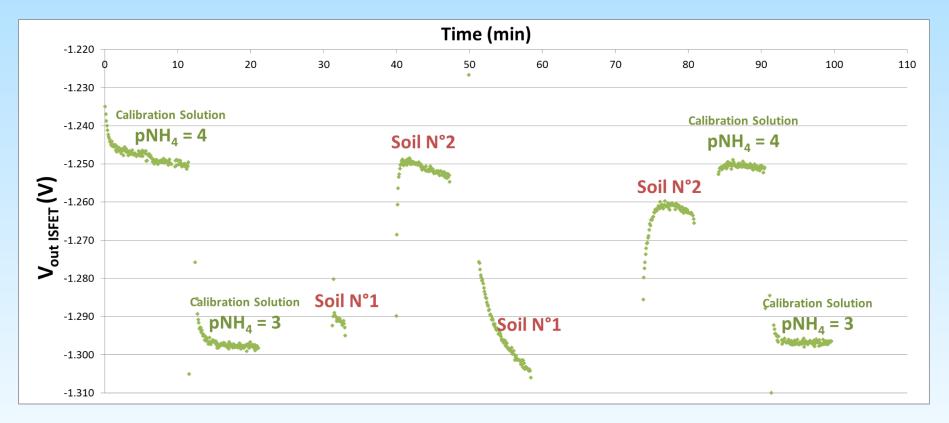
pH-ISFET technology could allow the monitoring of soil-pH during all wheat \checkmark growth stages 8


From the pH-ISFET to mineral nitrogen detection

Functionalization of pH-ISFET : Casting of a sensitive membrane based on a fluoropolysiloxane matrix with ionophores.

Characterization in <u>aqueous solution</u> with ammonium nitrate concentrations ranging from 10⁻⁶ to 10⁻¹ mol/L

Membrane composition: FPSX + Nonactine + KT-4-CIPB


Slope (mV/pNH ₄ +)	59,0			
Linear Range (pNH ₄ +)	[2,5 – 5]			
Detection limit (pNH ₄ ⁺)	> 5,5			

Conclusions:

Functionalized ISFET exhibit sensitivity and detection limit in liquid phase in accordance with standard values in field conditions

Soil ammonium sensing with pNH₄-ISFET

- Soil N°1: Nitrogen mineralization <u>stimulated</u> by high temperature (38°C) for 1 month
- Soil N°2: Nitrogen mineralization <u>inhibited</u> by low temperature (4°C) for 1 month

Conclusions:

✓ An increase of NH_4 concentration from $pNH_4 = 4$ to $pNH_4 = 3$ was highlighted by pNH_4 -ISFET in silty-clay

Conclusion and prospects

- pH-ISFET are suitable for an easy and long-term pH analysis in soil
- pNH₄ and pNO₃-ISFET already showed promising results in soil nitrogen sensing
 - ...but some properties still need to be validated in soil:
 - Lifetime of the ion sensitive membrane
 - Selectivity
 - Integration of a stable reference electrode

Acknowledgements

Co-workers:

S. Assie-Souleille, C. Durieu, L. Mazenq, M. Marlet, P. Temple-Boyer, J. Launay and others...

Thank you

mjoly@laas.fr