
HAL Id: hal-01873485
https://laas.hal.science/hal-01873485v1

Submitted on 13 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conflict Directed Clause Learning for the Maximum
Weighted Clique Problem

Emmanuel Hébrard, George Katsirelos

To cite this version:
Emmanuel Hébrard, George Katsirelos. Conflict Directed Clause Learning for the Maximum Weighted
Clique Problem. 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), Jul 2018,
Stockholm, Sweden. 8p. �hal-01873485�

https://laas.hal.science/hal-01873485v1
https://hal.archives-ouvertes.fr

Conflict Directed Clause Learning for the Maximum Weighted Clique Problem

Emmanuel Hebrard1 and George Katsirelos2
1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

2 MIAT, INRA, Toulouse, France
hebrard@laas.fr, gkatsi@gmail.com

Abstract
The maximum clique and minimum vertex cover
problems are among Karp’s 21 NP-complete prob-
lems, and have numerous applications: in combi-
natorial auctions, for computing phylogenetic trees,
to predict the structure of proteins, to analyse social
networks, and so forth.
Currently, the best complete methods are branch &
bound algorithms and rely largely on graph colour-
ing to compute a bound.
We introduce a new approach based on SAT and
on the “Conflict-Driven Clause Learning” (CDCL)
algorithm. We propose an efficient implementa-
tion of Babel’s bound and pruning rule, as well as
a novel dominance rule. Moreover, we show how
to compute concise explanations for this inference.
Our experimental results show that this approach is
competitive and often outperforms the state of the
art for finding cliques of maximum weight.

1 Introduction
A clique of a graph is a subset of vertices whose induced
subgraph is complete. Finding a clique of maximum weight
has numerous applications. For instance computing a max-
imum set of characters defining a perfect phylogeny is akin
to solving a maximum clique problem [Day and Sankoff,
1986]. Similarly, predicting the structure of a protein [Samu-
drala and Moult, 1998], comparing the structures of two pro-
teins [Strickland et al., 2005], or computing maximum error-
detection codes [MacWilliams and Sloane, 1978] can all be
seen as finding a maximum weighted clique in a graph.

As a result, a wide range of algorithms and heuristics
have been proposed for tackling the maximum clique prob-
lem [Bomze et al., 1999]. There are relatively fewer al-
gorithms for the weighted version, and even fewer com-
plete algorithms. State of the art complete approaches are
often based on branch & bound, sometimes used within
a Russian doll scheme, as in cliquer [Östergård, 2001;
2002]. Dual bounds are often obtained by colouring the
graph: if there is a k-colouring then there is no k-clique.

In [Fang et al., 2016; Jiang et al., 2017; 2018], a simple
generalisation of the graph colouring bound to the weighted

case is improved using techniques from MaxSAT. In another
generalisation proposed in [Babel, 1994], a vertex is coloured
using as many distinct colours as its weight. The cardinality
of such a multicolouring is an upper bound on the weight
of a clique. However the complexity of Babel’s algorithm
depends on the number of colours, hence it can be impractical
when the weights are large. Tavares proposed an algorithm
whose complexity does not depend on the weights [Tavares,
2016]. It iteratively computes an independent set of the graph
and colours its vertices with the same set of k colours where
k is the smallest of these nodes’ weights.

We propose a novel approach based on constraint program-
ming and on the “Conflict-Driven Clause Learning” (CDCL)
algorithm. We use a method similar to Tavares’ to compute a
dual bound except that we compute several independent sets
at once. On a graph with n vertices and m edges, our method
runs in O(n3) time, irrespective of the weight function. Next,
we introduce a pruning rule and a dominance rule both based
on this bound and both running in O(n2). We then show how
to compute short clauses to explain this inference in O(mn).

Experimental results on several standard benchmarks show
that this approach is very promising and compares favourably
with state-of-the-art methods on many families of instances.

2 Problem Description

Let G = (V,E) be a graph with V a set of vertices and E a
set of edges, and let w be a function mapping every v ∈ V to
an integer w(v). For a set W ⊆ V , w(W) =

∑
v∈W w(v).

We write N(v) = {u | (u, v) ∈ E} for the neighbourhood of
v in G, N+(v) = N(v) ∪ {v}, and N(S) = ∪v∈SN(S).

A clique of G is a subset of V such that every pair of ver-
tices share an edge. The Maximum Weighted Clique problem
asks for the clique C maximising w(C). An independent set
is a subset I of V such that no pair of vertices in I are ad-
jacent. A vertex cover is a subset V of V that contains at
least one vertex adjacent to every edge in E. If I is a clique
of G, it is also an independent set of the complement graph
G = (V, {(u, v) | u 6= v ∧ (u, v) /∈ E}) and V = V \ I is
a vertex cover of G. These equivalences preserve optimality.
Here, we use the viewpoint of independent set / vertex cover.

3 Overview of the Algorithm
We propose a constraint programming model for the max-
imum independent set problem. We have one variable xv

per vertex v in the graph. The positive literal xv , stands for
“v ∈ V” and its negation xv stands for “v ∈ I”. The model
contains a single constraint WEIGHTEDIS.

WEIGHTEDIS (xv, G,w, k) (1)

The constraint is satisfied by an assignment if {v |
xv is false} is an independent set of G of weight at least k
and is clearly NP-hard. The propagator for this constraint ag-
gregates the methods that we develop in the next sections.
Throughout, we make use of the fact that it maintains the
current vertex cover V and independent set I, as well as
the residual graph, which is the subgraph of G induced by
V \ (V ∪ I). When a variable xv is made true, v is added
to the current vertex set V , and conversely, when it is made
false, it is added to I and N(v) added to V . In both cases, the
residual graph is updated accordingly.

The constraint WEIGHTEDIS handles all aspects of the
problem: computing a dual bound (section 4), as well as
pruning and propagating dominance rules (section 5). It ad-
ditionally embeds a primal heuristic (section 7) which may
compute solutions before the solver reaches a leaf node in
its backtracking search. Notice that the reasoning compo-
nents described below (computation of the dual bound, dom-
inance and pruning) are not idempotent and are called until a
fix point is reached in each node.

Our methods are used in the context of the Conflict-
driven clause learning (CDCL) algorithm [Marques Silva and
Sakallah, 1999; Moskewicz et al., 2001], which is an al-
gorithm for the Boolean Satisfiability problem. We assume
familiarity with both for reasons of space and refer the in-
terested reader to Mitchel’s primer [Mitchell, 2005] for an
in-depth description. The CDCL algorithm usually handles
propositional formulas in conjunctive normal form (CNF),
i.e., a conjunction of clauses. However, it can be used with
formulas which are not in CNF, in particular with arbitrary
CSPs [Katsirelos and Bacchus, 2005]. To do this, all con-
straints have to annotate prunings with clausal reasons, or
explanations. Moreover, when a constraint becomes unsat-
isfiable it must again generate an explanation for this. In this
setting, the constraints of the problem (in our case WEIGHTE-
DIS) perform the same task as unit propagation on a poten-
tially exponentially large set of clauses, but do so in polyno-
mial time, and only generate the actual clauses as needed to
perform conflict analysis. Hence, in section 6, we describe
how we can generate clausal explanations for the inference
performed by the various components. After the first conflict,
the solver will maintain a set of learned clauses and propaga-
tion of WEIGHTEDIS will be interleaved with unit propaga-
tion on the learned clauses.

We summarize the propagator for WEIGHTEDIS in algo-
rithm 1. It gets the original graph G, the weight function w,
the lower (primal) bound k and the current partial assignment
A as arguments and returns a clause signifying a conflict or
no conflict but potentially pruning some variables. It starts
by ensuring that no two neighboring vertices can be in I and

Algorithm 1: WEIGHTEDIS(G = (V,E), w, k,A)

I = {v | xv ∈ A} ;
V = {v | xv ∈ A} ;
if N(I) \ V 6= ∅ then

forall v ∈ N(I) \ V do
u = Pick a vertex from N(v) ∩ I ;
set xv to true using reason (xv ∨ xu);
V ← V ∪ {v}

Gr = G |V \(I∪V) ;
fixpoint = false ;
while ¬ fixpoint do

fixpoint← true ;
M = DUALBOUND(Gr) ;
if w(I) + |M| ≤ k then

return EXPLAINBOUND(Gr, w,A,M, k − w(I))

else
(D,P) = MCCPROPAGATE(GR,M) ;
forall v ∈ D do PRUNEI(xv, GR, w, I,V,M) ;
forall v ∈ P do PRUNEV (xv, GR, w, I,V,M) ;
if D 6= ∅ ∨ P 6= ∅ then fixpoint← false ;

return no-conflict ;

then proceeds to use the other components. For simplicity,
we show it as recomputing V , I and the residual graph each
time it is invoked, but this is in fact maintained incrementally
during search. DUALBOUND is algorithm 2, MCCPROPA-
GATE is algorithm 3, while EXPLAINBOUND is algorithm 4.
The procedures PRUNEV and PRUNEI are much simpler and
described in the text in section 6. Finally, we describe a ded-
icated branching heuristic in section 8.

4 Dual Bound
A standard dual bound for the maximum independent set of a
graph G = (V,E) relies on a clique cover, i.e., a partition of
V into a set of cliques C such that

⋃
C∈C C = V . Indeed, at

most one vertex of each clique can be in the independent set.
This bound can be transposed to the weighted case by con-

sidering a clique multicover, that is, a collection of cliques
M such that every vertex v belongs to w(v) cliques [Babel,
1994]1. Let I be an independent set of G. No two vertices
in I share a clique, therefore any clique multicover has cardi-
nality at least

∑
v∈I w(v). It follows that the cardinality |M|

of a clique multicoverM is an upper bound of the weight of
any independent set of G. A clique multicover is a multiset,
and we shall use the notation m(C) for the number of copies
of element C in the multiset (which shall be evident from the
context). Given two multisetsM andM′,M]M′ is their
union. {Cw} is the multiset containing w copies of C.

We propose in algorithm 2 a slight variation over the al-
gorithm introduced in [Tavares, 2016] to compute a clique
multicover efficiently, even when the weights are arbitrarily
large. The main difference is that instead of considering one
clique at a time, we find a complete clique cover C (i.e., a
colouring of the complement graph). Doing so reduces the
number of iterations and allows us to use a known algorithm

1Viewed from the clique/multicolouring angle in that paper.

Algorithm 2: DUALBOUND(G = (V,E))

M← ∅ ;
while V 6= ∅ do

1 C ← CliqueCover(G,V) ;
if |C| = |V | then returnM] {Cw(C) | C ∈ C} ;

2 foreach C ∈ C | 1 < |C| do
α← minv∈C w(v) ;

3 M←M] {Cα} ;
4 foreach v ∈ C do w(v)← w(v)− α ;

V ← V \ {v ∈ V | w(v) = 0} ;

returnM;

to compute the clique cover. DSatur [Brélaz, 1979] is too
slow to compute at every node, so we use instead a simpler
algorithm. Like DSatur it greedily adds a vertex to the first
possible clique, but considers the vertices in the inverse of
the degeneracy order [Lick and White, 1970], computed stat-
ically. This runs in time O(|V ||C|) plus O(|V |) bitset AND
operations to maintain the set of potential vertices in each
clique. For each non-singleton clique C of the clique cover C
computed in line 1, we add minv∈C w(v) copies of C toM
(line 3) and subtract minv∈C w(v) from the weight of each
vertex in C (line 4). Then we continue finding new clique
covers of the graph induced by the vertices which have non-
zero weight, and adding the corresponding number of cliques
toM, until all cliques in the cover have size 1. The correct-
ness of the bound is immediate from the fact that it computes
a sound clique multicover.

With respect to complexity, observe first that we do not ac-
tually create copies of each clique, but rather maintain a count
of copies of each distinct clique. Therefore, the number of
cliques that we store, as well as the complexity of algorithm 2,
is independent of the magnitude of the weights. Next, observe
that, ignoring the calls to CLIQUECOVER in Line 1, it runs in
O(|V |2) time since the inner loop in line 2 is in O(|V |). The
dominant factor for the computational complexity is there-
fore Line 1. Consider first a variant of the algorithm where
we do not postpone the insertion of singleton cliques, i.e.,
we remove the condition 1 < |C| from the loop in line 2.
Then, each clique consumes the remaining weight of at least
one clique, so O(|V |) cliques are inserted in M over all it-
erations. Therefore, the cumulative complexity ignoring the
bitet operations is O(|V ||C1| + . . . + |V ||Ck|) = O(|V |2),
hence dominated by the O(|V |2) bitset AND operations.

The reason for postponing the insertion of singleton cliques
into the cover is that the constraint implied by a singleton
clique is the tautology that we can use at most one vertex from
that singleton clique in I. If we postpone inserting it into the
cover, this vertex may appear in a larger clique in a later iter-
ation. But doing so destroys the property that the number of
cliques is O(|V |) and there can in fact be as many as O(|V |2)
(for example, in a star graph where the center of the star has
weight |V | and the rest of the vertices have weight 1), giv-
ing a total complexity of O(|V |3). In practice, however, we
have observed no significant slowdown from postponing in-
serting singleton cliques, while the dual bound is consistently
improved. For example, in the star graph described above we

compute a bound of 2|V | − 1 if we do not postpone insertion
of singleton cliques, but if we do we get |V |, which is tight.
Example 1. Consider the graph illustrated in Figure 1a. al-
gorithm DUALBOUND starts with the 2-clique cover repre-
sented using solid line for the first clique and dashed lines
for the second. It then creates 3 copies of each of {a, b, c}
and {d, e, f} and considers the residual graph shown in Fig-
ure 1b. Next, 6 copies of clique {a, d, f} are created, yielding
the residual graph shown in Figure 1c. Then, 1 copy of clique
{a, f} is created, yielding isolated vertices hence 3 copies of
{f} and 2 copies of {b}, for a total cardinality of 18.

5 Pruning and Dominance
We perform pruning based on Babel’s bound [Babel, 1994].
Consider a clique multicoverM and a vertex v. If we place
v in the independent set I, we must place N(v) in the ver-
tex cover V . The residual graph G′ will then be over the
vertices V \ N+(v). The set M′ = {C \ N+(v) | C ∈
M ∧ C \ N+(v) 6= ∅} is a clique multicover of G′. There-
fore, if w(v)+ |M′| is smaller than the current primal bound,
it means that v must be placed in V . The difference between
the original dual bound and the bound subject to v being in
the independent set is |M| − w(v)− |M′|.

By construction, M′ cannot contain any clique including
v, as they become empty in G′, hence |M′| ≤ |M| − w(v).
The rest of the difference comes from cliques in M that do
not contain v but are not inM′ because they are contained in
the neighbourhood of v. Hence, we can compute the marginal
cost of adding v to the independent set as the number of
cliques contained in N(v).
Proposition 1 (Babel’s rule). If the following relation holds:

ub−
∑

C∈M|C⊆N(v)

m(C) ≤ lb (2)

then no maximum weight independent set of G contains v.
Example 2. Consider in Figure 1 vertex d and the clique
multicover computed by algorithm 2 (figures 1(a) - 1(c)). Its
neighbourhood is {a, f, e}, which contains 1 copy of {a, f}
and 3 copies of {f}, for a total of 4 cliques. Subtracted from
the upper bound of 18, this means that no independent set
with d can have weight larger than 14.

This pruning rule is stronger than the rule proposed for use
in preprocessing in [Jiang et al., 2017], which is the weighted
version of the Buss rule. In terms of the vertex cover, it says
that if lb ≥ w(V)−w(N(v)), then we can put v in the vertex
cover V . This is subsumed by pruning based on Babel’s rule.

a

10
b 5

c

3

d9

e

3

f13

(a) clique cover 1

a

7
b 2 d6

f10

(b) clique cover 2

a
1

b 2

f4

(c) clique cover 3

Figure 1: Computing clique multicover.

Proposition 2. The Buss rule is subsumed by Babel’s rule

Proof. The Buss rule implies lb ≥ w(v) + w(V \N+(v)).
However, sinceM′ is a clique multicover of V \ N+(v) we
have |M′| ≤ w(V \N+(v)). By substituting the latter in-
equality into the former, lb ≥ w(v) + |M′| (the definition of
Babel’s rule).

Dual reasoning yields the following novel dominance rule:

Proposition 3. If the following relation holds:∑
C∈M|C∩N(v) 6=∅

m(C) ≤ w(v) (3)

then v belongs to a maximum weight independent set of G.

Proof. Consider a maximum weight independent set I that
does not contain v and let I ′ be the independent set obtained
by adding v to, and removing all its neighbours from, I:

I ′ = I \N(v) ∪ {v}

We have w(I) − w(I ′) = w(I ∩N(v)) − w(v). We prove
w(I ′) ≥ w(I) which means w(I ∩N(v)) ≤ w(v). By way
of contradiction, suppose w(I ∩N(v)) > w(v). By Babel’s
reasoning, since I ∩ N(v) is an independent set, any clique
multicover of N(v) has cardinality at least w(I ∩N(v)) and
therefore strictly higher than w(v). However, if equation 3
holds, then there exists a multicover of the neighbourhood of
v whose cardinality is less than or equal to w(v), a contradi-
tion to our assumption. Therefore, we have w(I ′) ≥ w(I)
and I’ is also a maximum weight independent set.

Example 3. Consider again the graph of Figure 1a. The
clique multicover shown in figures 1a, 1b and 1c contains
18 cliques. However, there are 5 cliques (2 copies of {b} and
3 copies of {f}) that do not overlap with N(f). Therefore
there are 13 cliques inM overlapping with N(f).

Since w(f) = 13, we can move f into the independent
set, hence all other vertices but b and c into the vertex cover.
Another iteration of the dominance rule gives the optimal so-
lution in this case: V = {a, c, d, e} and I = {b, f}.

algorithm 3 returns, for a graph G = (V,E) and clique
multicover M, the set of vertices dominated and the set of
vertices pruned with respect to M. It checks if equations 2
and 3 hold for all vertices in O(|V |2). Indeed, the weight of

Algorithm 3: MCCPROPAGATE(G = (V,E),M, lb, ub)
pruned← ∅;
dominated← ∅;
foreach v ∈ V do

ubv ← ub;
lossv ← 0;
foreach distinct clique C ∈M do

1 if v ∈ N(C) then lossv ← lossv +m(C) ;
2 else if C ⊆ N(v) then ubv ← ubv −m(C) ;

if ubv ≤ lb then pruned← pruned ∪ {v};
if lossv ≤ w(v) then dominated← dominated ∪ {v};

return dominated, pruned;

a

10
b 5

c

3

d9

e

3
f 13g6

h

5

(a) residual graph

{a, b, c} (3)
{d, e, f} (3)
{a, d, f} (6)
{a, f, g} (1)
{b, g} (2)
{f, g} (3)

(b) clique multicover

Figure 2: Explanation minimisation

at least one vertex becomes null in each new clique added to
M, hence the number of distinct cliques is in O(|V |). More-
over, checking if v has a neighbour in C (line 1) and if C is
contained in N(v) (line 2) are in O(1) because we can reuse
the neighbourhood (resp. potential vertices) of each clique
computed in algorithm 2.

6 Explanation
We show here how to concisely explain a failure triggered by
the dual bound. Let k be the weight of the maximum inde-
pendent set of G =(V ,E) found so far and I,V be the current
independent set and vertex cover, andM a clique multicover
of the residual graph. A failure is triggered if

ub = w(I) + |M| ≤ k (4)

The method we propose starts from the trivial explanation
clause that excludes any one decision or deduction, that is:∨

v∈V xv ∨
∨

v∈I xv , and minimises it by removing literals
that are not necessary. Note that the explanation need only
justify that a subset of literals in the current partial assignment
is enough to yield a residual graph verifying inequality 4.
Since the residual graph has no edges that are not present
in the original graph, the clauses do not have to justify the
existence of all the cliques in the clique multicover. The key
idea that we exploit is that if we can move a vertex v from V
toM in such a way that inequality 4 still holds, then we can
remove the literal xv from the explanation clause.

Example 4. Consider again the recurring example, and sup-
pose that this is the residual graph obtained after two deci-
sions: adding the vertices h and g to the vertex cover V as
shown in Figure 2. Moreover, suppose that we already dis-
covered an independent set of weight 20, the primal bound.
Since the dual bound is 0+ |M| = 18 this is a failure and the
trivial explanation clause is xh ∨ xg .

However, w(g) = 6 can be distributed over {b}, {f} and
{a, f}, as shown in Figure 2b, to obtain a smaller vertex
cover with same primal-dual gap. Therefore, we can deduce
the unit literal xh. Observe that if the primal bound had been
23, we could have created 5 copies of the singleton clique
{h}, hence proving that 23 is the optimal solution by derive-
ing the empty clause.

Moreover, we make the simple observation that for any ver-
tex v ∈ I, we can either remove the literal xv from the clause,
or exclude every literal xu such that u ∈ N(v). Indeed, xv

and the the constraint WEIGHTEDIS directly imply xu for
any u ∈ N(v). In the other direction, if

∧
u∈N(v) xu is true,

Algorithm 4: EXPLAINBOUND(G,w,A,M, L)

A← stack of all decisions and deductions;
R← ∅;
Γ← ∅;
while A 6= ∅ do

pop p from A;
1 if p is a neighborhood literal then Γ← Γ ∪ {p};
2 else if p is positive then

c←MARGINAL(v(p),M, G,w);
if c+ |M| > L then R← R ∪ {p} ;
else INSERT(v(l),M, G,w) ;

3 else
if
∑
u∈ΓMARGINAL(u,M, G,w) + |M| ≤ L then
while Γ 6= ∅ do

pick u of mininum
c =MARGINAL(u,M, G,w) and remove it
from Γ;

if c+ |M| ≤ L then R← R ∪ p ;
else INSERT(u,M, G,w) ;

else R← R ∪ {p} ;
Γ← ∅;

return R;

Function MARGINAL(v,M, G,w)
return max(0, w(v)−

∑
C∈M|C⊆N(v) m(C));

Function INSERT(v,M, G,w)
foreach C ∈M | C ⊆ N(v) do C ← C ∪ {v} ;

then every neighbor u of v must be in I. Therefore, we can
move v from I to U , which decreases w(I) by w(v) and adds
w(v) copies of the clique {v} toM, hence leaving the value
of ub = w(I) + |M| unchanged. It is unsafe, however, to
remove both xv and xu if u ∈ N(v), since in this case w(I)
decreases by w(v), but both u and v can be moved toM and
therefore its cardinality might increase by more than w(v).

Algorithm 4 is given the current assignment A, the clique
multicoverM, and the slack L = lb− w(I) on the cardinal-
ity of M with respect to 4. Moreover, we suppose that we
can check if p ∈ A is a neighborhood literal, that is, a direct
consequence xv of xu, i.e., of adding a neighbor u ∈ N(v)
in I. It explores every literal (deductions and decision alike)
in reverse chronological order. When the literal p is positive
but not a neighborhood literal (line 2), we check the marginal
cost on the bound to move the corresponding vertex v(p) to
the multicover (function MARGINAL). If it would invalidate
equation 4, then p is added to the explanation R, otherwise
it is inserted intoM (function INSERT). When p is a neigh-
borhood literal (line 1), then observe that it is so because of
the next negative literal to be explored. We store such literals
in a set Γ. Finally, when the literal p is negative we com-
pute a marginal cost of inserting those of its neighbors that
are not implied by an earlier decision, that is, the vertices in
Γ. This cost is “optimistic” because for efficiency reasons we
do not actually do any insertion in function MARGINAL, and
therefore non-edges between vertices in Γ are not taken into
account. If even this optimistic cost is too high, then we insert
p into the explanation R, otherwise we try to insert as many

of the corresponding vertices intoM as possible, and the rest
of the literals into the explanation.

For every clique in the multicover, we use a bitset to hold
all the vertices that can possibly be inserted into that clique.
Checking that the neighborhood of a vertex v includes a
clique therefore costs O(1). However, this set must be up-
dated after each insertion by intersecting it with N(v) hence
every actual insertion of a vertex into a clique costs one bit-
set operation, i.e., O(|V |). Function MARGINAL is called
O(|V |) times and costs O(|V |) since it does not update any
clique. Moreover, recall that every clique contains a vertex
that appears in no other clique, and that vertex must be adja-
cent to v for it to be inserted in the clique. Therefore, v can
be inserted in at most O(|N(v)|) cliques. The overall num-
ber of insertions made by function INSERT is thus O(|E|).
EXPLAINBOUND therefore requires O(|E|) bitset operations
hence its overall complexity is in O(|E||V |) .

We can use the same method to explain bound-based prun-
ing. To explain the literal v ∈ V , we can consider the clique
multicoverM′ described in section 5 in the graph induced by
V \ {v} and then explain the obtained lower bound. In prac-
tice, however, we found this method too expensive to apply
for each pruning, hence we use the simpler PRUNEV proce-
dure, which only greedily removes vertices from the explana-
tion as long as removing them from the dual bound computed
for v is not worse than the primal bound.

Similarly, we use a naive explanation for the dominance
rule: to explain that v is dominated, we use the set of assign-
ments of its neighbors in the original graph that do not belong
to the residual graph. This is done by the PRUNEI procedure.

7 Primal Heuristic
We can often use information from the dual bound compu-
tation to find new solutions. We first note that the heuristic
CLIQUECOVER in Algorithm 2 has the property that in any
clique cover that it produces, no two cliques may be merged
to form a larger clique. Therefore, two vertices assigned to
singleton cliques cannot be neighbours.

Based on this observation, let I be the current independent
set and IM the set of vertices assigned to singleton cliques in
M. Then I ∪ IM is also an independent set. If there exists
a vertex v ∈ V \ (I ∪ IM) such that v /∈ N(IM), then
I ∪ IM ∪ {v} is also an independent set. We pick one such
vertex arbitrarily and iterate until we reach a fix point which
we store if its cost is better than the current primal bound.

In the case of clique multicovers, each iteration of the algo-
rithm that we described in section 4 can be used to generate
and then greedily improve an independent set.

Example 5. Consider again Figure 1 and the 3 clique cov-
ers computed in figures 1(a) – 1(c). The first clique cover
{{a, b, c}, {d, e, f}} contains no singleton cliques, hence we
start with I = ∅. We greedily add vertex a from the first
clique and vertex e from the second, to get an independent set
of weight 13 and a corresponding clique cover {b, c, d, f} of
weight 30. The second contains the singleton clique {b}. We
greedily add f from the clique {a, d, f}, to get an indepen-
dent set of weight 18 and a vertex cover {a, c, d, e} of weight

0 0.1 0.2 0.3

101

102

103

104

105

106

107

Normalised gap to best

C
PU

tim
e

(m
s)

cdcl

wlmc

mwclq

cliquer

OTClique

Tavares

Figure 3: Normalised gap to best over time (all instances)

25. Since that matches the dual bound computed, this solution
is optimal. The third clique cover yields the same solution.

8 Search Heuristic
As was observed in [McCreesh and Prosser, 2014], given a
clique cover C, since for every clique C ∈ C at most one ver-
tex in C can be in the independent set, C can be seen as the
domain of a variable that we can branch on. The well known
heuristic that choses a vertex in the last clique in C can there-
fore be seen as similar to the minimum domain heuristic since
for usual greedy procedures the last clique tends to be the
smallest. Moreover, using the maximum degree of a vertex,
or the maximum weight of a vertex are also natural criteria.

We found the following criterion to be the best: we branch
first on the vertex v whose clique C(v) in the first “layer”
of the clique multicover is such that |C(v)|/w(v) is mini-
mum and put it the I by setting xv . Moreover, we observed
that VSIDS [Moskewicz et al., 2001] is efficient for finding
good solutions quickly, although the criterion above tends to
be best in the long run. Therefore, all the results that we re-
port for our method in section 9 were obtained using VSIDS
for up to 50000 nodes, and then switching to branching on v
minimising |C(v)|/w(v).

9 Experimental Evaluation
We implemented our approach in C++, denoted cdcl, on
top of the MINICSP solver2. We compared it with the
solvers mwclq [Fang et al., 2016], wlmc [Jiang et al., 2017],
cliquer [Östergård, 2001], OTClique [Shimizu et al.,
2017] and an implementation of Tavares’ method by the au-
thors of [McCreesh et al., 2017]. We used the benchmarks
introduced in [McCreesh et al., 2017] divided in four classes:

2Sources available at: https://bitbucket.org/gkatsi/minicsp

WDP Winner Determination Problem, where the graph rep-
resents the compatibility of item sets, weights represent
bids, and the maximum clique stands for the solution of
maximum profit for the auctioneer [Lau and Goh, 2002];

REF Research Excellence Network, where the clique stands
for the optimal set of publications that a university de-
partment can provide to the authority assessing it (gen-
erated by [McCreesh et al., 2017]);

EC-CODE Error-correcting Codes, where the clique stands
for a set of words maximally pair-wise distant (instances
due to [Östergård, 1999], reconstructed by [McCreesh et
al., 2017]);

KIDNEY Kidney Exchange, where the clique stands for a
maximally desirable set of donor/patient exchanges. The
instances were generated by [McCreesh et al., 2017] us-
ing data from [Dickerson et al., 2012] and a weighting
scheme from [Manlove and O’malley, 2015].

Moreover, we also provide results on the classic DIMACS and
BHOSLIB benchmarks. Since those graphs are not weighted,
we used the weight function w(v) = (v mod 200) + 1 with
vertices numbered from 1 to n, a standard practice in evaluat-
ing maximum weighted clique algorithms, attributed to Pul-
lan [Pullan, 2008]. The number of instances in each class
is shown in the 2nd column of Table 1 (omitting 6 trivial
or empty KIDNEY instances). For DIMACS, we use two
copies of each instance to get a total of 160 instances instead
of the 80 in that set. The second copy of each instance is
randomly shuffled so as to avoid reveal any bias in the al-
gorithms. These shuffled instances were generated by [Mc-
Creesh et al., 2017].

Every method was run with a time limit of 1h and a mem-
ory limit of 3.5GB3 on a cluster with 4 nodes, each with 35
Intel Xeon E5-2695 2.10GHz cores running Ubuntu Linux
16.04.4.

For each class of benchmarks, we compute the geometric
mean of the objective, that is, the maximum weight of the
clique found. Moreover, we compute the mean normalised
gap to the best solution. On an instance where the best so-
lution found by the best (resp. worst) method has weight u
(resp. l), the normalised gap g(w) of a clique of weight w is:

g(w) =

{
0 if u = l
(u− w)/(u− l) otherwise

A mean normalised gap of 0 (resp. 1) therefore indicates that
the method systematically finds the solution with best (resp.
worst) objective value. The geometric average is quite ro-
bust to outliers, in particular more so than the arithmetic aver-
age. The normalised gap to the best solution is even more so,
allowing to aggregate extremely heterogeneous results. We
show in Figure 3 the evolution of the normalised gap over
time for the whole data set. We can see that other solvers ini-
tially find good solutions faster (the figure is truncated). How-
ever, the quality of the solutions found by cdcl increases
much more rapidly and after less than one second it is already
better than all methods except mwclq and wlmc. Morever,
both reach a plateau earlier and cdcl is the best overall.

3Only mwclq exceeded the memory limit, on 7 instances.

cdcl wlmc mwclq cliquer OTClique Tavares

objective gap objective gap objective gap objective gap objective gap objective gap

BHOSLIB (40) 4671.36 0.010 3770.83 0.225 4598.76 0.025 835.05 0.975 1619.57 0.623 4277.46 0.109
WDP (50) 84.84M 0.145 85.53M 0.000 85.53M 0.000 85.53M 0.000 85.53M 0.000 84.81M 0.124

EC-CODE (15) 97.31 0.000 97.31 0.000 96.88 0.067 97.31 0.000 97.31 0.000 97.31 0.000
DIMACS (160) 3277.00 0.013 3232.41 0.044 3252.04 0.016 2079.63 0.320 2496.57 0.183 3146.91 0.096
REF (129) 129.82 0.000 128.11 0.019 128.61 0.014 105.06 0.186 117.88 0.108 129.24 0.007

KIDNEY (188) 549.71B 0.000 549.41B 0.001 516.48B 0.208 537.69B 0.111 540.15B 0.060 544.41B 0.029

Table 1: Comparison with the state of the art: geometric mean clique weight (objective) & mean normalised gap to best (gap)

cdcl cdcl\pru cdcl\dom cdcl\learn cdcl\prim cdcl∅

objective gap objective gap objective gap objective gap objective gap objective gap

BHOSLIB (40) 4671.36 0.010 4671.06 0.013 4636.09 0.018 4417.32 0.090 4673.67 0.013 4302.29 0.134
WDP (50) 84.84M 0.145 84.40M 0.369 84.71M 0.184 85.45M 0.016 84.79M 0.172 85.32M 0.032

EC-CODE (15) 97.31 0.000 97.31 0.000 96.49 0.067 97.31 0.000 96.49 0.067 97.31 0.000
DIMACS (160) 3277.00 0.013 3267.03 0.059 3270.43 0.021 3231.94 0.046 3276.68 0.017 3188.82 0.127
REF (129) 129.82 0.000 129.82 0.000 129.83 0.000 129.06 0.009 129.82 0.000 128.41 0.016

KIDNEY (188) 549.71B 0.000 549.71B 0.000 549.71B 0.000 549.56B 0.001 549.71B 0.000 545.28B 0.024

Table 2: Factor analysis: geometric mean clique weight (objective) & mean normalised gap to best (gap)

We report the results for each class of instances in Table 1
where, for each class and each metric, we highlight the best
method.4 Although no method strictly dominates the other
on the whole data set, cdcl finds the best solutions on 4 out
of the 5 classes of instances. On DIMACS and BHOSLIB,
it finds the best solutions in average, however the normalised
gap is not null, indicating that other methods (mainly mwclq)
are able to find better solutions in some cases.

On WDP, cdcl is the second worst method. Interestingly,
it appears that clause learning does not help and even hin-
ders the performance on these instances (see Table 2). This is
not clear whether this is simply due to the time overhead of
learning, which can be significant, or if the clauses we learn
are somehow counterproductive in this context.

On EC-CODE, cdcl finds the same best solutions as
wlmc, cliquer and OTClique. However, it explores
about as large a search tree as wlmc, while requiring 15
times more CPU time per node. The search trees explored
by cliquer and OTClique are orders of magnitude larger,
but they explore about 500 times more nodes per second. As
a result, these three methods solve every EC-CODE instance
to optimality while cdcl proves only 2/3 of the instances.

On REF and KIDNEY, on the other hand, cdcl is clearly
the best method. It finds the heaviest cliques in every single
instance, as shown by the normalised gap of 0. Moreover, it
proves 92.6% of the KIDNEY instances whereas the second
best solver, wlmc, can only prove 78.7%. On REF, however,
these ratios are in favour of wlmc: 82.2% vs. 81.4%.

We report in Table 2 further tests to assess the impact of the
different contributions. We denote cdcl\pru, cdcl\dom,

4Results on individual instances are available here:
http://homepages.laas.fr/ehebrard/mwclq.pdf

cdcl\learn and cdcl\prim the versions of cdcl where
pruning, dominance, learning and the primal bound are turned
off, respectively. Each factor has a tradeoff that can be posi-
tive or negative according to the data set. The impact of the
primal heuristic is rather slight, but does not incur a signif-
icant overhead. On the other hand, clause learning, pruning
and to a lesser extent dominance entail a slow down of up to
100%, which explains why in some cases better solutions can
be found when turning them off. The version where every
factor is turned off (cdcl∅), however, is clearly the worst.

10 Conclusions
We have introduced the basis of a conflict-driven clause learn-
ing approach to the minimum weight vertex cover problem.
This approach uses an effective implementation of the prun-
ing rule based on marginal costs of Babel’s clique multicover
dual bound, and a novel and effective dominance rule. More-
over, we described a non-trivial clause minimization algo-
rithm to compute explanations of failures due to this bound.

Together with an opportunistic primal heuristic and a
search heuristic taking advantage of domain knowledge as
well clause activity, these techniques are shown to be com-
petitive with the state of the art on a large data set. The ex-
perimental results show that it clearly outperforms the best
known methods on several classes of problems.

References
[Babel, 1994] Luitpold Babel. A Fast Algorithm for the

Maximum Weight Clique Problem. Computing, 52(1):31–
38, 1994.

[Bomze et al., 1999] Immanuel M. Bomze, Marco Budinich,
Panos M. Pardalos, and Marcello Pelillo. The Maximum

Clique Problem. In Handbook of Combinatorial Optimiza-
tion, pages 1–74. Kluwer Academic Publishers, 1999.

[Brélaz, 1979] Daniel Brélaz. New Methods to Color the
Vertices of a Graph. Commun. ACM, 22(4):251–256,
1979.

[Day and Sankoff, 1986] William H. E. Day and David
Sankoff. Computational Complexity of Inferring Phylo-
genies by Compatibility. Systematic Zoology, 35(2):224–
229, 1986.

[Dickerson et al., 2012] John P Dickerson, Ariel D Procac-
cia, and Tuomas Sandholm. Optimizing kidney exchange
with transplant chains: Theory and reality. In Proceed-
ings of the 11th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 711–
718. International Foundation for Autonomous Agents and
Multiagent Systems, 2012.

[Fang et al., 2016] Zhiwen Fang, Chu-Min Li, and Ke Xu.
An Exact Algorithm Based on MaxSAT Reasoning for
the Maximum Weight Clique Problem. J. Artif. Int. Res.,
55(1):799–833, 2016.

[Jiang et al., 2017] Hua Jiang, Chu-Min Li, and Felip
Manyà. An exact algorithm for the maximum weight
clique problem in large graphs. In Proceedings of the 31st
Conference on Artificial Intelligence (AAAI), pages 830–
838, 2017.

[Jiang et al., 2018] Hua Jiang, Chu-Min Li, Yanli Liu, and
Felip Manyà. A two-stage maxsat reasoning approach for
the maximum weight clique problem. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelli-
gence (AAAI-2018), 2018.

[Katsirelos and Bacchus, 2005] George Katsirelos and
Fahiem Bacchus. Generalized nogoods in CSPs. In
Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI), 2005.

[Lau and Goh, 2002] Hoong Chuin Lau and Yam Guan Goh.
An intelligent brokering system to support multi-agent
web-based 4/sup th/-party logistics. In Proceedings of
the 14th IEEE International Conference on Tools with Ar-
tificial Intelligence (ICTAI 2002), pages 154–161. IEEE,
2002.

[Lick and White, 1970] Don R. Lick and Arthur T White.
k-degenerate graphs. Canadian Journal of Mathematics,
22:1082–1096, 1970. doi:10.4153/CJM-1970-125-1.

[MacWilliams and Sloane, 1978] Florence J. MacWilliams
and Neil J.A. Sloane. The Theory of Error-Correcting
Codes. North-holland Publishing Company, 2nd edition,
1978.

[Manlove and O’malley, 2015] David F. Manlove and Gregg
O’malley. Paired and altruistic kidney donation in the uk:
Algorithms and experimentation. J. Exp. Algorithmics,
19:2.6:1–2.6:21, January 2015.

[Marques Silva and Sakallah, 1999] Joao P. Marques Silva
and Karem A. Sakallah. GRASP—a search algorithm for
propositional satisfiability. IEEE Transactions on Comput-
ers, 48(5):506–521, May 1999.

[McCreesh and Prosser, 2014] Ciaran McCreesh and Patrick
Prosser. Reducing the Branching in a Branch and Bound
Algorithm for the Maximum Clique Problem. In Pro-
ceedings of the 20th International Conference on Princi-
ples and Practice of Constraint Programming (CP), pages
549–563, 2014.

[McCreesh et al., 2017] Ciaran McCreesh, Patrick Prosser,
Kyle Simpson, and James Trimble. On Maximum Weight
Clique Algorithms, and How They Are Evaluated. In
Proceedings of the 23rd International Conference on the
Principles and Practice of Constraint Programming (CP),
pages 206–225, 2017.

[Mitchell, 2005] David G. Mitchell. A SAT solver primer.
EATCS Bulletin, 85:112–132, 2005.

[Moskewicz et al., 2001] Matthiew Moskewicz, Conor
Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceed-
ings of the 39th Design Automation Conference (DAC),
pages 530–535, 2001.

[Östergård, 2001] Patric R. J. Östergård. A New Algorithm
for the Maximum-weight Clique Problem. Nordic J. of
Computing, 8(4):424–436, 2001.

[Östergård, 2002] Patric R. J. Östergård. A fast algorithm
for the maximum clique problem. Discrete Applied Math-
ematics, 120(1–3):197 – 207, 2002. Special Issue devoted
to the 6th Twente Workshop on Graphs and Combinatorial
Optimization.

[Pullan, 2008] Wayne Pullan. Approximating the maximum
vertex/edge weighted clique using local search. Journal of
Heuristics, 14(2):117–134, Apr 2008.

[Samudrala and Moult, 1998] Ram Samudrala and John
Moult. A Graph-theoretic Algorithm for Comparative
Modeling of Protein Structure. Journal of Molecular Biol-
ogy, 279(1):287–302, 5 1998.

[Shimizu et al., 2017] Satoshi Shimizu, Kazuaki Yam-
aguchi, Toshiki Saitoh, and Sumio Masuda. Fast
maximum weight clique extraction algorithm: Opti-
mal tables for branch-and-bound. Discrete Applied
Mathematics, 223:120–134, 2017.

[Strickland et al., 2005] Dawn M. Strickland, Earl Barnes,
and Joel S. Sokol. Optimal Protein Structure Align-
ment Using Maximum Cliques. Operations Research,
53(3):389–402, 2005.

[Tavares, 2016] Wladimir Araujo Tavares. Algoritmos exatos
para problema da clique maxima ponderada. (Exact al-
gorithms for the maximum-weight clique problem / Algo-
rithmes pour le problème de la clique de poids maximum).
PhD thesis, University of Avignon, France, 2016.

[Östergård, 1999] Patric R.J. Östergård. A new algorithm for
the maximum-weight clique problem. Electronic Notes
in Discrete Mathematics, 3:153 – 156, 1999. 6th Twente
Workshop on Graphs and Combinatorial Optimization.

