
HAL Id: hal-01873500
https://laas.hal.science/hal-01873500v1

Submitted on 13 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clause Learning and New Bounds for Graph Coloring
Emmanuel Hébrard, George Katsirelos

To cite this version:
Emmanuel Hébrard, George Katsirelos. Clause Learning and New Bounds for Graph Coloring. In-
ternational Conference on Principles and Practice of Constraint Programming (CP 2018), Aug 2018,
Lille, France. 17p. �hal-01873500�

https://laas.hal.science/hal-01873500v1
https://hal.archives-ouvertes.fr

Clause Learning and New Bounds for Graph
Coloring

Emmanuel Hebrard1 and George Katsirelos2

1 LAAS-CNRS, Université de Toulouse, CNRS, France, email: hebrard@laas.fr
2 MIAT, UR-875, INRA, France, email: gkatsi@gmail.com ??

Abstract. Graph coloring is a major component of numerous allocation
and scheduling problems.
We introduce a hybrid CP/SAT approach to graph coloring based on
exploring Zykov’s tree: for two non-neighbors, either they take a different
color and there might as well be an edge between them, or they take the
same color and we might as well merge them. Branching on whether two
neighbors get the same color yields a symmetry-free tree with complete
graphs as leaves, which correspond to colorings of the original graph.
We introduce a new lower bound for this problem based on Mycielskian
graphs; a method to produce a clausal explanation of this bound for use
in a CDCL algorithm; and a branching heuristic emulating Brelaz on the
Zykov tree.
The combination of these techniques in both a branch-and-bound and in
a bottom-up search outperforms Dsatur and other SAT-based approaches
on standard benchmarks both for finding upper bounds and for proving
lower bounds.

1 Introduction

A coloring of a graph is a labeling of its vertices such that adjacent vertices have
distinct labels. Let a labeling of the graph G = (V,E) be a mapping from its set
of vertices V to the integers. A labeling c such that c(v) 6= c(u) for every edge
(uv) ∈ E is a coloring of G, and its cardinality is |{c(v) | v ∈ V }|. The chromatic
number χ(G) of a graph G is the cardinality of its smallest coloring.

The problem of finding a minimum coloring of a graph is NP-hard, but has nu-
merous applications. For instance when allocating frequencies, devices on nearby
locations should not be assigned the same frequency to avoid interferences. The
chromatic number of this distance-induced graph is therefore the minimum span
of frequencies that is required [1, 18]. In compilers, finding an optimal register
allocation can be cast as a coloring problem on an interference graph of value
live ranges [3].

One of the oldest and most successful technique for coloring a graph is Bre-
laz’ Dsatur algorithm [2]: when branching, the vertex with highest degree of

?? The second author was partially supported by the french “Agence nationale de la
Recherche”, project DEMOGRAPH, reference ANR-16-C40-0028.

saturation is chosen and colored with the lexicographically least candidate. The
degree of saturation of a vertex v is the number of assigned colors within its
neighborhood NG(v) in G. In case of a tie, the vertex with largest number of
uncolored neighbors is chosen among the tied vertices. This heuristic is often
used within a branch-and-bound algorithm with one variable per vertex whose
domain is the set of possible colors. It is known as dom+deg in the CSP litera-
ture [6]. The standard approach for computing a bound in these algorithms is
to compute a heuristic approximation of the clique number ω(G) of the graph
G (e.g., the size of a maximal clique) since ω(G) ≤ χ(G). This bound is known
to be weak for some polynomially recognizable classes of graphs, such as My-
cielskian graphs, which are triangle-free graphs with arbitrarily large chromatic
number [16]. Moreover, within the search tree explored using Brelaz’ heuristic,
the clique has to be found only among vertices with degree of saturation equal
to the number of colors in the current partial solution (i.e., adjacent to at least
one vertex of every color used so far). Finally, this formulation exhibits value in-
terchangeability [24]. One common way to break this symmetry is to arbitrarily
color a clique, and never branch on colors larger than k + 1 when extending a
solution with k colors [23, 14, 25].

Satisfiability [13, 15] offers an attractive approach to coloring, in part because
it is trivial to encode the problem. In satisfiability, we express problems with
Boolean variables X. We say that a literal l is either a variable x or its negation x.
Constraints are disjunctions of literals, written interchangably as sets of literals
or as disjunctions, which are satisfied by an assignment if it assigns at least one
literal to true. In order to encode graph coloring with satisfiability, one typically
relies on color variables xvi, where xvi being true means vertex v takes color i.
For every edge (uv), there is a binary clause xvi∨xui for every color i. Then, if K
is the maximum number of colors, then there is a clause

∨
1≤i≤K xui. Refinements

to this encoding include Van Gelder’s log encoding versions, where xvj is true
if the j-th bit of the binary encoding of the color taken by vertex v is 1 [22].
However, the use of modern SAT solving techniques like restarting [7, 8] and
clause learning [13] are not straightforward to combine with symmetry breaking
such as that of van Hentenryck et al. [23]. They can only be easily combined
with starting from an arbitrary coloring to a clique, but that is incomplete. The
color6 solver [25] uses symmetry breaking branching but forgoes restarting to
maintain complete symmetry breaking.

On the other hand, the search tree induced by Zykov’s deletion-contraction
recurrence [26] has no color symmetry and using the clique number as lower
bound is easier and more powerful than in the color variable formulation.

Let G/(uv) be the graph obtained by contracting u and v: the two vertices
are identified to a single vertex r(u) = r(v) = u, every edge (vw) is replaced
by (r(v)w) and self edges are discarded. Conversely, let G + (uv) be the graph
obtained by adding the edge (uv). The Zykov reccurrence is thus:

χ(G) = min{χ(G/(uv)), χ(G+ (uv))} (1)

Indeed, given a minimum coloring of G, either the vertices u and v have
distinct colors and therefore it is also a coloring of G + (uv), or they have the
same color and it is a coloring of G/(uv).

Example 1. Figure 1 illustrates the Zykov reccurrence. From the graph G in
Figure 1a, we obtain the graph G+ (cd) shown in Figure 1b by adding the edge
(cd) and the graph G/(cd) shown in Figure 1c. One of these two graphs has the
same chromatic number as G.

a

b
c d

e

f

g

(a) G

a

b
c d

e

f

g

(b) G + (cd)

a

b c, d

e

f

g

(c) G/(cd)

Fig. 1: Zykov reccurrence

This branching scheme was successfully used in a branch-and-price approach
to coloring [14]. In the context of satisfiability, Schaafsma et al. showed that a
clause encoding of Zykov formulation is not efficient [19]. For every non-edge
(uv), the edge variable euv stands for the decision of contracting the vertices
(euv = 1), or adding the edge (euv = 0). A difficulty is that a cubic number of
clauses are required, three for every triplet u, v, w, in order to forbid that exactly
two of the variables euv, euw and evw are true. This encoding proved too heavy
and as a result less efficient than the formulations using color variables. However,
Schaafsma et al. introduced a novel and clever way of taking advantage of Zykov’s
idea: when learning a clause involving color variables, one can compactly encode
all symmetric clauses using a single clause that only uses edge variables and
propagates the same as if all the symmetric clauses were present.

In this work, we propose a constraint programming formulation of coloring
in section 2 that also uses the Zykov branching scheme. We use the idea of in-
tegrating constraint programming into clause learning satisfiability solvers by
simply having each propagator label each pruning or failure by a clausal rea-
son or explanation [10, 17] to alleviate the cost of keeping the edge variables
consistent (section 2.1) and to integrate a lower bound based on either cliques
(section 2.2) or a more general bound based on Mycielskians (section 2.3). To-
gether with effective branching heuristics (section 2.4) and search strategies that
emphasize either upper or lower bounds (section 2.5), we get a solver that clearly
outperforms the state of the art in satisfiability-based coloring (section 3).

2 Clause-learning Approach

In our approach, similar to that Schaafsma et al., we use a model which leads to
the exploration of the tree resulting from application of the Zykov recurrence.
We have one Boolean variable euv for each non-edge of the input graph, that is
for every (uv) /∈ E. When euv is true, the vertices v and u are contracted, hence
assigned the same color, and are separated otherwise, hence assigned different
colors. We somewhat abuse notation in the sequel and write clauses using vari-
ables euv even when (uv) ∈ E and assume that the variable is set to false at the
root of the search tree.

With every (partial) assignment A to the edge variables, we can associate
a graph GA. For the empty assignment, we have G∅ = G. For non-empty as-
signments it is the graph that results from contracting all vertices u, v of G for
which A contains euv and adding an edge between all pairs of vertices u, v of G
for which A contains euv. When euv and evw are both true, this means that we
contract u and v and then contract w and r(v) and similarly for false literals.
The operation of contracting vertices is associative and commutative, so we get
the same graph GA regardless of the order in which we process the literals in A.

The property of having the same color is transitive, so if euv and evw are
true, then so is euw. Similarly, if euv is true and evw is false, then euw must also
be false. We enforce this using the constraint

Triangle({euv | (uv) /∈ E}) (2)

We can enforce GAC on this constraint using a decomposition of size O(|V |3):

(euv ∨ evw ∨ euw) ∀ distinct u, v, w ∈ V (3)

Enforcing unit propagation on this decomposition therefore takes O(|V |3)
time, amortized over a branch of the search tree. In our implementation, we
have opted instead for a dedicated propagator for this, described in section 2.1,
whose complexity over a branch is only O(|V |2).

The model also includes a constraint Coloring which is satisfied by any
assignment that corresponds to a coloring with fewer than k colors.

Coloring({euv | (uv) /∈ E}, k) (4)

This constraint is clearly NP-hard. We describe two incomplete propagators
for it in sections 2.2 and 2.3. The first computes either the well known clique
lower bound (section 2.2) and the second a novel, stronger, bound (section 2.3). If
that bound meets or exceeds k, the propagator fails and produces an explanation.
Neither of these bounds is cheap to compute, hence the propagator runs at a
lower priority than unit propagation and the Triangle constraint.

Although we have experimented with pruning in this propagator, the rules
we have found tend to be ineffective, in the sense that they generate very little
pruning, barely reduce the overall search effort, and increase the overall runtime.

Discussion. Clearly, our approach is closely related to that of Schaafsma et
al. However, there are some important differences. First, since we do not need
the color variables to compute the size of the coloring, we completely eliminate
the need for the clause rewriting scheme that they implement and get color
symmetry-free search with no additional effort. In addition, since we our model
uses a CP/SAT hybrid, we can use a constraint to compute a lower bound at
each node, thus avoiding a potentially large number of conflicts.

The approach of Schaafsma et al. does not enforce triangle consistency except
through the color variables (so that Xv = Xu ⇐⇒ euv). In contrast, the
triangle propagator maintains GAC on this constraint, without having to encode
channeling between the edge variables and the color variables.

The main drawback of this model is that we need a large number of variables.
This is especially problematic for large, sparse graphs, where the number of non-
edges is quadratic in the number of vertices and significantly larger than the
number of edges. Indeed, in 4 of the 125 instances we used in our experimental
evaluation, our solver exceeded the memory limit.

The approach of Schaafsma et al. does not have the same limitation, as they
introduce variables only when they are needed to rewrite a learnt clause, in a
way similar to lazy model expansion [4]. It is possible that this approach of
lazily introducing variables can be adapted to our model, but this, as well as
other ways of reducing the memory requirements, remains future work.

2.1 Triangle consistency propagation

The propagator for the Triangle constraints works as follows: for each vertex
v, we keep a bag b(v) to which it belongs. Initially, b(v) = {v} for all v. When we
set euv to true, we set eu′v′ to true for all v′ ∈ b(v), u′ ∈ b(u). We also set eu′v′ to
false for all v′ ∈ b(v) and u′ ∈ N(b(u) \N(b(v)).3 Finally, we set B = b(u)∪ b(v)
and update b(v′) = B for all v′ ∈ B. In the case where we set euv to false, we
set eu′v′ to false for all v′ ∈ b(v), u′ ∈ b(u).

A small but important optimization is that if the propagator is invoked for
euv becoming true (resp. false) but u and v are already in the same bag (resp.
already separated) then it does nothing. This ensures that it touches each non-
edge exactly once, hence its complexity is quadratic over an entire branch. This
is also optimal, since in the worst case every non-edge must be set either as a
decision or by propagation.

This propagator uses the clauses (3) as explanations. The mapping from
actions that it performs to explanations is fairly straightforward, using the ver-
tices involved in the literal that woke the propagator as “pivots”. For example,
if b(v) = {v, v′}, b(u) = {u, u′} and it is woken on the literal euv, it sets euv′

using (evv′ ∨ euv ∨ euv′) as the reason and then eu′v′ using (euv′ ∨ euu′ ∨ eu′v′).

3 We abuse the neighborhood notation and write N(S) for
⋃

u∈S N(u).

2.2 Clique-based lower bound.

As we already discussed, an important advantage of the edge-variable based
model is that computing a lower bound for the current subproblem is as easy as
for the entire problem. For example, if the partial assignment in the current node
is A, the clique number of the graph GA is a lower bound for the subproblem.

In order to find a large clique we use the following greedy algorithm. Let o
be an ordering of the vertices, so we visit all vertices in the order vo1 , . . . , von .
We maintain an initially empty list of cliques. For each vertex, we add to all the
cliques which admit it and if no clique admits it we put it in a new singleton
clique. When this finishes, we iterate over the vertices one more time and add
them to all cliques which admit them, because in the first pass a vertex v was
not evaluated against cliques which were created after we processed v. We then
pick the largest among these cliques as our lower bound.

If the lower bound meets or exceeds the upper bound k, the propagator
reports a conflict. We construct a clausal conflict as follows: each vertex v of the
current graph is the result of the contraction of 1 or more vertices of the original
graph. In keeping with the notation for the triangle consistency propagator, we
call this the bag b(v). We arbitrarily pick one vertex r(v) from the bag of each
vertex v in the largest clique C, and set the explanation to

∨
v,u∈C

er(v)r(u) (5)

We have experimented with producing explanations with mixed-sign literals
and found that they tend to be much shorter and speed up search in terms
of number of conflicts per second, but significantly increase the overall effort
required, both in runtime and number of conflicts.

Preprocessing and vertex ordering. We tried a few different heuristics for ordering
the vertices of the graph, including the inverse of the degeneracy order [11], which
tends to produce large cliques [5, 9]. However, we found that it works best to
sort the vertices in order of decreasing bag size.

Lin et al [12] recently proposed a reduction rule for graph coloring instances,
which allowed them to reduce the size of large, sparse graphs.

Proposition 1 ([12]). Let G be a graph with χ(G) ≥ k and let I be an indepen-
dent set of G such that for all v ∈ I, d(v) ≤ k. Then, k − 1 ≤ χ(G \ I) ≤ χ(G)
and if χ(G \ I) = k − 1 then χ(G) = k.

The rule of proposition 1 can be used with any lower bound and applied
iteratively until no more reduction is possible. Besides the obvious advantage of
trimming the graph this reduction also helps improve the lower bound found by
a heuristic maximal clique algorithm. The reason is that whatever heuristic we
use for finding a maximal clique may make a suboptimal choice and this prepro-
cessing step removes some obviously suboptimal choices from consideration.

We have used this result for preprocessing, as Lin et al. did, but observed
very little benefit in our instance set, which comprises smaller and denser graphs
than the one that they used. We also used it, however, to improve the ordering
for the greedy algorithm by placing such vertices at the end of the ordering. As
we will show in section 3, this has a small but measurable impact.

2.3 Mycielski-based Bound

Although being a useful bound in practice, the clique number is both hard to
compute and gives no guarantees on the quality of the bound. We propose here
a new lower bound inspired by Mycielskian graph.

Definition 1 (Mycielskian graph [16]). The Mycielskian graph µ(G)=(µ(V),µ(E))
of G =(V ,E) is defined as follows:

– µ(V) contains every vertex in V , and |V |+ 1 additional vertices, constituted
of a set U = {ui | vi ∈ V } and another distinct vertex w.

– For every edge vivj ∈ E, µ(E) contains vivj , viuj and uivj. Moreover, it
contains all the edges between U and w.

The Mycielskian µ(G) of a graph G, has the same clique number, however
its chromatic number is χ(G) + 1. Indeed, consider a coloring of µ(G). For any
vertex vi ∈ V , we have N(vi) ⊆ N(ui), and therefore we can safely use the
same color vi as for ui. If follows that at least χ(G) colors are required for
the vertices in U , and since N(w) = U , then w requires a χ(G) + 1-th color.
Mycielski introduced these graphs to demonstrate that triangle-free graphs can
have arbitrarilly large chromatic numbers, hence the clique number does not
approximate the chromatic number.

(a) M2 (b) M3 (c) M4

Fig. 2: A 2-clique M2 = µ(∅), its Mycielskians M3 = µ(M2) and M4 = µ(M3)

The principle of our bound is a greedy procedure that can discover embed-
ded “pseudo” Mycielskians. Indeed, the class of embedded graphs that we look
for is significantly broader than set of “pure” Mycielskians {M2,M3,M4, . . .}.

First, we look for a partial subgraph. Therefore, trivially, Mycielskians with ex-
tra edges also provide valid lower bounds. Moreover, we use as starting point
a (potentially large) clique. Finally, the method we propose can also find My-
cielskians modulo some vertex contractions. Clearly, those are also valid lower
bounds since contracting vertices is equivalent to adding equality constraints to
the problem.

Let NG(v) be the neighborhood of v in the graph G. Suppose that we have
a partial subgraph H = (VH , EH) of G such that χ(H) ≥ k. This can be for
example a clique of size k. We define

Sv = {u | NH(v) ⊆ NG(u)} (6)

Suppose that there exists a vertex w with at least one neighbor in every set Sv:

w ∈ ∩v∈VH
NG(Sv) (7)

and let u(v) be any element of Sv such that u(v) ∈ NG(w) and U = {u(v) | v ∈
V }, then:

Lemma 1. The graph

H ′ = (V ∪ U ∪ {w}, E ∪
⋃
v∈V

NH(v)× u(v) ∪
⋃
u∈U
{(u,w)})

is such that χ(H ′) ≥ k + 1.

Proof. The proof follows from the facts that H ′ is the Mycielskian graph of H
possibly with contracted vertices, and is embedded in G.

Suppose first that, for each v ∈ V , u(v) 6= v and w 6∈ V . Then we have
H ′ = µ(H) by using u(vi) for the vertex ui, and w for itself, in Definition 1.

Suppose now that H ′ 6= µ(H). This can only be because either:

– For some vertex vi of H, we have u(vi) = vi. In this case, consider the
graph µ(H) and contract ui and vi. The resulting graph µ(H)/(uivi) has a
chromatic number at least as high as µ(H). However, it is isomorphic to H ′.

– The vertex w is the vertex vi from the original subgraph H. Here again
contracting vi and w in µ(H) yields H ′.

Notice that there is not a third case where w is taken among U since, for any
v ∈ VH , we have u(v) 6∈ ∩v∈VH

NG(Sv) because u(v) is not a neighbor of itself.
Finally, it is easy to see that H ′ is embedded in G since the edges added to

H ′ are all edges of G �

Example 2. Figure 3a shows the graph G/(cd) obtained by contracting vertices
c and d in the graph G of Figure 1. Let H be the clique {a, b, c}. We have
Sa = {a, e}, Sb = {b, f} and Sc = {c}. Furthermore, NG({a, e}) ∩NG({b, f}) ∩

NG({c}) = {b, c, g}∩{a, e, c, g}∩{a, b, e, g, f} = {g}, from which we can conclude
that this graph has chromatic number at least 4. As shown in Figure 3b, when
called with H = {a, b, c} Algorithm 1 will extend it with a first layer U = {e, c, f}
and an extra vertex w = g. Notice that the graph obtained by adding the edge
(cd) has a 4-clique (see Figure 1). Therefore, the graph G in Figure 1a also has
a chromatic number of at least 4.

a

b c

e

f

g

(a) H = G/(cd)

a

b c

u(a)

u(b)

w

(b) Trace of Algorithm 1 on H

Fig. 3: Embedded Mycielski

Algorithm 1 greedily extends a partial subgraph H = (VH , EH) of the graph
G (with χ(H) ≥ k) into a larger partial subgraph H ′ = (V ′H , E

′
H), following the

above principles. As long as this succeeds, in the outermost loop, we replace H
by H ′ and iterate. The computed bound k is equal to χ(H) plus the number of
successful iterations.

We compute the sets Sv (Equation 6) and the set W of nodes with at least
one neighbor in every Sv in Loop 1. Then, if it is possible to extend H (Line 4),
we compute the pseudo Mycielskian (V ′H , E

′
H) as shown in Lemma 1 and replaces

H with it in Line 5 before starting another iteration.

Complexity. One iteration of Algorithm 1 requires O(|VH | × |V |) bitset opera-
tions (Line 2 is 1 ‘AND’ operation and Line 3 is O(|V |) ‘OR’ operations and 1
‘AND’). The second part of the loop, starting from Line 4, runs in O(|VH |2) time.
Typically, the number of iterations is very small. In the worst case, it cannot be
larger than log |V | since the number of vertices in H is (more than) doubled at
each iteration. It follows that Loop 1 is executed at most 2|V | times, and there-
fore, the worst case time complexity is O(|V |2) bitset operations (hence O(|V |3)
time).

Explanation. Similarly to the clique based lower bound, the explanations that
we produce here correspond to the set of all edges in the graph H:

∨
(v,u)∈EH

euv (8)

Algorithm 1: MycielskiBound(k,H = (VH , EH), G = (V,E))

while |VH | < |V | do
W ← V ;
∀v ∈ VH Sv ← {v};

1 foreach v ∈ VH do
foreach u ∈ V do

2 if NH(v) ⊆ NG(u) then Sv ← Sv ∪ {u} ;

3 W ←W ∩NG(Sv);

4 if W 6= ∅ then
k ← k + 1;
(V ′H , E

′
H)← (VH , EH);

w ← any element of W ;
foreach v ∈ VH do

V ′H ← V ′H ∪ { any element of (NG(w) ∩ Sv)};
E′H ← E′H ∪ {(wu)} ∪ {u×NH(v)};

5 (VH , EH)← (V ′H , E
′
H);

else break;
return k;

Adaptive application of the Mycielskian bound. In our experiments, we found
that trying to find a Mycielskian subgraph in every node of the search tree
was too expensive and did not pay off in terms of total runtime. Therefore,
we adapted a heuristic proposed by Stergiou [20] which allows us to apply this
stronger reasoning less often. In particular, we only compute the clique lower
bound by default. But everytime there is a conflict, whether by unit propagation
or by bound computation, we compute the Mycielskian lower bound in the next
node. If that causes a conflict, we keep computing this bound until we backtrack
to a point where even the stronger bound does not detect a bound violation.
This has the effect that we compute the cheaper clique lower bound most of the
time, but learn clauses based on the stronger bound.

2.4 Branching heuristic

Brelaz’ branching heuristic remains extremely competitive for finding good col-
orings, as evidenced by the performance of Dsatur in our experimental evalu-
ation (section 3). Moreover, Schaafsma et al. observed that branching on color
variables was significantly better than branching on edge variables.

But adding the color variables is not really desirable. First, it adds the over-
head of propagating the reified equality constraints. Second, using these variables
to follow the Brelaz heuristic requires branching on them, which in trun requires
that we use some kind of symmetry breaking method, like the rewriting scheme

of Schaafsma et al. So it would be preferable to get the benefit of the more
effective branching heuristic without needing to introduce color variables.

In order to get behavior similar to that of Brelaz’ heuristic in the edge variable
model, we proceed as follows: we pick a maximal clique C in the current graph.
We pick the vertex v that maximises |N(v)∩C|, breaking ties by highest |N(v)\
C|, and an arbitrary vertex u ∈ C \N(v) 4. We then set euv to true. This uses
the current maximal clique to implicitly construct a coloring and uses that to
choose the next vertex to color as Brelaz’ heuristic does. If the assignments euv
are refuted for all u ∈ C, then v is adjacent to all vertices in C and so C ∪ {v}
is a larger clique, which corresponds to using a new color in Brelaz’ heuristic.

This branching strategy can be more flexible than committing to a coloring
by assigning the color variables. For example, unit propagation on learned clauses
as we exlore a branch of the search tree can make it so that the maximal clique
C ′ at some deep level is not an extension of the maximal clique C at the root
of the tree, i.e., C 6⊆ C ′. The Brelaz heuristic on the color variables commits to
using C at the root, hence cannot take advantage of the information that C ′ is
a larger clique. The modification that we present here achieves this.

2.5 Solution strategies

Previous satisfiability-based approaches to coloring have mostly ignored the op-
timization problem of finding an optimal coloring of a graph and instead attack
the decision problem of whether a graph is colorable with k colors. In our set-
ting, we have the flexibility to do both. In particular, we implemented two search
strategies: branch-and-bound and bottom-up. The former uses a single instance
of a solver, finds a solution and then tightens the upper bound in the Coloring
constraint and continues searching. This is similar to the top-down approach one
would use when solving a series of decision problems, starting from a heuristic
upper bound and decreasing that until we generate an unsatisfiable instance, in
which case we have identified the optimum. The advantage of the branch-and-
bound approach is that it does not discard accumulated information between
solution: learned clauses and heuristic scores for variables. Moreover, it more
closely resembles the typical approach used in constraint programming systems.

The other approach we implemented is bottom-up: start from a lower bound
(such as those described in section 2.2 or 2.3) and keep increasing until we find
a satisfiable instance, which gives the optimum. This has none of the advantages
of the branch-and-bound approach, as it is not safe to reuse clauses from a more
constrained problem in one that is less constrained. Moreover, it cannot generate
upper bounds before it finds the optimum. But it gains from the fact that the
more constrained problems it solves may be easier. One particular behavior we
have observed is that sometimes the lower bound computed at the root coincides
with the optimum and finding is quite easy with the bottom-up strategy, but
finding that solution with branch-and-bound can be very hard.

4 We assume the graph is connected, otherwise u may not always exist.

3 Experimental Evaluation

We implemented several variations of our approach using MiniCSP5 as the
underlying CDCL CSP solver, and retained two, one for each of the solution
strategies described in section 2.5.6 The former, cdcl, is a branch-and-bound
algorithm, using Brelaz branching. The latter, cdcl↑, is a bottom-up algorithm,
using VSIDS. In both cases, we use the adaptive application of the Mycielskian
bound, as explained in section 2.3. When computing the Mycielskian bound, we
apply Algorithm 1 on all of the maximal cliques, and keep the best outcome.

We compared with the state-of-art SAT-based solver color6 [25], a very
efficient clause-learning algorithm for graph coloring proposed recently by Zhou
et al. Similarly to our approach, it is based on a SAT solver (namely zChaff),
however, it uses the color-based formulation. It was shown to outperform the
state of the art on many instances. As color6 solves satisfiability instances
only (testing whether a coloring with a specific number of colors exists), we
implemented a branch-and-bound wrapper on top of it, denoted color6, as well
as well as a wrapper that implements the bottom-up strategy, denoted color6↑.
We used the lower and upper bounds computed by our approach (respectively
the maximal clique algorithm described in section 2.2 and a greedy run of Brelaz)
as initial bounds for color6 and color6↑.

Moreover, we also compared with an implementation of Dsatur by Trick, and
an integer programming formulation in CPLEX. The model we used for CPLEX is
the trivial one using binary color variables (one for each vertex and each color),
and one binary inequality per edge. However, observe that CPLEX actually com-
putes maximal cliques in its preprocessing, so providing it with clique inequalities
would have been useless. Moreover, we initialized the upper bound with the same
method as for color6, and also arbitrarily fixed the colors of one maximal clique
in order to break symmetries.

Unfortunately, we could not compare our method to the method of Schaafsma
et al. (Minicolor) directly. Indeed, its implementation, generously provided by
the authors, is difficult to use in the type of extensive experiments of the type we
performed. Firstly, the algorithm is restricted to instances with at most 32 colors.
Secondly it solves the satisfiability problem χ(G) ≤ K and uses a file converter.
Finally, the changes made to Minisat’s code do not seem to be robust and we
experienced several occurrences of assertion failures.

We used 125 benchmark instances from Trick’s graph coloring webpage (http:
//mat.gsia.cmu.edu/COLOR/color.html) and described in the proceedings of
the workshop COLOR02 [21]. In the subsequent tables, however, we omit 22 of
these instances that were trivial for every approach we used (i.e., that solved by
every method to optimality). Every method was run with a time limit of one
hour and a memory limit of 3.5GB7 on 4 nodes, each with 35 Intel Xeon CPU
E5-2695 v4 2.10GHz cores running Linux Ubuntu 16.04.4.

5 Sources available at: https://bitbucket.org/gkatsi/minicsp.
6 Sources available at: https://bitbucket.org/gkatsi/gc-cdcl/src/master/.
7 cdcl exceeded the memory limit on 4 instances, and CPLEX on 16 instances.

cdcl color6 CPLEX Dsatur

opt ub lb opt ub lb opt ub lb opt ub lb

DSJ (14) 0.07 76.00 30.71 0.07 77.57 28.93 0.07 86.07 29.79 0.00 77.86 27.64
FullIns (14) 1.00 6.79 6.79 0.21 6.79 5.14 0.86 6.93 6.36 0.00 6.79 4.86

Insertions (11) 0.27 5.18 2.55 0.36 5.18 2.82 0.36 5.18 3.64 0.00 5.18 2.00
abb313GPI (1) 1.00 9.00 9.00 0.00 14.00 8.00 0.00 14.00 8.00 0.00 10.00 6.00

ash (3) 1.00 4.00 4.00 0.67 4.67 3.67 0.33 5.67 3.33 0.00 4.33 3.00
flat (6) 0.00 73.83 11.67 0.00 74.33 10.67 0.00 79.67 10.67 0.00 74.83 9.67

fpsol2 (1) 1.00 65.00 65.00 0.00 65.00 59.00 1.00 65.00 65.00 1.00 65.00 65.00
inithx (1) 1.00 54.00 54.00 0.00 54.00 43.00 1.00 54.00 54.00 1.00 54.00 54.00

latin square (1) 0.00 116.00 90.00 0.00 125.00 90.00 0.00 159.00 90.00 0.00 129.00 90.00
le450 (10) 0.50 15.20 13.00 0.10 15.60 13.00 0.30 19.10 13.00 0.20 16.00 11.70
miles (5) 1.00 34.80 34.80 0.00 36.40 33.40 1.00 34.80 34.80 1.00 34.80 34.80
mug (4) 1.00 4.00 4.00 1.00 4.00 4.00 1.00 4.00 4.00 0.00 4.00 3.00

myciel (5) 1.00 6.00 6.00 0.80 6.00 4.80 0.60 6.00 5.00 0.00 6.00 2.00
qg (4) 0.75 66.00 57.50 0.25 63.25 57.50 0.25 72.50 57.50 0.25 59.50 57.50

queen (13) 0.46 12.08 10.85 0.00 15.92 10.62 0.38 12.46 10.77 0.23 12.00 10.62
school1 (1) 1.00 14.00 14.00 0.00 26.00 14.00 1.00 14.00 14.00 0.00 14.00 13.00
wap0 (8) 0.12 46.50 41.25 0.00 47.62 40.00 0.00 51.12 40.00 0.00 48.00 30.38

will199GPI (1) 1.00 7.00 7.00 0.00 10.00 6.00 1.00 7.00 7.00 0.00 7.00 6.00

Table 1: Comparison with top-down methods (by classes of instances)

The results in Tables 1 and 2 are averaged over instances from the same class
and the number of instances in each class is given next to the class name. We
show the ratio of instances for which a proof of optimality was found (‘opt’),
as well as the average upper bound (‘ub’) and lower bound (‘lb’), for every
method. The best results for each criterion are highlighted using colors. Table 1
focuses on top-down methods. cdcl is better on all but three classes of instances:
Insertions, qg (quasigroup) and queen. Moreover, it finds the same coloring as
the other methods in the Insertions class, and computes strictly more proofs
of optimality than other solvers in the the two other classes. Finally, on many
classes it is strictly better than the second best solver (considering at least one
criterion). Table 2 focuses on the two bottom-up methods. Here again there are
far more classes where cdcl↑ is better than classes (such as qg again) where
the opposite is true. Moreover, although cdcl↑ finds better lower bounds on two
large classes (DSJ and flat) this does not translates to a higher proof ratio.

Table 3 shows results aggregated across all instances. We report the average
ratio of instance proven optimal (‘optimal’) in the first column. Then in the
second to the fifth columns, we report the arithmetic (‘avg’) and geometric
averages (‘gavg’) for both the lower and upper bounds. Finally, we report the
mean normalised gap to the best upper bound, and to the best lower bound. Let
b (resp. w) be the value found by best (resp. worst) method. In the case of the
lower bound, b will be the maximum, while it will be the minimum for the upper
bound. The normalised gap g(x) of the outcome x is:

g(x) =

{
0 if b = w
(b− x)/(b− w) otherwise

cdcl↑ color6↑

opt ub lb opt ub lb

DSJ (14) 0.07 86.93 33.79 0.07 86.93 35.79
FullIns (14) 0.93 6.86 6.71 0.21 7.29 5.43

Insertions (11) 0.36 5.36 4.27 0.36 5.36 4.09
abb313GPI (1) 0.00 14.00 9.00 0.00 14.00 8.00

ash (3) 1.00 4.00 4.00 0.67 4.67 3.67
flat (6) 0.00 82.17 14.00 0.00 82.17 16.83

fpsol2 (1) 1.00 65.00 65.00 0.00 65.00 59.00
inithx (1) 1.00 54.00 54.00 0.00 54.00 43.00

latin square (1) 0.00 159.00 90.00 0.00 159.00 90.00
le450 (10) 0.80 14.70 13.00 0.20 20.00 13.00
miles (5) 1.00 34.80 34.80 0.00 36.40 33.40
mug (4) 1.00 4.00 4.00 1.00 4.00 4.00

myciel (5) 1.00 6.00 6.00 0.80 6.00 5.60
qg (4) 0.25 72.50 57.50 0.75 66.00 57.50

queen (13) 0.46 14.54 10.92 0.00 15.92 10.62
school1 (1) 1.00 14.00 14.00 1.00 14.00 14.00
wap0 (8) 0.12 50.88 41.25 0.00 51.12 40.00

will199GPI (1) 1.00 7.00 7.00 0.00 10.00 6.00

Table 2: Comparison with bottom-up methods (by classes of instances)

A mean normalised gap of 0 (resp. 1) therefore indicates that the method sys-
tematically has the best (resp. worst) outcome.

Overall, the variants of cdcl are best for all criteria. CPLEX is third best for
the number of optimality proofs. Although it requires a lot of memory, and is very
poor in terms of solution quality, CPLEX often gives good lower bounds. This is
not so surprising since the linear relaxation is quite potent on this formulation.
For instance at the root node, since we fix the variables of a maximal clique,
the lower bound from the linear relaxation can only be higher than that of our
method. It should be noted, however, that in many cases it was not able to
improve on the initial bounds provided to the model, even when memory was
not an issue. color6↑ is second best for the lower bound, however, notice that the
much larger mean normalised gap to the best lower bound than cdcl↑ indicates

method
optimal ub lb gap (ub) gap (lb)

avg gavg avg gavg avg avg avg

cdcl 0.53398 15.247 30.107 10.790 18.689 0.0909 0.2254
cdcl↑ 0.53398 16.248 33.427 11.846 19.427 0.4175 0.0740
CPLEX 0.41748 16.503 33.388 10.886 18.379 0.4014 0.2562
color6↑ 0.23301 17.408 34.068 11.527 19.252 0.6408 0.2371
color6 0.19417 16.314 31.233 10.040 17.748 0.3201 0.4716
Dsatur 0.12621 15.506 30.495 8.754 16.524 0.1450 0.7248

Table 3: Comparison with the state of the art: global results

method
optimal ub lb gap (ub) gap (lb)

avg gavg avg gavg avg avg avg

cdcl 0.53398 15.247 30.107 10.790 18.689 0.0909 0.2254
cdcl↑ 0.53398 16.248 33.427 11.846 19.427 0.4175 0.0740

cdcl↑ \M 0.51456 16.219 33.466 11.738 19.262 0.4175 0.0925
cdcl\M 0.49515 15.308 30.126 10.364 18.272 0.0929 0.2764

cdcl\M,O 0.47573 15.469 30.534 10.234 18.282 0.1273 0.2890
cdcl↑ \M,O 0.45631 16.370 33.476 11.701 19.369 0.4563 0.0988
cdcl\M,O,L 0.39806 15.521 30.524 10.034 18.184 0.1311 0.3602
cdcl↑ \M,O,L 0.23301 17.861 34.476 10.724 18.738 0.6311 0.2808

Table 4: Factor analysis: global results

that it was often close but rarely better than our approach. Finally, Dsatur,
even though extremely simple, is still a very good method to actually find small
colorings and is a close second best for the upper bound.

Next, we tried to assess the impact of the new bounds, and of learning. To
that purpose, we ran six variants. Let L denote the usage of clause learning, M
the mycielskian-based lower bound and O the partition-based vertex ordering
used to find maximal cliques, then X \ S stands for the solver X where the
options in S are turned off. The results reported in Table 4 clearly show the
impact of each factor. There is an almost perfect correlation between turning
off a feature, and moving down the ranking for any criterion. In particular,
clause learning has clearly a very high impact as turning it off systematically
and significantly degrades the performances on every criterion. Moreover, using
the partition-based vertex ordering also has a very significant impact for such a
simple technique. Finally the mycielskian-based lower bound also clearly helps.
However, its impact on the upper bound is limited. For instance, with respect
to cdcl\M , it increases the proof ratio by 7.8% and the mean lower bound by
2.3%, but decreases the mean upper bound by only 0.3%.

4 Conclusions

We have presented a CP/SAT hybrid approach to graph coloring. The approach
uses a new, sophisticated, lower bound that generalizes the clique bound and is
inspired by Mycielskian graphs. We combined it with clause learning and effec-
tive primal heuristics for coloring to get a solver that in both its configurations
outperforms the previous state of the art in satisfiability-based coloring, con-
straint programming based coloring, as well as a MIP model of the problem.
The main disadvantage of the approach is that it requires one Boolean variable
for each non-edge of the graph and hence cannot scale to large sparse graphs.

References

1. Karen I Aardal, Stan PM Van Hoesel, Arie MCA Koster, Carlo Mannino, and An-
tonio Sassano. Models and solution techniques for frequency assignment problems.
Annals of Operations Research, 153(1):79–129, 2007.

2. Daniel Brélaz. New Methods to Color the Vertices of a Graph. Commun. ACM,
22(4):251–256, 1979.

3. Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein. Register allocation via coloring. Comput. Lang.,
6(1):47–57, January 1981.

4. Broes De Cat, Marc Denecker, Maurice Bruynooghe, and Peter Stuckey. Lazy
model expansion: Interleaving grounding with search. Journal of Artificial Intelli-
gence Research, 52:235–286, 2015.

5. David Eppstein, Maarten Löffler, and Darren Strash. Listing All Maximal Cliques
in Large Sparse Real-World Graphs. ACM Journal of Experimental Algorithmics,
18(3.1–3.21), 2013.

6. Daniel Frost and Rina Dechter. Look-ahead Value Ordering for Constraint Sat-
isfaction Problems. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI-1995), pages 572–578, 1995.

7. Carla Gomes, Bart Selman, and Henry Kautz. Boosting Combinatorial Search
Through Randomization. In Proceedings of the 15th National Conference on Arti-
ficial Intelligence (AAAI-1998), pages 431–438, 1998.

8. Jinbo Huang. The Effect of Restarts on the Efficiency of Clause Learning. In
Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI-2007), 2007.

9. Hua Jiang, Chu-Min Li, and Felip Manyà. An Exact Algorithm for the Maximum
Weight Clique Problem in Large Graphs. In Proceedings of the 31st Conference on
Artificial Intelligence (AAAI-2017), pages 830–838, 2017.

10. George Katsirelos and Fahiem Bacchus. Generalized Nogoods in CSPs. In Pro-
ceedings of the 20th National Conference on Artificial Intelligence (AAAI-2005),
pages 390–396, 2005.

11. Don R. Lick and Arthur T. White. k-degenerate graphs. Canadian Journal of
Mathematics, 22:1082–1096, 1970.

12. Jinkun Lin, Shaowei Cai, Chuan Luo, and Kaile Su. A Reduction based Method
for Coloring Very Large Graphs. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI-2017), pages 517–523, 2017.

13. Joao P. Marques-Silva and Karem A. Sakallah. GRASP—a search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May
1999.

14. Anuj Mehrotra and Michael A Trick. A column generation approach for graph
coloring. INFORMS Journal on Computing, 8(4):344–354, 1996.

15. Matthiew Moskewicz, Conor Madigan, Ying Zhao, Lintao Zhang, and Sharad Ma-
lik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 39th Design
Automation Conference (DAC-2001), pages 530–535, 2001.

16. Jan Mycielski. Sur le coloriage des graphes. In Colloq. Math, volume 3, pages
161–162, 1955.

17. Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation = Lazy
Clause Generation. In Proceedings of the 13th International Conference on Prin-
ciples and Practice of Constraint Programming (CP-2007), pages 544–558, 2007.

18. Taehoon Park and Chae Y Lee. Application of the graph coloring algorithm to
the frequency assignment problem. Journal of the Operations Research society of
Japan, 39(2):258–265, 1996.

19. Bas Schaafsma, Marijn Heule, and Hans van Maaren. Dynamic Symmetry Breaking
by Simulating Zykov Contraction. In 12th International Conference on Theory and
Applications of Satisfiability Testing (SAT-2009), pages 223–236, 2009.

20. Kostas Stergiou. Heuristics for Dynamically Adapting Propagation. In Proceedings
of the 18th European Conference on Artificial Intelligence (ECAI-2008), pages 485–
489, 2008.

21. Michael A. Trick, editor. Computational Symposium on Graph Coloring and its
Generalizations (COLOR-2002), 2002.

22. Allen Van Gelder. Another Look at Graph Coloring via Propositional Satisfiability.
Discrete Appl. Math., 156(2):230–243, 2008.

23. Pascal Van Hentenryck, Magnus Ågren, Pierre Flener, and Justin Pearson.
Tractable Symmetry Breaking for CSPs with Interchangeable Values. In Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-
2003), pages 277–282, 2003.

24. Toby Walsh. Breaking Value Symmetry. In Proceedings of the 23rd National
Conference on Artificial Intelligence (AAAI-2008), pages 880–887, 2008.

25. Zhaoyang Zhou, Chu-Min Li, Chong Huang, and Ruchu Xu. An exact algorithm
with learning for the graph coloring problem. Computers & Operations Research,
51:282–301, 2014.

26. Alexander A. Zykov. On some properties of linear complexes. Mat. Sb. (N.S.),
24(66)(2):163–188, 1949.

