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A two-impulse method for stabilizing the spacecraft relatve motion
with respect to a periodic trajectory*

Georgia Deacont?, Christophe Louemb&t and Alain Théroh?

Abstract— The article presents an analytical method for com- dimensions of the obtained relative trajectory and it dags n
puting a two-impulse control law that stabilizes the space@ft  consider navigation uncertainty.
relative motion with respect to an invariant set. The invariant [7] presents a feedback controller based on the solution of

set contains the states belonging to a desired periodic rdlae . - . . .
trajectory and is described using linear equations. The two a differential Riccati equation, that steers the spaceovad

impulses are computed analytically based on the predictionf ~ given periodic trajectory. The reference state is obtaimgd
the evolution of the relative trajectory. Closed-loop tes$ are introducing a virtual satellite whose motion is propagdigd

conducted using the non-linear relative dynamics, for diferent  integrating the complex non-linear dynamics, startingrfro
eccentricities of the reference orbit and for different lewls of - jnitia| conditions that ensure the periodicity of the tejay.
navigation uncertainty. Encouraging results are obtainedusing While effective f delli g int of Vi
a control strategy that requires very few computational efbrt. ) lie efrective rom a_ modelling preCISlon point of view,
this method for retrieving the desired state can be compu-
|. INTRODUCTION tationally expensive and can suffer from loss of numerical

The spacecraft ability to maintain a relative periodic moaccuracy when long propagation times are required.
tion will be an important aspect of future on-orbit inspenti ~ To guaranteea priori robustness of the control law to
and on-orbit servicing missions [1]. Moreover, enabling th havigation uncertainties, [8] turns towards more soptaséid
spacecraft to evolve on naturally periodic relative trajees — control techniques. Model predictive control (MPC) is used
could greatly reduce the mission’s fuel cost. for designing a fuel optimal manoeuvre plan leading from an
The periodic relative orbits are usually described usireg thinitial state to the desired state. Moreover, a range ofainit
closed-form solutions of the equations of relative motidj [ states is considered in the synthesis in order to capture the
[3]. In a real environment, the spacecraft ability not taftdri measurement uncertainty and to ensure robust performances
apart from a desired periodic trajectory is highly dependerBut the robust performances of the method come at the price
on the accuracy of the model used for deriving these s@f having to solve at each step a linear optimization problem
lutions. However, orbital disturbances such as gravitaio ~The control law presented in this article is based on
perturbations and atmospheric drag, modelling errors frothe linearised model for the spacecraft relative dynamics
linearised dynamics or measurement noise will cause tixpressed in a local Cartesian frame. It consists of a two-
spacecraft to move away from the periodic trajectory, slesmpulse manoeuvre that stabilizes the relative motion with
a control action provides the necessary corrections. respect to an invariant set, by requiring the distance t® thi
The control strategies proposed in the literature for mairset to become zero. The invariant set is composed of the
taining the spacecraft on periodic relative trajectoripans states belonging to a specified periodic trajectory and it
over a large range of control techniques, including LQRgan be described using only linear equations. This enables
non-linear, Lyapunov, model predictive control, etc., aise¢  the computation of the reference state at any moment by
either continuous or impulsive thrusting (see [4] and th& simple matrix multiplication. The resulting control la i
references therein). The main challenges consist in findirgyitable for any kind of eccentric orbit and has the advantag
an accurate but simple model of relative motion, valicf requiring very few computational effort. Its robustness
for arbitrary elliptical reference orbits, and determppia  properties to navigation uncertainties are shown through
stabilizing control law that guarantees an efficient traffe- numerical simulations. However, the optimality in terms of
between the performances, the complexity of the algorithifilel consumption is not guaranteed.
and the limited computational power available on-board [5] The article is organized as follows. Section Il gives a brief
Several recent publications address these challenges. {&scription of the parametrization of a periodic spacécraf
uses a time-delayed feedback control to stabilize and bourglative trajectory and analyzes the stability of the retat
the spacecraft relative motion. Since only the period of theiotion with respect to this invariant set. Section Ill pretse
resulting trajectory needs to be specified, the method is ntte stabilizing two-impulse control method while section
sensitive to modelling errors and can be applied to systenhg provides extensive numerical analysis to evaluate its
without a priori knowledge of their dynamics. However it performances.

does not provide any information about the shape or the Il. CHARACTERIZATION OF THE PERIODIC MOTION
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follower. The relative stat&X € R® consists of the relative  Equations (6) show that any two staté$vy) and X(v;)
position and the relative velocity between the spacecratbelonging to the same periodic trajectory respect the pe-
expressed in the leader’s local-vertical/local-horiziovil(H) ~ riodicity condition (4) and generate the same vector of
frameX =[x y z v v vT. parameter:

The spacecraft relative motion under impulsive control ~ ~ )
AV, is described using the Yamanaka-Akersen transition ma-  C(VX (V) = C(vj)X(vj) =D, with we v  (9)

trix []?] (D;m ISOIUt'%n of the Tschauner-Hempel equationspis comes from the fact that when using (6) to propagate
[10] for the relative dynamics: over one orbital period the motion starting frof{v) and

X (V1) = DU k+1 (X (i) + BAV) = ¢5t+1)~(+(vk) (1) from X(vj), the obta_ined trajectories must coincide since we

made the hypothesis that the two states belong to the same

The matrixB expresses the fact that the impulsive controperiodic trajectory.
acts only on the relative velocity. The independent vagabl  This observation enables the computation of the reference
the true anomaly of the leaderand the following variable ' state on a specified periodic trajectory at any given moment.
change allows the passage from the time domain to the scaladstate X (vy) belongs to a periodic trajectory specified by

variables inv: the parameterB if and only if:
. (1+ecosv)ls O3 M(vi)] ¢ 0
X(v) 1+ecosv|3 _esinvls X(t) 2) [C(vk)] (Vk) {D} (10)

Y
The corresponding state on the desired trajecforis de-

i i , i 3x3
wheree is the eccentricity of the leader’s orbitiz € R duced by inverting (10):

is the identity matrix and £ R3*3 is the zero matrix.
Searching for an autonomous periodic trajectory for sys- . M (i) o 0
tem (1) is equivalent to imposing the passage through the X(vi) = {C(Vk)} {D} =Y (%) {D} (11)
same statéX(vy) after one period of free motion:
The matrix in (11) is always invertible since its determihan

X (vic+2m) = Ok 2R (vie) = X (w) (3) equals—1 and the matrixy € R*6 is defined by:

It follows a linear condition that the initial state of the 0 sv(2+es) ——cy(2+eg) 1 0 O
propagation must satisfy in order for the trajectory to be 0 0 0 0o S
periodic: 0 cv(1+eq) sv(l1+eg) 0O O O
M (Vi) (Vi) = 0 @ YW=k, 2eG+2,-e 25(lteq) 0 0 O

: ) 0 0 0 0 s ¢

1x6 . v

whereM(v) € R**® is defined by: 0 _s/(142e6) 2edic—e 0 O O
M(v)=[0 0 2+3ec +€& —(1+eq)? 0 es(1+eq) (12)

with ¢, = cosv ands, = sinv. ®) B. Stability around a periodic trajectory

By considering the autonomous motion in (1) and assum- The stability around a periodic trajectory is understood in
ing that the initial stat@?(vk) satisfies (4), the parametric the sense given in [11], which requires the characterisatio
equations for the propagation of the periodic motion aref the evolution of the trajectories that start arbitradlpse
obtained: to the periodic one. An "asymptotically stable” behaviour
of these neighbouring trajectories would imply their natur
convergence towards the periodic solution. The stability
properties of the periodic solutions are analysed by extend

the notion of Lyapunov stability of an equilibrium point to

X(v) = (2+ecosv)(d; sinv — dycosv) +dg
¥(v) = dsgcosv + dssinv , V> (6)
Z(v) = (1+ecosv)(dicosv + dzsinv)

The parametersij, i = 1...5 can be expressed as functionghe notion of stability of an invariant set [11].
of the initial state of the periodic motioX (vi). Let D= A setL € R"is said to be positiveljnvariantfor a discrete
[dy d2 d3 d4 d5}T, then: autonomous system of the form:
D = C(w)X(w) (7 X(ty1) = F(x(t)) (13)
where the matrixC(v) € RS is defined by: if, for all x(tp) € L, the solutionx(ty) € L for t, > to. Hence
) the setl is invariant if all the trajectories starting in the set
0 e +cy—e 0 sy -
(1+eq)? Treq, remain in the set.
0 sv(12eq) Cy An invariant setl is said to bestableif, for eache > 0,
(1+eq))? 1+eq, . . )
C(v) = 1 0 &u(rew) 2+eq, (8) it existsd >0 such that :
(1+eq))? 1+eq
0 ¢ 0 -s 0 VX(to) s.t. distx(to),L) < & = dist(x(tx),L) < €,Vtx > to
0 sy 0 0 o 0 (14)



where the distance from a poirto the set_ is defined by:

distix,L) = inf [x—y] (15) :

An invariant setl is said to beasymptotically stabléf it Ef

is stable and can be chosen such that: -2

VX(to) s.t. distx(tp),L) < 5= Pm dist(x(tx),L) =0 (16) .
—»00

80 85 90 95 100 105 110
. . . . . . x[m]
This means that trajectories starting arbitrarily closehe
set will converge towards the set. Fig. 1. Trajectory which satisfies (20y,= 0.1

Considering the autonomous evolution of (1):

X (Vir1) = Pyt X () (17) 1t follows that the single-impulse control must satisfy:
and definingS as the set composed of the states of system esinvk \» _ M(w) ~
(17) belonging to all the possible periodic trajectories, r AVx+ 1+ecosvaVZ_ (1+ecosvk)2x(vk) (23)

gardless of their shape or dimensions: with the simplified version in case the designer makes the

S={X(v) e R"|M(v)X(v) = 0} (18) choice to apply control only on the axis:

it can be showed th&8 is a stable invariant set. AVy = %X(Vk) (24)
Proposition 1: S is a stable invariant set for system (17). (1+ecosv)
Proof: It can easily be checked that the state transition The impulsive control (23) or (24) will attempt to coun-
matrix ® verifies the following property: teract the effect of the various orbital disturbances on the
vj periodicity of the motion. It will drive the system towards

M(vj) Py = M(vk). (19) 4 neighbouring periodic trajectory but it runs the risk of a

Thus, if a stateX (v respects the periodicity condition (4), resul_tin_g relative trajector_y that is unbounded since_z rreeot

then any following stati((vj), with v; > vy, will also respect re;tnctmns are added. Flgl_Jre 2 shows the evo_lqun of the

the periodicity condition. Henc& is a positive invariant set {rajectory undew, perturbation when the impulsive control

for the autonomous system (17). (24) is applied in closed-loop.
For any)N((vk) such that One way to fix this problem is to try to steer the system
. . towards the closest periodic trajectory that is guaranteed
dist(X(w),S) = [[M(vi)X(vi)|| < & (20) evolve inside a specified region. This could be done using

model predictive control algorithms [4], [12] for instandmit

at the price of solving an optimization problem on-line.&n
G _ NenVi _ o analytical methods require fewer computational efforéyth

dist(X(v}),S) = HMWJ)@VKX(VK)H B HM(VK)X(VK)H <0 are more suited for on-board implementation. An analytical

) ) ) ) . (_21_) method for computing the control that steers the spacecraft
It follows that the invariant se§ is stable since it satisfies to a predefined periodic trajectory is introduced next.

(14), but not asymptotically stable since (16) is not vediifie
in the absence of a control action. B B. Two-impulse control

Remark 1:The stability property ofS does not guarantee | ot p he 4 vector of parameters that defines a periodic

a periodic autonomous evolution of the system. A trajecmrﬁfajectory as in (7). The invariant set composed of the state
that verifies (20) is a drifting trajectory, with the amourfit o belonging to this trajectory is defined by:

drift per orbit fixed byd (Figure 1). A control action needs to N } s
be applied in order to ensure the asymptotic stability legdi  So = {X(v) € R"M(v)X(v) =0, C(v)X(v) =D} (25)
to a periodic motion.

and for anyvj > v, we can write

IIl. CONTROL LAWS 20

A. Single-impulse control

A simple way of computing a single-impulse manoeuvre s
AV = [AVy AVy AV,)T that brings the system on a periodic T o
trajectory can be derived from the definition of the invatian 12
setS. Based on the measurement of the current sdig), e
an impulsive control can be computed such that the state 20
after controlX*(vy) verifies: R T

disr()N(Jr(vk)7S) = HM(Vk)(X(Vk) + BA\N/)H =0 (22) Fig. 2. Trajectory under single-impulse control adperturbation



with the associated distance: IV. NUMERICAL ANALYSIS

vV

v (26) through realistic closed-loop simulations. The same gbHo

phy as for MPC control [13] is used to implement the closed

The purpose is to find a control law that stabilizes the systefROP: &t €ach time step a pair of two impulses is calculated

(1) around the periodic trajector, i.e. a control law that Put only the first one is applied. _ _
aims at obtaining: The relative motion is propagated using the Gauss Varia-

tional Equations. The sensor noise is modelled by adding
dist(X(v),S) = 0 (27) an uncorrelateq white noise on the rglative positiqn and
velocity respectively. The reference orbit has a semi-majo

A two-impulse method provides an analytical solution tgiS Of 7 011 km and an eccentricity that depends on
this problem. Starting from the current measureméfty) the simulation scenario. For each eccentricity a reference
two controlsAVi and AV, are computed, such that the periodic trajectory specified through the vector of pararset

state after the second thrust belongs to the desired periodfl 1S OPtained using the algorithm in [12]. All the reference
trajectory: dis@f(*(vkﬂ) S) = 0. This leads to: trajectories are required to evolve inside a tolerance box

Xiol =[50;25; 25 [m] around the final positioX; = [100 0 Q
M(Vi1)] o ~ 0 [m]. The dimensions of the tolerance box have been chosen
|:C(Vk+1):| (X(Vk+1) + BAVKH) = {D} (28) to guarantee feasible periodic trajectories for a wide eang
of eccentricities.
The ability of the method to accommodate different types
F\C/'((“}/:H))] (<D5t“(>~<(vk) + BAV) + BAV +1) — {g} (29) of reference trajectories is analysed next, along with the i
+1 fluence that the interval between controls and the navigatio
uncertainties have on its performances.

B M(V)] o 0 The performances of the control method (30) are analysed
aisi%(v). %) = | [ | xw)- |9

The following solution is obtained:
. A. Influence of the eccentricity
AVic | _ [q)VmB q*l Y (Viei1) 0 — DMK () The influence of the eccentricity on the stability and the
Weiq| — % D] T v i ider-
30 performance of the control method is analysed by consider
. . . (30) ing different eccentricities for the leader’s orbit andfeiiént
For the matrix to be invertible care must be taken t

Rorresponding periodic reference trajectories. The cbiigr
have vy, 1 — v # nrt. The control depends on the referenc P 9P J

iraiect th h th D th t instang pplied everyTs = 100 s for simulations lasting over 10
rajectory (. rough the vectdp), on € current Instafb o piia periods. A typical navigation uncertainty of 0.02 m
and on the interval between andvy, 1. Itis computed based

- . : for the relative position and of 0.002 m/s for the relative
on the prediction of the evolution of the trajectory \at 1 velocity is considered [8]

since the terms in the parenthesis correspond to the refren A discrete LQ method [14] is used for comparison, since
state and to the autonomously propagated state respgctivgll requires the same amount of calculations. The gain, matrix

are choserQ = lg and R = 03 since for the two-impulse
C. Robustness to navigation uncertainty method no constraints are imposed on the control.
Figure 3 shows the trajectories obtained in simulation,

Suppose the measured stag(u) lies in an uncertainty using the two-impulse control method, for each eccengzicit

ellipsoid around the real staté (vy), ellipsoid defined by
the matrixP, € R8<6 >~ 0:

e=0.0023 e=0.1
Xm(vik) = % (Vi) +Pou, uTu< 1 (31)
20
20
The control law (30) is computed starting from the measure z 0 T _22
state Xm(Vk) but it is applied to the real stat& (v). This ~ 150" a0
causes the final distance to the invariant Sgtto be non- -60 100 g0l 100"
zero: 00 40 20, 0 20" SOxm 60 40 20, 0 20" 50 xm]
e=0.3 e=0.5
dist(X* (vii1), ) = M (Vicra) PR, uTu <1 ‘
C(Vier1) 204
(32) _ o =
The distance t&p depends only on the instangg and vy 1 £-209 &
and on the amount of navigation uncertainty considered. el /ﬁ)m :
the uncertainty is high then a smaller interval between th 60 40 20 10 20 50 xm] 60 40 20, 1020 50 xim]

impulses might be necessary to ensure the stability of tt
system. The robustness of the proposed control method is
validated through numerical tests in the following section Fig. 3. The simulation trajectories for each eccentricity



TABLE |
INFLUENCE OF THE ECCENTRICITY

0.7

€=0.0238
06r - = =—e=0.1
05} - = e=0.3

—e— =05 b

Method e Perr [M] | Verr [T] | AV [T/orbit] z
0.0238 | 0.2678 0.004 0.2554 g 04r
0.1 | 0.2695 | 0.004 0.2554 S 0sl
20V 0.3 | 03842 | 0.011 0.2577 z
0.5 0.4986 0.037 0.2761 o2r
0.0238 | 1.6293 0.0037 0.2002 o1f
0.1 | 1.5453 | 0.0041 0.2002 L ‘ ‘ ‘ —
LQ 0.3 1.8075 0.0114 0.2005 % 50 100 200 300 400 500 600 700
0.5 2.9523 | 0.0389 0.2099 Time between mpulses (5

Fig. 4. Influence of the interval between controls on the figglsumption

along with their projections on they, xz planes. Even if the
trajectories become more twisted as eccentricity incieas
our method ensures good tracking performances.
Table | gives the maximum of the absolute value of th . .
0 orbital periods.

osition error on any axis giv , the maximum of the ) . . "
P y OIVERor Figure 4 shows that, before reaching a certain critical

absolute value of the velocity error on any a¥ig; and the | the | the int | bet trols th I
fuel consumption per orbit for each scenario and for eacyftus. he larger the interval between controls the smailer

control method (LQ and two-impulse\¥'). At first sight the th? fuel F:onsumption. After this value the fuel consumptiqn
two-impulse method shows slightly higher fuel consumptiorqu'_Ckly Increases, as the_ system approaches the St"’??"'ty
than the LQ method but this is just the price to pay fo imit. The_ cr|t|cal_control |nter\_/al depends on the orbit’s
better tracking performances. Table Il shows that in orde(?'CCentrICIty as highly eccentric orbits require a smaller
to reach the same tracking precision of approximately Eontrol step.

m, our method allows a bigger interval between impulse_stF'gulrQbSt shows that\t tlherteh |sfa Id|rect link tl_)etweeg 'f[ue
Ts and issues a lower fuel consumption per omit. For interval ‘between controls, the 1uel consumption an €

instance, for an eccentricig— 0.3, the same performancesmax'mum distance to the invariant . A large distance to

are obtained using a control interval 4 times bigger and wittpe :?varlant set |sd(/aqu.|vatleg_tlltto hc':gh fg(jel gonsumptltcl])tznge:aa
3 times less fuel per orbit. racking errors and/or instability. Considering a smalhiro

For higher eccentricities like = 0.8 the LQ method does interval does not necessarily imply a smaller distanc&zo

not ensure the stability and the spacecraft drift rapidbyfr since the system could be mov_ed away from the refgren_ce
the reference trajectory. Thed method has some prob- trajectory by unnecessary thrusting caused by the navigati
lems to follow the quickly changing parts of the referenc€' O

trajectory and shows a growing fuel consumption over th€. The influence of navigation uncertainty

10 orbital periods considered. This suggests an unstablerpe jnfuence of the navigation uncertainty on the tracking
behaviour that may be explained by the fact that for veryecision and on the fuel consumption is analysed next. For
eccentric orbits a smaller time step is needed for the cbntroy gccentricity of 8, several values for the control interval

It could als_o come from the ff_;lct that the orbital dyna_rnicsrS and for the measurement nois®, 3V are considered.
used to build the reference trajectory are no longer valid fo Figure 6 shows that when there is no measurement noise

such high eccentricities. the choice of the control interval does not impact signifi-
B. Influence of the interval between controls cantly the fuel consumption. As the measurement unceytaint

gets higher it becomes more fuel efficient to consider a large

b T:? fre?cuelncy of con_trol ex(;ecutllg)_? IS a keyf p_aramet%terval between consecutive corrections in order to avoid
oth irom ue _consumptlon and sta "tY point of view. I:orunnecessary thrusting due to inaccurate measures.
each eccentricity, several values for the interval betveean

secutive impulses are used to analyse the fuel consumption

écomputed with a 2-norm in (26)). A navigation uncertainty
of 0.02 m on the relative position and of 0.002 m/s on the
elative velocity is considered for simulations runningeov

per orbit and the maximum distance to the invariantSet L 100
< —— =0.0238 i/
£ 8oF - = =e=01 -
TABLE || g - = e=03 K
FUEL CONSUMPTION FOR SAME TRACKING PRECISIORe; = 2m s °r e0° ,' il
% 401 ’ ]
@ 1
20V LQ E " Ny
e Ts [S] [m] [ AV [Torbit] | Ts [s] [m] | AV [Tlorbif] E O o ot
0.0238 600 0.0411 130 0.1533 s T ‘ ‘ —
0.1 600 0.0402 130 0.1537 % 50 100 200 300 400 500 600 700
0.3 400 0.0682 100 0.2005 Time between impulses (5
0.5 250 0.1383 50 0.4036

Fig. 5. Influence of the interval between controls on theatis¢ toS



0.4

Ts=200 4
= = =Ts=300
== Ts=400

0.351

o
w
T
L

0.25

DV per orbit [m/s]
o
o o
o N

0.01;0.001
Measurement uncertainty [m,m/s]

0.02;0.002 0.03;0.003 0.04;0.004

x[m]

y[m]

Fig. 6. Influence of the measurement noise on the fuel consamp

Fig. 7. Comparison between 2DV and 2SDP trajectories
Table Il gives, forTs =500 s, the absolute value of the

maximum position erroP; and of the maximum velocity the maximum distance to the invariant set can be used as a

errorVer, along with the fuel consumption per orid/ and criterion for choosing the best frequency of control exigut

the maximum distance to the invariant $st dmax It shows in the presence of navigation uncertainty. With very few

that even for high navigation uncertainties the tracking pecomputational effort, the method provides good tracking

formances maintain acceptable bounds and that the distanmgsformances for a wide range of reference trajectories and

to the invariant set increases with the measurement noiseappears to be quite robust to typical levels of measurement
noise. However, on-line optimization of the referenceeta;j

D. Conservativeness of the fixed reference trajectory

For some types of missions, the relative trajectory itself
might not be very important as long as it is periodic and
it evolves in a specified region. Orbital perturbations doul [1]
bring the spacecraft to a configuration where less fuel is
required for the transfer to a different neighbouring peido
relative trajectory, which evolves inside the specifiedang
than for steering back to the current one.

To address this issue, the analytical two-impulse strategys)
is compared with the semi-definite program we presented in
[12] where the number of impulses is equal to 2 (called her%
2SDP). An orbit withe= 0.3, a re-plan time offs = 100
s and a navigation uncertainty of 0.02 m for position and
0.002 m/s for velocity are considered for the comparison of[
the two methods.

Figure 7 shows the obtained relative trajectories, alon%
with their xy and xz projections. For the 2SDP method the 6]
trajectory is free to evolve inside the specified tolerance b
so it changes dimensions and it changes orientation. Thig]
freedom is translated into a fuel consumption per orbit that
is 10 times smaller than the two-impulse strategy. 8]

(2]

5]

V. CONCLUSIONS

An analytical method for computing a two-impulse con- [9
trol law that stabilizes the relative motion with respect to
the invariant set composed of the states belonging to a

. - . ; bn 60
desired periodic trajectory is presented. The evaluatibn

[11]
TABLE Il [12]
INFLUENCE OF THE NAVIGATION UNCERTAINTY
m m f m (3]
o6P[m],oV[ %] | AV [$/orbit] | Perr [M] | Verr [§] | Omax

0,0 0.0280 1.7529 0.0079 7.6698 [14]
0.01, 0.001 0.0394 1.8834 0.0081 9.0410
0.02, 0.002 0.0572 2.1505 0.0103 | 11.2018
0.03, 0.003 0.0768 2.5151 0.0125 | 13.4797
0.04, 0.004 0.0976 2.8798 0.0148 | 17.3393

tory can help reducing the fuel consumption.
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