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A two-impulse method for stabilizing the spacecraft relative motion
with respect to a periodic trajectory*

Georgia Deaconu1,2, Christophe Louembet1,2 and Alain Théron1,2

Abstract— The article presents an analytical method for com-
puting a two-impulse control law that stabilizes the spacecraft
relative motion with respect to an invariant set. The invariant
set contains the states belonging to a desired periodic relative
trajectory and is described using linear equations. The two
impulses are computed analytically based on the predictionof
the evolution of the relative trajectory. Closed-loop tests are
conducted using the non-linear relative dynamics, for different
eccentricities of the reference orbit and for different levels of
navigation uncertainty. Encouraging results are obtainedusing
a control strategy that requires very few computational effort.

I. I NTRODUCTION

The spacecraft ability to maintain a relative periodic mo-
tion will be an important aspect of future on-orbit inspection
and on-orbit servicing missions [1]. Moreover, enabling the
spacecraft to evolve on naturally periodic relative trajectories
could greatly reduce the mission’s fuel cost.

The periodic relative orbits are usually described using the
closed-form solutions of the equations of relative motion [2],
[3]. In a real environment, the spacecraft ability not to drift
apart from a desired periodic trajectory is highly dependent
on the accuracy of the model used for deriving these so-
lutions. However, orbital disturbances such as gravitational
perturbations and atmospheric drag, modelling errors from
linearised dynamics or measurement noise will cause the
spacecraft to move away from the periodic trajectory, unless
a control action provides the necessary corrections.

The control strategies proposed in the literature for main-
taining the spacecraft on periodic relative trajectories span
over a large range of control techniques, including LQR,
non-linear, Lyapunov, model predictive control, etc., anduse
either continuous or impulsive thrusting (see [4] and the
references therein). The main challenges consist in finding
an accurate but simple model of relative motion, valid
for arbitrary elliptical reference orbits, and determining a
stabilizing control law that guarantees an efficient trade-off
between the performances, the complexity of the algorithm
and the limited computational power available on-board [5].

Several recent publications address these challenges. [6]
uses a time-delayed feedback control to stabilize and bound
the spacecraft relative motion. Since only the period of the
resulting trajectory needs to be specified, the method is not
sensitive to modelling errors and can be applied to systems
without a priori knowledge of their dynamics. However it
does not provide any information about the shape or the
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dimensions of the obtained relative trajectory and it does not
consider navigation uncertainty.

[7] presents a feedback controller based on the solution of
a differential Riccati equation, that steers the spacecraft to a
given periodic trajectory. The reference state is obtainedby
introducing a virtual satellite whose motion is propagatedby
integrating the complex non-linear dynamics, starting from
initial conditions that ensure the periodicity of the trajectory.
While effective from a modelling precision point of view,
this method for retrieving the desired state can be compu-
tationally expensive and can suffer from loss of numerical
accuracy when long propagation times are required.

To guaranteea priori robustness of the control law to
navigation uncertainties, [8] turns towards more sophisticated
control techniques. Model predictive control (MPC) is used
for designing a fuel optimal manoeuvre plan leading from an
initial state to the desired state. Moreover, a range of initial
states is considered in the synthesis in order to capture the
measurement uncertainty and to ensure robust performances.
But the robust performances of the method come at the price
of having to solve at each step a linear optimization problem.

The control law presented in this article is based on
the linearised model for the spacecraft relative dynamics
expressed in a local Cartesian frame. It consists of a two-
impulse manoeuvre that stabilizes the relative motion with
respect to an invariant set, by requiring the distance to this
set to become zero. The invariant set is composed of the
states belonging to a specified periodic trajectory and it
can be described using only linear equations. This enables
the computation of the reference state at any moment by
a simple matrix multiplication. The resulting control law is
suitable for any kind of eccentric orbit and has the advantage
of requiring very few computational effort. Its robustness
properties to navigation uncertainties are shown through
numerical simulations. However, the optimality in terms of
fuel consumption is not guaranteed.

The article is organized as follows. Section II gives a brief
description of the parametrization of a periodic spacecraft
relative trajectory and analyzes the stability of the relative
motion with respect to this invariant set. Section III presents
the stabilizing two-impulse control method while section
IV provides extensive numerical analysis to evaluate its
performances.

II. CHARACTERIZATION OF THE PERIODIC MOTION

A. Parametrization of the relative periodic trajectory

Let us consider the relative motion between two spacecraft
on elliptic Keplerian orbits, a passive leader and a controlled



follower. The relative stateX ∈ R
6 consists of the relative

position and the relative velocity between the spacecraft,
expressed in the leader’s local-vertical/local-horizon (LVLH)
frameX = [x y z vx vy vz]

T .
The spacecraft relative motion under impulsive control

∆Ṽ, is described using the Yamanaka-Akersen transition ma-
trix [9] Φνk+1

νk
, solution of the Tschauner-Hempel equations

[10] for the relative dynamics:

X̃(νk+1) = Φνk+1
νk

(X̃(νk)+B∆Ṽk) = Φνk+1
νk

X̃+(νk) (1)

The matrixB expresses the fact that the impulsive control
acts only on the relative velocity. The independent variable is
the true anomaly of the leaderν and the following variable
change allows the passage from the time domain to the scaled
variables inν:

X̃(ν) =

[

(1+ecosν)I3 03
1+ecosν

ν̇
I3 −esinνI3

]

X(t) (2)

wheree is the eccentricity of the leader’s orbit ,I3 ∈ R
3×3

is the identity matrix and 03 ∈ R
3×3 is the zero matrix.

Searching for an autonomous periodic trajectory for sys-
tem (1) is equivalent to imposing the passage through the
same statẽX(νk) after one period of free motion:

X̃(νk+2π) = Φνk+2π
νk

X̃(νk) = X̃(νk) (3)

It follows a linear condition that the initial state of the
propagation must satisfy in order for the trajectory to be
periodic:

M(νk)X̃(νk) = 0 (4)

whereM(ν) ∈ R
1×6 is defined by:

M(ν)=
[

0 0 2+3ecν +e2 −(1+ecν)
2 0 esν (1+ecν)

]

(5)
with cν = cosν andsν = sinν.

By considering the autonomous motion in (1) and assum-
ing that the initial stateX̃(νk) satisfies (4), the parametric
equations for the propagation of the periodic motion are
obtained:

x̃(ν) = (2+ecosν)(d1 sinν −d2cosν)+d3

ỹ(ν) = d4cosν +d5sinν
z̃(ν) = (1+ecosν)(d1cosν +d2sinν)

, ν ≥ νk (6)

The parametersdi , i = 1...5 can be expressed as functions
of the initial state of the periodic motioñX(νk). Let D=
[

d1 d2 d3 d4 d5
]T

, then:

D =C(νk)X̃(νk) (7)

where the matrixC(ν) ∈ R
5×6 is defined by:

C(ν) =

















0 0 2ec2ν+cν−e
(1+ecν )2

0 0 − sν
1+ecν

0 0 sν (1+2ecν )
(1+ecν )2

0 0 cν
1+ecν

1 0 esν (2+ecν )
(1+ecν )2

0 0 2+ecν
1+ecν

0 cν 0 0 −sν 0
0 sν 0 0 cν 0

















(8)

Equations (6) show that any two statesX̃(νk) and X̃(ν j )
belonging to the same periodic trajectory respect the pe-
riodicity condition (4) and generate the same vector of
parametersD:

C(νk)X̃(νk) =C(ν j )X̃(ν j) = D, with νk 6= ν j (9)

This comes from the fact that when using (6) to propagate
over one orbital period the motion starting from̃X(νk) and
from X̃(ν j ), the obtained trajectories must coincide since we
made the hypothesis that the two states belong to the same
periodic trajectory.

This observation enables the computation of the reference
state on a specified periodic trajectory at any given moment.
A state X̃(νk) belongs to a periodic trajectory specified by
the parametersD if and only if:

[

M(νk)
C(νk)

]

X̃(νk) =

[

0
D

]

(10)

The corresponding state on the desired trajectoryD is de-
duced by inverting (10):

X̃(νk) =

[

M(νk)
C(νk)

]−1[0
D

]

=Y(νk)

[

0
D

]

(11)

The matrix in (11) is always invertible since its determinant
equals−1 and the matrixY ∈R

6×6 is defined by:

Y(ν)=

















0 sν(2+ecν) −cν(2+ecν) 1 0 0
0 0 0 0 cν sν
0 cν(1+ecν) sν (1+ecν) 0 0 0
−1

(1+ecν )2
2ec2

ν+2cν−e 2sν(1+ecν) 0 0 0

0 0 0 0 −sν cν
0 −sν(1+2ecν) 2ec2

ν+cν−e 0 0 0

















(12)

B. Stability around a periodic trajectory

The stability around a periodic trajectory is understood in
the sense given in [11], which requires the characterisation
of the evolution of the trajectories that start arbitrarilyclose
to the periodic one. An ”asymptotically stable” behaviour
of these neighbouring trajectories would imply their natural
convergence towards the periodic solution. The stability
properties of the periodic solutions are analysed by extending
the notion of Lyapunov stability of an equilibrium point to
the notion of stability of an invariant set [11].

A setL∈R
n is said to be positivelyinvariant for a discrete

autonomous system of the form:

x(tk+1) = f (x(tk)) (13)

if, for all x(t0) ∈ L, the solutionx(tk) ∈ L for tk ≥ t0. Hence
the setL is invariant if all the trajectories starting in the set
remain in the set.

An invariant setL is said to bestable if, for eachε ≥ 0,
it existsδ ≥ 0 such that :

∀x(t0) s.t. dist(x(t0),L) ≤ δ ⇒ dist(x(tk),L)≤ ε,∀tk ≥ t0
(14)



where the distance from a pointx to the setL is defined by:

dist(x,L) = inf
y∈L

‖x− y‖ (15)

An invariant setL is said to beasymptotically stableif it
is stable andδ can be chosen such that:

∀x(t0) s.t. dist(x(t0),L) ≤ δ ⇒ lim
k→∞

dist(x(tk),L) = 0 (16)

This means that trajectories starting arbitrarily close tothe
set will converge towards the set.

Considering the autonomous evolution of (1):

X̃(νk+1) = Φνk+1
νk

X̃(νk) (17)

and definingS as the set composed of the states of system
(17) belonging to all the possible periodic trajectories, re-
gardless of their shape or dimensions:

S= {X̃(ν) ∈ R
n|M(ν)X̃(ν) = 0} (18)

it can be showed thatS is a stable invariant set.
Proposition 1: S is a stable invariant set for system (17).

Proof: It can easily be checked that the state transition
matrix Φ verifies the following property:

M(ν j )Φ
ν j
νk
= M(νk). (19)

Thus, if a stateX̃(νk) respects the periodicity condition (4),
then any following statẽX(ν j), with ν j ≥ νk, will also respect
the periodicity condition. Hence,S is a positive invariant set
for the autonomous system (17).

For anyX̃(νk) such that

dist(X̃(νk),S) =
∥

∥M(νk)X̃(νk)
∥

∥≤ δ (20)

and for anyν j ≥ νk, we can write

dist(X̃(ν j ),S) =
∥

∥

∥
M(ν j )Φ

ν j
νk

X̃(νk)
∥

∥

∥
=
∥

∥M(νk)X̃(νk)
∥

∥≤ δ .
(21)

It follows that the invariant setS is stable since it satisfies
(14), but not asymptotically stable since (16) is not verified,
in the absence of a control action.

Remark 1:The stability property ofS does not guarantee
a periodic autonomous evolution of the system. A trajectory
that verifies (20) is a drifting trajectory, with the amount of
drift per orbit fixed byδ (Figure 1). A control action needs to
be applied in order to ensure the asymptotic stability leading
to a periodic motion.

III. C ONTROL LAWS

A. Single-impulse control

A simple way of computing a single-impulse manoeuvre
∆Ṽ = [∆Ṽx ∆Ṽy ∆Ṽz]

T that brings the system on a periodic
trajectory can be derived from the definition of the invariant
setS. Based on the measurement of the current stateX̃(νk),
an impulsive control can be computed such that the state
after controlX̃+(νk) verifies:

dist(X̃+(νk),S) =
∥

∥M(νk)(X̃(νk)+B∆Ṽ)
∥

∥= 0 (22)
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Fig. 1. Trajectory which satisfies (20),δ = 0.1

It follows that the single-impulse control must satisfy:

−∆Ṽx+
esinνk

1+ecosνk
∆Ṽz=−

M(νk)

(1+ecosνk)2 X̃(νk) (23)

with the simplified version in case the designer makes the
choice to apply control only on thex axis:

∆Ṽx =
M(νk)

(1+ecosνk)2 X̃(νk) (24)

The impulsive control (23) or (24) will attempt to coun-
teract the effect of the various orbital disturbances on the
periodicity of the motion. It will drive the system towards
a neighbouring periodic trajectory but it runs the risk of a
resulting relative trajectory that is unbounded since no other
restrictions are added. Figure 2 shows the evolution of the
trajectory underJ2 perturbation when the impulsive control
(24) is applied in closed-loop.

One way to fix this problem is to try to steer the system
towards the closest periodic trajectory that is guaranteedto
evolve inside a specified region. This could be done using
model predictive control algorithms [4], [12] for instance, but
at the price of solving an optimization problem on-line. Since
analytical methods require fewer computational effort, they
are more suited for on-board implementation. An analytical
method for computing the control that steers the spacecraft
to a predefined periodic trajectory is introduced next.

B. Two-impulse control

Let D be a vector of parameters that defines a periodic
trajectory as in (7). The invariant set composed of the states
belonging to this trajectory is defined by:

SD = {X̃(ν) ∈ R
n|M(ν)X̃(ν) = 0, C(ν)X̃(ν) = D} (25)
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Fig. 2. Trajectory under single-impulse control andJ2 perturbation



with the associated distance:

dist(X̃(ν),SD) =

∥

∥

∥

∥

[

M(ν)
C(ν)

]

X̃(ν)−
[

0
D

]∥

∥

∥

∥

(26)

The purpose is to find a control law that stabilizes the system
(1) around the periodic trajectoryD, i.e. a control law that
aims at obtaining:

dist(X̃(ν),SD) = 0 (27)

A two-impulse method provides an analytical solution to
this problem. Starting from the current measurementX̃(νk),
two controls ∆Ṽk and ∆Ṽk+1 are computed, such that the
state after the second thrust belongs to the desired periodic
trajectory: dist(X̃+(νk+1),SD) = 0. This leads to:

[

M(νk+1)
C(νk+1)

]

(

X̃(νk+1)+B∆Ṽk+1
)

=

[

0
D

]

(28)

[

M(νk+1)
C(νk+1)

]

(

Φνk+1
νk

(X̃(νk)+B∆Ṽk)+B∆Ṽk+1

)

=

[

0
D

]

(29)

The following solution is obtained:

[

∆Ṽk

∆Ṽk+1

]

=
[

Φνk+1
νk

B B
]−1

(

Y(νk+1)

[

0
D

]

−Φνk+1
νk

X̃(νk)

)

(30)
For the matrix to be invertible care must be taken to
haveνk+1−νk 6= nπ . The control depends on the reference
trajectory (through the vectorD), on the current instantνk

and on the interval betweenνk andνk+1. It is computed based
on the prediction of the evolution of the trajectory atνk+1

since the terms in the parenthesis correspond to the reference
state and to the autonomously propagated state respectively.

C. Robustness to navigation uncertainty

Suppose the measured stateX̃m(νk) lies in an uncertainty
ellipsoid around the real statẽXr(νk), ellipsoid defined by
the matrixPu ∈ R

6×6 � 0:

X̃m(νk) = X̃r(νk)+Puu, uTu≤ 1 (31)

The control law (30) is computed starting from the measured
stateX̃m(νk) but it is applied to the real statẽXr(νk). This
causes the final distance to the invariant setSD to be non-
zero:

dist(X̃+(νk+1),SD) =

∥

∥

∥

∥

[

M(νk+1)
C(νk+1)

]

Φνk+1
νk

Puu

∥

∥

∥

∥

, uTu≤ 1

(32)
The distance toSD depends only on the instantsνk andνk+1
and on the amount of navigation uncertainty considered. If
the uncertainty is high then a smaller interval between the
impulses might be necessary to ensure the stability of the
system. The robustness of the proposed control method is
validated through numerical tests in the following section.

IV. N UMERICAL ANALYSIS

The performances of the control method (30) are analysed
through realistic closed-loop simulations. The same philoso-
phy as for MPC control [13] is used to implement the closed
loop: at each time step a pair of two impulses is calculated
but only the first one is applied.

The relative motion is propagated using the Gauss Varia-
tional Equations. The sensor noise is modelled by adding
an uncorrelated white noise on the relative position and
velocity respectively. The reference orbit has a semi-major
axis of 7 011 km and an eccentricity that depends on
the simulation scenario. For each eccentricity a reference
periodic trajectory specified through the vector of parameters
D is obtained using the algorithm in [12]. All the reference
trajectories are required to evolve inside a tolerance box
Xtol = [50;25;25] [m] around the final positionXf = [100 0 0]
[m]. The dimensions of the tolerance box have been chosen
to guarantee feasible periodic trajectories for a wide range
of eccentricities.

The ability of the method to accommodate different types
of reference trajectories is analysed next, along with the in-
fluence that the interval between controls and the navigation
uncertainties have on its performances.

A. Influence of the eccentricity

The influence of the eccentricity on the stability and the
performance of the control method is analysed by consider-
ing different eccentricities for the leader’s orbit and different
corresponding periodic reference trajectories. The control is
applied everyTs = 100 s for simulations lasting over 10
orbital periods. A typical navigation uncertainty of 0.02 m
for the relative position and of 0.002 m/s for the relative
velocity is considered [8].

A discrete LQ method [14] is used for comparison, since
it requires the same amount of calculations. The gain matrix
are chosenQ = I6 and R= 03 since for the two-impulse
method no constraints are imposed on the control.

Figure 3 shows the trajectories obtained in simulation,
using the two-impulse control method, for each eccentricity,
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Fig. 3. The simulation trajectories for each eccentricity



TABLE I

INFLUENCE OF THE ECCENTRICITY

Method e Perr [m] Verr [ m
s ] ∆V [ m

s /orbit]

2∆V

0.0238 0.2678 0.004 0.2554
0.1 0.2695 0.004 0.2554
0.3 0.3842 0.011 0.2577
0.5 0.4986 0.037 0.2761

LQ

0.0238 1.6293 0.0037 0.2002
0.1 1.5453 0.0041 0.2002
0.3 1.8075 0.0114 0.2005
0.5 2.9523 0.0389 0.2099

along with their projections on thexy, xz planes. Even if the
trajectories become more twisted as eccentricity increases,
our method ensures good tracking performances.

Table I gives the maximum of the absolute value of the
position error on any axis givesPerr, the maximum of the
absolute value of the velocity error on any axisVerr and the
fuel consumption per orbit for each scenario and for each
control method (LQ and two-impulse 2∆V). At first sight the
two-impulse method shows slightly higher fuel consumption
than the LQ method but this is just the price to pay for
better tracking performances. Table II shows that in order
to reach the same tracking precision of approximately 2
m, our method allows a bigger interval between impulses
Ts and issues a lower fuel consumption per orbit∆V. For
instance, for an eccentricitye= 0.3, the same performances
are obtained using a control interval 4 times bigger and with
3 times less fuel per orbit.

For higher eccentricities likee= 0.8 the LQ method does
not ensure the stability and the spacecraft drift rapidly from
the reference trajectory. The 2∆V method has some prob-
lems to follow the quickly changing parts of the reference
trajectory and shows a growing fuel consumption over the
10 orbital periods considered. This suggests an unstable
behaviour that may be explained by the fact that for very
eccentric orbits a smaller time step is needed for the control.
It could also come from the fact that the orbital dynamics
used to build the reference trajectory are no longer valid for
such high eccentricities.

B. Influence of the interval between controls

The frequency of control execution is a key parameter
both from fuel consumption and stability point of view. For
each eccentricity, several values for the interval betweencon-
secutive impulses are used to analyse the fuel consumption
per orbit and the maximum distance to the invariant setSD

TABLE II

FUEL CONSUMPTION FOR SAME TRACKING PRECISIONPerr = 2m

2∆V LQ
e Ts [s] [m] ∆V [ m

s /orbit] Ts [s] [m] ∆V [ m
s /orbit]

0.0238 600 0.0411 130 0.1533
0.1 600 0.0402 130 0.1537
0.3 400 0.0682 100 0.2005
0.5 250 0.1383 50 0.4036
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Fig. 4. Influence of the interval between controls on the fuelconsumption

(computed with a 2-norm in (26)). A navigation uncertainty
of 0.02 m on the relative position and of 0.002 m/s on the
relative velocity is considered for simulations running over
30 orbital periods.

Figure 4 shows that, before reaching a certain critical
value, the larger the interval between controls the smaller
the fuel consumption. After this value the fuel consumption
quickly increases, as the system approaches the stability
limit. The critical control interval depends on the orbit’s
eccentricity as highly eccentric orbits require a smaller
control step.

Figure 5 shows that there is a direct link between the
interval between controls, the fuel consumption and the
maximum distance to the invariant setSD. A large distance to
the invariant set is equivalent to high fuel consumption, large
tracking errors and/or instability. Considering a small control
interval does not necessarily imply a smaller distance toSD

since the system could be moved away from the reference
trajectory by unnecessary thrusting caused by the navigation
errors.

C. The influence of navigation uncertainty

The influence of the navigation uncertainty on the tracking
precision and on the fuel consumption is analysed next. For
an eccentricity of 0.3, several values for the control interval
Ts and for the measurement noiseδP, δV are considered.

Figure 6 shows that when there is no measurement noise,
the choice of the control interval does not impact signifi-
cantly the fuel consumption. As the measurement uncertainty
gets higher it becomes more fuel efficient to consider a large
interval between consecutive corrections in order to avoid
unnecessary thrusting due to inaccurate measures.
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Fig. 5. Influence of the interval between controls on the distance toSD
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Table III gives, forTs = 500 s, the absolute value of the
maximum position errorPerr and of the maximum velocity
errorVerr, along with the fuel consumption per orbit∆V and
the maximum distance to the invariant setSD, dmax. It shows
that even for high navigation uncertainties the tracking per-
formances maintain acceptable bounds and that the distance
to the invariant set increases with the measurement noise.

D. Conservativeness of the fixed reference trajectory

For some types of missions, the relative trajectory itself
might not be very important as long as it is periodic and
it evolves in a specified region. Orbital perturbations could
bring the spacecraft to a configuration where less fuel is
required for the transfer to a different neighbouring periodic
relative trajectory, which evolves inside the specified region,
than for steering back to the current one.

To address this issue, the analytical two-impulse strategy
is compared with the semi-definite program we presented in
[12] where the number of impulses is equal to 2 (called here
2SDP). An orbit withe= 0.3, a re-plan time ofTs = 100
s and a navigation uncertainty of 0.02 m for position and
0.002 m/s for velocity are considered for the comparison of
the two methods.

Figure 7 shows the obtained relative trajectories, along
with their xy and xz projections. For the 2SDP method the
trajectory is free to evolve inside the specified tolerance box
so it changes dimensions and it changes orientation. This
freedom is translated into a fuel consumption per orbit that
is 10 times smaller than the two-impulse strategy.

V. CONCLUSIONS

An analytical method for computing a two-impulse con-
trol law that stabilizes the relative motion with respect to
the invariant set composed of the states belonging to a
desired periodic trajectory is presented. The evaluation of

TABLE III

INFLUENCE OF THE NAVIGATION UNCERTAINTY

δP[m],δV[ m
s ] ∆V [ m

s /orbit] Perr [m] Verr [ m
s ] dmax

0, 0 0.0280 1.7529 0.0079 7.6698
0.01, 0.001 0.0394 1.8834 0.0081 9.0410
0.02, 0.002 0.0572 2.1505 0.0103 11.2018
0.03, 0.003 0.0768 2.5151 0.0125 13.4797
0.04, 0.004 0.0976 2.8798 0.0148 17.3393
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Fig. 7. Comparison between 2DV and 2SDP trajectories

the maximum distance to the invariant set can be used as a
criterion for choosing the best frequency of control execution
in the presence of navigation uncertainty. With very few
computational effort, the method provides good tracking
performances for a wide range of reference trajectories and
appears to be quite robust to typical levels of measurement
noise. However, on-line optimization of the reference trajec-
tory can help reducing the fuel consumption.
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