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Dynamics Consensus between Centroidal and Whole-Body Models
for Locomotion of Legged Robots

Rohan Budhiraja, Justin Carpentier and Nicolas Mansard

Abstract—1t is nowadays well-established that locomotion
can be written as a large and complex optimal control problem.
Yet, current knowledge in numerical solver fails to directly
solve it. A common approach is to cut the dimensionality
by relying on reduced models (inverted pendulum, capture
points, centroidal). However it is difficult both to account for
whole-body constraints at the reduced level and also to define
what is an acceptable trade-off at the whole-body level between
tracking the reduced solution or searching for a new one. The
main contribution of this paper is to introduce a rigorous
mathematical framework based on the Alternating Direction
Method of Multipliers, to enforce the consensus between the
centroidal state dynamics at reduced and whole-body level. We
propose an exact splitting of the whole-body optimal control
problem between the centroidal dynamics (under-actuation)
and the manipulator dynamics (full actuation), corresponding
to a re-arrangement of the equations already stated in previous
works. We then describe with details how alternating descent is
a good solution to implement an effective locomotion solver. We
validate this approach in simulation with walking experiments
on the HRP-2 robot.

I. INTRODUCTION
A. Motivation

Trajectory optimization for generating dynamically
feasible motions remains a complex and challenging
problem for legged robots. The main difficulty arises from a
complex non-convex dynamics and the high dimensionality
of the problem in which numerous Degrees of Freedom
(DoF) must be coordinated together to create a feasible and
optimal solution.

Most of the recent efforts in the robotics community
have been focused on reducing the dimensionality and
the complexity of the problem by relying on reduced
models (e.g. table-cart [1], capture point [2] etc). One such
approach which has recently gained in popularity is based
on computing first the reference trajectory for the centroidal
dynamics [3] of the robot, and then using this trajectory
to generate a whole-body motion which is dynamically
consistent [4], [5], [6]. It is easy to understand the reason
behind this popularity: the problem is divided into two
consecutive subproblems of smaller dimensions than the
original problem, and thus are individually easier to solve.
In addition, and contrary to other approaches, centroidal
dynamics is exact projection of the full dynamics, which
does not rely on any assumptions (like the constant altitude
of the Center of Mass (CoM) for the table-cart model)

However, to guaranty the effectiveness of this splitting and
to ensure that the two subproblems do not produce divergent
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and incoherent solutions at the global level, additional
constraints must be enforced. These additional constraints
can then be represented either explicitly, for example
by using the whole-body kinematics in the centroidal
optimization problem [4], or implicitly by relying on
proxy constraints [7] to encode the full body behavior.
Although adding explicit constraints in the subproblem is
computationally expensive, proxy constraints on the CoM
have shown good results [7] in multiple scenarios. However,
it is difficult to define proxy constraints for all the centroidal
quantities, especially the Angular Momentum (AM).

An alternative approach introduced in [8] and then
exploited in [9], consists of alternating between the reduced
and the whole-body problems in a recursive way. In [8]
for instance, the CoM and AM trajectories in the reduced
dynamics problem must track the output CoM and AM
trajectories resulting from the whole-body dynamics and
vice-versa, in order to enforce the feasibility between the
two subproblems.

Other approaches have been introduced which compensate
for the variations in AM [10], [11]. While they have
produced good results, they are not yet able to generate
additional momentum based on demands by the whole-body
optimizer to enable very dynamic movements, as required
(for instance) for fast locomotion [12], where the necessity
of angular-momentum (AM) variations is imposed by the
motion of the swing leg.

B. Overview of the contribution

In this paper, we aim to tackle the problem of generating
consistent and coherent momentum (CoM and AM) at both
centroidal and whole-body levels. We claim that given the
efficacy of currently available solvers to solve the centroidal
dynamics problem [13], a feedback from the whole-body
dynamics solver [14] towards the centroidal problem will
improve the consistency of the global locomotion solution
within a few (perhaps only one) iterations.

However, mathematical rigor should not be avoided in
the face of a good heuristic. None of the aforementioned
methods ensure good convergence properties of the 2
subproblems to a common and same solution (a consensus),
notably for the angular momentum. Rather, they rely on
the ability of the individual solvers to produce consistent
solutions without properly considering the global structure
of the problem.

Our main contribution is to introduce a well-posed
mathematical formulation that properly enforces the
consensus between the two subproblems. Rather than
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giving the solution of the whole-body problem directly
to the centroidal optimizer as done by [8], we rely on
the Alternating Direction Method of Multipliers (ADMM)
technique to handle this feedback communication.

ADMM is an old but well established method for solving
convex problems in which the objective is separable into two
mutually exclusive cost functions along a set of problem
variables. While the method has been around for decades,
it was recently reintroduced [15] to solve large scale
distributed optimization problems subject to constraints.
ADMM provides a feedback to the subproblems in the form
of the sum of the residues on the constraints, and in that
fashion, it behaves similar to an integral controller. For
example, the feedback property has been exploited in [16]
to alternate between trajectory and policy optimization.

We find that the robustness and simplicity of this
technique makes it an ideal candidate for solving the global
optimization problem of locomotion as well. However, a
clean splitting of quantities involved in the locomotion
problem is required to make the individual subproblems
really independent one from each other.

C. Outline of the paper

In Section II, we recall the optimal control problem
(OCP) dedicated for locomotion and exhibit a complete
splitting between centroidal and Lagrangian dynamics. We
make obvious the cost implied by solving both subproblems
without consensus. In Section III, we detail how ADMM
can be exploited to solve the complete OCP by alternatively
solving the two subproblems. We gather the details of
implementation in Section IV, used to obtained experimental
results on the HRP-2 robot in Section V.

II. THE LOCOMOTION PROBLEM
A. Natural splitting of the robot dynamics

If we consider a legged robot dotted with n DoF, its
whole-body dynamics is represented by the Lagrangian
equations of motion:

o [l =)+ (- e o

where H denotes the joint space inertia matrix, b
encompasses the nonlinear effects, g corresponds to the
generalized gravity vector, and Jy, is the geometric Jacobian
for contact k£ and )y is the vector of contact forces at contact
point k. This dynamics can be split into two distinct parts:
the 6 first rows correspond to the so-called under-actuated
dynamics (denoted by the subscript u) while the n following
rows correspond to the actuated dynamics (denoted by the
subscript a).

The under-actuated dynamics of (1) is also known as
the centroidal dynamics of the robot. It is governed by the
Newton-Euler equations of motion which link the variations
of the linear momentum and AM to the contact forces:

mé=73 A, +mg

. (2)
L = Zk(pk —C) X Ak

where pj, is the position of the k™ contact point, the
operator X denotes the cross product, m is the total mass of
the system, c, ¢, ¢ are the center of mass position, velocity
and acceleration vectors and L, L are the AM vector and its
time derivative.
Thus, a natural splitting appears between two sets of state
and control variables, namely:
« the centroidal set called d. with state x. = (c,¢, L)
and control u, = (A1, Ag,..., Ax);
« the Lagrangian set named d; with state x; =
control u; = 7.

(q,q) and

B. The global Optimal Control Problem for locomotion

Consider the scenario where the set of contact phases
S and their corresponding contact timings At are already
defined. Further, if we assume that the actuators are capable
enough to provide sufficient torque (which is true for current
generation of robots), it is possible to split the global motion
planning Optimal Control Problem (OCP) between two states
of the robot (Zinit, T fina) into two hierarchical stages,
which successively solve for d, and d;. However, such
an approach mandates that the solution of the first OCP
is feasible for the second OCP. The kinematic feasibility
condition between q and c has been explored [7] previously
by our team.

The motion planning OCP, governed by the dynamics
defined by (1) and (2), and the feasibility criteria given in [7]
is given by':

ts JrAt ts+Ats
minimize Z / o) dt + Z / /(d)dt (3a)
subject to Vt c=CoM(q) (3b)
vt m"} = Ay (@) (30)
Vi A= gx (q7 qa T) (Sd)
Vi Aek (3e)
vt ga(q,q,7) €K (31)
Vi ke = fu(dy) (3g)
vt ox; = fi(dy) (3h)

x.(0) is given, x.(T) is viable  (3i)
x;(0) is given,x;(T) is viable  (3))

where s is the index of the contact phase, ts is the start
time of the contact phase s. (¢ and ¢! are local cost
functions related to the phase. A, is the so-called centroidal
momentum matrix [3], and CoM maps the current joint
configuration q to the center of mass position. g, is the
mapping between the whole-body dynamics and contact
forces, and may be dependent [14] or independent [17] from
T, depending on the choice of contact model.

Most of constraints and the two cost terms only depend
on one of the two groups of variables d.,d;: ¢¢(d.),

INote that for all variables, underlines denote a trajectory of the variable
over time. Similarly he dependency to the time variable is kept implicit i.e.
Vt c is preferred to V¢ c(¢).



(3e), (3g) and (3i) define a problem over the centroidal
dynamics ; ¢¢(d;), (3f), (3h) and (3j) define a problem over
the Lagrangian dynamics. The two groups are coupled by
constraints (3b), (3c) and (3d). One way to solve the two
problems independently is to replace these three coupling
constraints by some proxy constraint, i.e. reformulation
which enforces the existence of a global consensus solution
acceptable by both subproblems. In [7], we have proposed to
learn such a proxy constraints for the centroidal optimization.
In the experiments of this paper, we will use again this
learned proxy in the initial step of our algorithms.

Constraints (3e) and (3f) are redundant (i.e. (3e) and (3d)
implies (3f)). Both of these constraints impose non-slippage
conditions on the contact forces. (3e) and (3g) enforce
consistent centroidal dynamics (2), while (3f) and (3h)
enforce consistence of the Lagrangian dynamics (1) with
respect to the contact model. We explicitly formulate both
constraints to make the split evident. Similar remark holds
for initial and terminal conditions (3i) and (3j). As terminal
constraints are often difficult to formulate in practice, they
should likely be replaced by stopping motion conditions (e.g.
capturability) [18].

The near-perfect split has already been observed [8]. In
this nice work, the observation was mostly used to justify
the classical approach of separately solving each subproblem.
Here we rather want to insist on the coupling and pave the
way to the use of alternated descent.

C. Why should we alternate?

In a first implementation, it is often proposed to first
compute the centroidal pattern and then track it by solving
the Lagrangian dynamics. The most practical solution is
likely to solve the first subproblem using additional reduction
(e.g. the table-cart model with constant center of mass
elevation). Then the whole-body movement is computed
with an Inverse Kinematics (IK)/Inverse Dynamics (ID),
which are theoretically equivalent to solving the Lagrangian
part of (3) but with a void horizon 7' = 0. With such
a simplification, it is almost always required that the AM
trajectory output from the centroidal problem must be near
perfectly tracked by the Lagrangian part. However, this is
not possible. Although this assertion is known by many
teams that already alternate by one way or the other on
the two subproblems, we believe that it is not sufficiently
documented and explain why alternating is important.

Momentum variations are caused by both, the forces
exerted by the environment at the contact level, and by the
motion of the limbs (also called “gesticulation” [12]). As
the centroidal model does not account for the gesticulation,
it is not possible to get the correct momentum when only
considering it. Consider the example of the biped locomotion
gait: an astronaut mimicking walk in deep space would rotate
(pitch rotation) on the spot (same for a falling cat [12]). This
is due to the movements of the limbs going forward when the
leg is bent (short), and backward when the leg is stretched
(long). As we are not rotating during locomotion, we can
conclude that we exert some contact forces to counterbalance

this rotation effect. Thus, these extra forces cannot be
decided from the centroidal model alone. Consequently,
perfectly tracking the momentum and the forces only by
solving the centroidal model is impossible, and trying to
approximately match the AM computed by the centroidal
solver is a bad idea.

Moreover, it might be necessary to slow down or fasten
the CoM (linear momentum) to avoid violating the force
limits when excessive AM is generated by limb movements.
Modifying the CoM in such a way is only possible if
considering a preview horizon, i.e. not using an IK to
compute the whole body.

A pragmatic solution is to compute the centroidal pattern
by trying to match the AM that the limbs will generate. This
implicitly suggests that we are not expecting to use the AM
variations to improve the walk, but we are just trying to
compensate for it. This is the standard implementation of
the table-cart pattern generator, by adding a second stage of
ZMP-CoM computation [10]. It has also been proposed to
couple an IK with a centroidal solver [S]. In both cases, it
has been experimentally observed that alternating twice is
enough in practice. However, no theoretical guarantee has
yet been provided. This is what we propose to do in the
following Sec III

III. ALTERNATING METHOD FOR LOCOMOTION

In this section, we first review the ADMM technique. We
then apply it on the global OCP for locomotion (3).

A. Alternating Direction Method of Multipliers

ADMM is a simple optimization technique to solve
constrained problems of the form:
minimize [;(x) + l2(2)
T,z (4)
subject to Ax+ Bz =c
where the cost function is composed of two separable
objectives I (x) and l3(z). The main idea behind ADMM
is to exploit this splitting between cost terms in a recursive
manner, allowing to solve simpler problems than the original
one. This precise point can be highlighted by writing
the augmented Lagrangian associated with the constrained
optimization problem (4):

L,(z,2,y) =li(z) +2(2) + y" (Az + Bz — c)
+ 2 Az +Bz—cl} )
where y is the vector of dual variables associated with the
constraint Ax + Bz = ¢ and p > 0 is the penalty parameter

which penalizes the violations of this constraint. The solution
is then found by the following steps recursions?:

! = argmin £,(z, 2", y*) (6a)
2F1 = argmin £, (2", 2, y") (6b)
Y"1 =y¥ + p(Az + Bz —¢) (6¢)

2Throughout the paper, superscripts are used to refer to the current
iteration of the solver



Problem (6a) and (6b) are simply minimization over [; and
Iy respectively (with some additional quadratic terms which
are solvable with the current generation of solvers). It is
also worth noticing that the dual variables y, through the
update (6¢) act as an integral term by collecting the residues
on the consensus between the two subproblems, and forces
the residual to converge to 0 along the iterations.

B. ADMM for locomotion rational

ADMM provides a way for us to exploit the splitting
of dynamic variables exposed in Sec II-B, and defines a
mathematical framework to feedback and optimize the AM
variable inside the centroidal OCP.

OCP (3) does not match exactly the pattern of (4):
(3) has 3 nonlinear coupling constraints and additional
decoupled constraints. For the 3 semi-infinite (i.e. defined
Vt) coupling constraints, we have to introduce 3 multipliers
functions of time. For the additional decoupled constraints,
we handle them in the two solvers of each subproblems.
It would only burden the equations to mention them in
the alternated scheme. Let us remember that the partial
solutions d. and d; of each subproblems should respect
these additional constraints. In this section, we explain
the alternating algorithm with the hypothesis that some
oracles can be called to provide the optimum of the two
subproblems. The next section will describe with more
details which centroidal and whole-body solvers we used for
the experiments.

Non-linearity is a theoretical issue and it makes the
problem non-convex. Converge guarantee with ADMM are
yet only obtained for convex problem. Yet we at least
know that the linearization of (3) will converge. On-going
theoretical works try to show that local convergence can be
obtain in non-convex cases. Moreover, in practice, ADMM
is often used, with good empirical results, for non-convex
problems.

C. Application of ADMM to the locomotion problem

Let us associate with each coupling constraint a residual
function:

YVt r.(c,q) =c— CoM(q) (7a)
¥t (e, L,q,4) = [”}j ~Ag(@da (b
vt ’l",\()\, q, q» T) =\- g/\(qa q7 T) (7C)

Residuals r., 7, r, respectively corresponds to constraints
(3b), (3¢c), (3d). We also respectively define YooY, Y, 3
the multipliers corresponding to these 3 constraints.

We denote by r the augmentation (i.e. sum of linear and

quadratic penalization on the multipliers) of (3):

Ty
E(Qc,dl,g) = Z pk(t)

o (Orn(t) + 255
k=m,c,\ ’

(015 dt

®)

We can now separate the augmented Lagrangian of the global
OCP into centroidal and full body parts:
s

ts+Ats
Lidodiy) = [ G(d)ditr
S ©)
il ts+Ats
‘Ci)(dmgl?y) = Z ; gi(dl)dt"‘ﬂ
s=1 s

where y is the stack of the 3 multipliers. Note that the
multipliers are trajectories of vectors, while p., pp,, py are
trajectories of scalars.

Using the definition of ADMM from Sec III-A, the global
OCP can thus be solved by the following iterations:

d**! = argmin LZ(Qcagf’ y") subject to (3¢), (39), (31)
d, B

d;"! = argmin £),(d; ", dy, y*) subject to (3f), (3h), (37)
=l

vt oyt =yl 4 pe(cMH = CoM(gHY))

mehtl

Yty =Y+ o [ L+ ] — Ay (@) ")

vt yiﬂ =yy + oA = ga (@ gt ) (10)

IV. ALTERNATING USING DEDICATED SOLVERS

In this section, we describe the practical details of our
implementation, enabling us to simply add the alternating
descent on top of our existing frameworks for solving
centroidal and whole-body dynamics OCP, with only a minor
additional cost in terms of development.

A. The locomotion pipeline

Our locomotion pipeline called Loco3d is described
in [19]. It is composed of three main stages:

1) The Contact Sequence Generator: It is a randomized
motion planner [20], which ensures the feasibility of the
sequence at the kinematic level, with real-time performances;

2) The Centroidal Optimizer: It solves the trajectory
optimization problem over the centroidal dynamics using
feasibility measures to enforce the kinematic feasibility of
the solution with respect to the whole-body problems. It
relies on MUSCOD-II [21], an optimal control framework
which implements an efficient multiple-shooting algorithm
particularly suited for the multiple contact phases of the
locomotion problem;

3) The Whole-Body Optimizer: We use a new iterative
Differential Dynamic Programming (DDP) solver [14] which
accounts for the contact constraints in the dynamics of the
problem.

B. On the advantages of scaling the dual variables

Scaling the dual variables through z = ¥ is more
convenient to implement as it combines under a single
norm minimization both the linear and quadratic terms in
the augmented Lagrangian (9). The subproblems are then
reduced to simply minimize the residual squared norm of
the constraints linking the two problems [15].



Fig. 1: Walking sequence generated for HRP-2 robot using the proposed ADMM solver.

C. The ADMM solver for locomotion

By using z, we can simplify the notation further by
collecting the constraints (3b), (3c) and (3d) into a single
quantity. For that aim, let us define ®. to contain the
elements (¢,m¢, L and A). Similarly, let us define ®; to
contain the mappings (CoM(q), A, (q) q and gx(q,q, T)).
Let us define addition/subtraction operations on ¢ to be
the addition/subtraction on its corresponding elements and
a function DMap which maps the centroidal(d.) and
whole-body(d;) variables onto these elements. The iterations
(10) can be then written equivalently as Algorithm 1.
In Algorithm 1, the first input to the solvers is the solution of
the previous iteration (as a warm start), and the second input
is the reference to be tracked for the augmented Lagrangian
quadratic costs.

Algorithm 1: ADMM solver for locomotion
Data: d°,d

1d, +d, d; « dj;

2 QC(*DMCLP(QC), @l (*DMCLP(QZ),
39,9, -9;;

4 repeat

5 d., @« CentroidalSolver(d,, ®, — ®,);
6 | d;,® « WholebodySolver(d;, ®, + ®,);
7 S, 2, +2.— D5

8 until convergence;

9d; «d, d; «d;

Result: d;, d;

D. Initializing the dual variables

Many of the currently available centroidal and whole-body
dynamics solvers are tailored for producing solutions which
are almost always mutually solvable [8] [22] [14]. As a
result, with this assumption of mutual solvability, a simple
feedback from the whole-body solver to the centroidal solver
generates acceptable result within the second iteration [8].
On the other hand, since ADMM transmits the residual of the
two subproblems and not the output, an uninitialized ADMM
solver would overshoot and only promise convergence from
the third iteration, as we later see in Sec V. There is indeed
a minimum number of iterations to synchronize the two
subproblems.

Howeyver, this extra iteration of the solver could be avoided
by setting the dual after the first iteration as ®} < ®}. This
change makes the feedback from the first iteration to be equal
to the output, and the knowledge of individual solvers can

then be exploited to converge within two iterations. Indeed,
the second iteration of the ADMM solver then becomes
equivalent to [8], and would provide similar results without
affecting convergence. While not used in this paper, this trick
needs to be evaluated further.

E. Key observations for the centroidal solver

In the centroidal OCP, there is a redundancy in the state.
The state c,¢, L has a dimension of 9, while the control
can be represented in a dimension 6 (with a centroidal
wrench acting on the center of mass). This redundancy is
usually suppressed by predefining or regularizing L [7], and
solving for the rest. The same principle can be exploited in
the present case, by predefining LM to be equal to the
AM part of Qf — QS and solving the centroidal step only
for ng, Qkﬂ, Ak'H. This method ensures that the AM is
always consistent with the full body dynamics.

As a result, angular part of r,, is always zero after the
centroidal step of (10). Equivalently, variations in the AM
part of PFH are only dependent on the variations in the AM
part of P, 1 (L is given as a feedback from the full-body
OCP to centroidal OCP via 7,,)

F. Key observations for whole-body solver

During the full-body step of (10), the knowledge of \*+!
from the centroidal step can be exploited to ensure that the
Constraint (3f) is never violated. In the full-body step (by
the mapping g») A is dependent on q,q,7. A predefined
)\ffjfl provides a good tracking reference for the contact
forces. With a good tracking, Constraint (3f) can be relaxed.
An implementation of the full-body step with rigid contacts
which exploits such a reference tracking is proposed in [14].
Note that in [14] ¢ and )\ were being tracked in the full-body
OCP, while in the present formulation they are updated
during the dual ascent.

V. EXPERIMENTAL RESULTS

In this section, we validate and highlight the efficiency of
the proposed approach in simulation. For that purpose, we
study the convergence properties of our solver on a simplified
version of the humanoid robot HRP-2 only composed of its
lower limbs. We generate a walking motion composed of 3
steps of 40 cm step length, depicted in Fig. 1.

A. Cost functions

1) The centroidal cost function:: for the first iteration of
the centroidal solver, we minimize the log barrier on the
feasibility measure of the CoM [7], and we regularize the
CoM velocity (weight: 10) and contact forces (weight:10™*
for linear and 10~2 for angular) with quadratic costs. For
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Fig. 3: CoM trajectory in the XY plane for the first three
iterations of the ADMM solver.

subsequent iterations, we solely minimize the dual terms with
pe=1.0,p, =1072 and p) = 1074

2) The whole-body cost function:: For the whole-body
solver, we use only quadratic costs to regularize the posture
(weight: 107°) and the free-flyer orientation (weight: 20) in
addition to the augmented Lagrangian terms.

B. Convergence analysis

We stopped the alternating resolution after only 10
iterations of the solver described in Algorithm 1. While
3 iterations were sufficient to compute a feasible motion
in simulation, we show here the continuing convergence.
As shown in Fig. 2, the total residuals of the matching
constraints decrease rapidly over the first three iterations and
more slowly after. This really means that the two problem are
able to find a consensus in very few iterations. This behavior
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Fig. 4: Residue between the centroidal and whole-body
trajectory of AM and CoM over the iterations.

is also well depicted in Fig. 3, where one can observe
the CoM trajectories of both centroidal and whole-body
subproblems. Already at iteration 3, the two trajectories
match almost perfectly.

The mismatching of CoM and AM quantities is also
reflected in Fig. 4. The two first iterations show a large
mismatch between the centroidal and the whole-body
problems, but the residual decreases rapidly towards the
value 0. This phenomena can be explained by the delay
induced by the ADMM approach: the solver overshoots and
then builds and maintains a consensus between the two
subproblems as discussed in Sec IV-D.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a systematic approach to
build a consensus on the dynamics constraints between the
centroidal and whole-body optimization problems. Based on
previous observation between the nice articulation between
under-actuated and actuated dynamics of legged robots, we
have given a mathematical framework to separate the two
problems, and proposed a solution which iterates between the
two subproblems and maintains consensus in the solutions.
Finally, we demonstrate with a walking sequence on HRP-2
the performance of the solver.

While some heuristics are available allowing similar
behaviors, the ADMM solver encompasses the dynamics
constraints within the framework of the solver itself. In
this way, the current method deals with not only individual
and separated subproblems, but tackles the global problem
defined in (3). To the best of our knowledge, this is the first
time that a consensus between centroidal and Lagrangian
dynamic solvers is obtained based on theoretical grounding.

However, even if this solver currently solves the full-body
dynamics problem, it assumes a dependence on the upstream
contact planner to provide feasible contact planning. Thus,
we need to ensure a similar consistency between the
upstream contact planner and the full body optimizer as well.
This is a future avenue of research for the community.



[1]

[2

—

[3]

[4

=

[5]

[6]

[7]

[8]

[9

—

[10]

(1]

REFERENCES

S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3D linear inverted pendulum mode: a simple modeling for a biped
walking pattern generation,” in [EEE International Conference on
Intelligent Robots and Systems (IROS), 2001.

J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A
step toward humanoid push recovery,” in Humanoid Robots, 2006 6th
IEEE-RAS International Conference on. 1EEE, 2006, pp. 200-207.
D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161-176,
2013.

H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in 20/4 IEEE-RAS
International Conference on Humanoid Robots. 1EEE, nov 2014,
pp- 295-302. [Online]. Available: http://ieeexplore.ieee.org/document/
7041375/

A. Herzog, N. Rotella, S. Schaal, and L. Righetti, “Trajectory
generation for multi-contact momentum control,” in IEEE-RAS Int.
Conf. on Humanoid Robotics (ICHR), 2015.

J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard,
“A versatile and efficient pattern generator for generalized legged
locomotion,” in [EEE International Conference on Robotics and
Automation (ICRA), 2016.

J. Carpentier, R. Budhiraja, and N. Mansard, “Learning Feasibility
Constraints for Multicontact Locomotion of Legged Robots,” in
Robotics: Science and Systems (RSS), 2017.

A. Herzog, S. Schaal, and L. Righetti, “Structured contact
force optimization for kino-dynamic motion generation,” in [EEE
International Conference on Intelligent Robots and Systems (IROS),
2016.

B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of
humanoid momentum dynamics for multi-contact motion generation,”
in IEEE-RAS Int. Conf. on Humanoid Robotics (ICHR), 2016, pp.
842-849.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE-RAS Int. Conf. on Robotics
and Automation (ICRA), 2003.

A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and
L. Righetti, “Momentum Control with Hierarchical Inverse Dynamics
on a Torque-Controlled Humanoid,” Autonomous Robots, 2016.

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

P-B. Wieber, “Holonomy and nonholonomy in the dynamics of
articulated motion,” in Proceedings of the Ruperto Carola Symposium
on Fast Motion in Biomechanics and Robotics, 2005.

J. Carpentier and N. Mansard, “Multi-contact locomotion of legged
robots,” IEEE Transactions on Robotics (In Press), 2018.

R. Budhiraja, J. Carpentier, C. Mastalli, and N. Mansard, “Differential
dynamic programming for multi-phase rigid contact dynamics,” 2018,
submitted to IEEE International Conference on Humanoid Robots.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-01851596

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1-122, 2010.

I. Mordatch and E. Todorov, “Combining the benefits of function
approximation and trajectory optimization,” in Robotics: Science and
Systems X. Robotics: Science and Systems Foundation, jul 2014.
[Online]. Available: http://www.roboticsproceedings.org/rss10/p52.pdf

M. Neunert, M. Stauble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-Body Nonlinear Model
Predictive Control Through Contacts for Quadrupeds,” IEEE Robotics
and Automation Letters (RAL), 2018.

P.-B. Wieber, “Viability and predictive control for safe locomotion,”
in 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 1EEE, sep 2008, pp. 1103-1108.

J. Carpentier, A. D. Prete, S. Tonneau, T. Flayols, F. Forget, A. Mifsud,
K. Giraud, D. Atchuthan, P. Fernbach, R. Budhiraja, M. Geisert,
J. Sola, O. Stasse, and N. Mansard, ‘“Multi-contact Locomotion of
Legged Robots in Complex Environments The Loco3D project,” 2017,
RSS Workshop on Challenges in Dynamic Legged Locomotion.

S. Tonneau, A. D. Prete, J. Pettré, C. Park, D. Manocha, and
N. Mansard, “An Efficient Acyclic Contact Planner for Multiped
Robots,” IEEE Transactions on Robotics (TRO), 2018.

D. Leineweber, 1. Bauer, H. G. Bock, and J. P. Schloder, “An
efficient multiple shooting based reduced sqp strategy for large-scale
dynamic process optimization. part 1: theoretical aspects,” Computers
& Chemical Engineering, 2003.

J. Carpentier and N. Mansard, “Analytical Derivatives of Rigid Body

Dynamics Algorithms,” in Robotics: Science and Systems (RSS), 2018.


http://ieeexplore.ieee.org/document/7041375/
http://ieeexplore.ieee.org/document/7041375/
https://hal.archives-ouvertes.fr/hal-01851596
http://www.roboticsproceedings.org/rss10/p52.pdf

	I Introduction
	I-A Motivation
	I-B Overview of the contribution
	I-C Outline of the paper

	II The Locomotion Problem
	II-A Natural splitting of the robot dynamics
	II-B The global Optimal Control Problem for locomotion
	II-C Why should we alternate?

	III Alternating method for locomotion
	III-A Alternating Direction Method of Multipliers
	III-B admm for locomotion rational
	III-C Application of admm to the locomotion problem

	IV Alternating using dedicated solvers
	IV-A The locomotion pipeline
	IV-A.1 The Contact Sequence Generator
	IV-A.2 The Centroidal Optimizer
	IV-A.3 The Whole-Body Optimizer

	IV-B On the advantages of scaling the dual variables
	IV-C The ADMM solver for locomotion
	IV-D Initializing the dual variables
	IV-E Key observations for the centroidal solver
	IV-F Key observations for whole-body solver

	V Experimental results
	V-A Cost functions
	V-A.1 The centroidal cost function:
	V-A.2 The whole-body cost function:

	V-B Convergence analysis

	VI Conclusion and Future Work
	References

