
HAL Id: hal-01875031
https://laas.hal.science/hal-01875031v2

Submitted on 28 Feb 2019 (v2), last revised 2 Apr 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamics Consensus between Centroidal and
Whole-Body Models for Locomotion of Legged Robots

Rohan Budhiraja, Justin Carpentier, Nicolas Mansard

To cite this version:
Rohan Budhiraja, Justin Carpentier, Nicolas Mansard. Dynamics Consensus between Centroidal and
Whole-Body Models for Locomotion of Legged Robots. ICRA 2019 - IEEE International Conference
on Robotics and Automation, May 2019, Montreal, Canada. �hal-01875031v2�

https://laas.hal.science/hal-01875031v2
https://hal.archives-ouvertes.fr


Dynamics Consensus between Centroidal and Whole-Body Models
for Locomotion of Legged Robots

Rohan Budhiraja a,*, Justin Carpentier a,b,c and Nicolas Mansard a

Abstract— It is nowadays well-established that locomotion
can be written as a large and complex optimal control problem.
Yet, current knowledge in numerical solver fails to directly
solve it. A common approach is to cut the dimensionality
by relying on reduced models (inverted pendulum, capture
points, centroidal). However it is difficult both to account for
whole-body constraints at the reduced level and also to define
what is an acceptable trade-off at the whole-body level between
tracking the reduced solution or searching for a new one. The
main contribution of this paper is to introduce a rigorous
mathematical framework based on the Alternating Direction
Method of Multipliers, to enforce the consensus between the
centroidal state dynamics at reduced and whole-body level. We
propose an exact splitting of the whole-body optimal control
problem between the centroidal dynamics (under-actuation)
and the manipulator dynamics (full actuation), corresponding
to a re-arrangement of the equations already stated in previous
works. We then describe with details how alternating descent is
a good solution to implement an effective locomotion solver. We
validate this approach in simulation with walking experiments
on the HRP-2 robot.

I. INTRODUCTION

A. Motivation

Trajectory optimization for generating dynamically
feasible motions remains a complex and challenging
problem for legged robots. The main difficulty arises
from the non-convex dynamics with numerous Degrees of
Freedom (DoF) which must be solved together to create a
feasible and optimal solution.

Much of the recent efforts in the community have
been focused on reducing the dimensionality and the
complexity of the problem by relying on reduced models
(e.g. table-cart [1], capture point [2] etc). One such approach
which has recently gained in popularity is based on
computing first the reference trajectory for the centroidal
dynamics [3] of the robot, and then using this trajectory
to generate a whole-body motion which is dynamically
consistent [4], [5], [6]. It is easy to understand the reason
behind this popularity: the problem is divided into two
consecutive subproblems of smaller dimensions than the
original problem, and thus are individually easier to solve.
In addition, and contrary to other approaches, centroidal
dynamics is exact projection of the full dynamics, which
does not rely on any assumptions (like the constant altitude
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of the Center of Mass (CoM) for the table-cart model).
However, to ensure that the two subproblems do not
produce divergent and incoherent solutions at the global
level, additional constraints are required. These additional
constraints are either represented explicitly, for example
by using the whole-body kinematics in the centroidal
optimization problem [4], or implicitly via proxy constraints
to encode the full body behavior [7]. While adding explicit
constraints is computationally expensive, kinematic proxy
constraints have shown good results [7] [8]. However, it
is difficult to define proxy constraints for all the centroidal
quantities, especially the Angular Momentum (AM).

An alternative approach introduced in [9] and then
exploited in [10], consists of alternating between the reduced
and the whole-body problems in a recursive way. In [9], the
CoM and AM trajectories in the reduced dynamics problem
must track the output CoM and AM trajectories resulting
from the whole-body dynamics and vice-versa.

Other approaches have been introduced which compensate
for the variations in AM [11], [12]. While they have
produced good results, they are not yet able to generate
additional momentum based on demands by the whole-body
optimizer to enable very dynamic movements, as required
(for instance) for fast locomotion [13], where the necessity
of angular-momentum (AM) variations is imposed by the
motion of the swing leg.

B. Overview of the contribution

In this paper, we aim to tackle the problem of generating
consistent and coherent momentum (CoM and AM) at both
centroidal and whole-body levels. We claim that given
the efficacy of currently available solvers [14] [15], a
feedback from the whole-body dynamics solver towards the
centroidal problem would improve the consistency of the
global locomotion solution within a few iterations.

However, mathematical rigor should not be avoided in
the face of a good heuristic. None of the aforementioned
methods ensure good convergence properties of the 2
subproblems to a common and same solution (a consensus),
notably for the angular momentum. Rather, they rely on the
ability of the individual solvers to produce mutually feasible
solutions without properly considering the global structure
of the problem. This forces the solvers to have additional
robustness in order to account for the lack of structure in the
simplified subproblems.

Our main contribution is to introduce a well-posed
mathematical formulation that properly enforces the
consensus between the two subproblems. Rather than
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giving the solution of the whole-body problem directly
to the centroidal optimizer as done by [9], we rely on
the Alternating Direction Method of Multipliers (ADMM)
technique to handle this feedback communication.

ADMM is an old but well established method for solving
convex problems in which the objective is separable into two
mutually exclusive cost functions along a set of problem
variables. While the method has been around for decades,
it was recently reintroduced [16] to solve large scale
distributed optimization problems subject to constraints.
ADMM provides a feedback to the subproblems in the form
of the sum of the residues on the constraints, and in that
fashion, it behaves similar to an integral controller. For
example, the feedback property has been exploited in [17]
to alternate between trajectory and policy optimization.

We find that the robustness and simplicity of this
technique makes it an ideal candidate for solving the global
optimization problem of locomotion as well. However, a
clean splitting of quantities involved in the locomotion
problem is required to make the individual subproblems
really independent one from each other.

C. Outline of the paper

In Section II, we recall the optimal control problem
(OCP) dedicated for locomotion and exhibit a complete
splitting between centroidal and Lagrangian dynamics. We
make obvious the cost implied by solving both subproblems
without consensus. In Section III, we detail how ADMM
can be exploited to solve the complete OCP by alternatively
solving the two subproblems. We gather the details of
implementation in Section IV, used to obtained experimental
results on the HRP-2 robot in Section V.

II. THE LOCOMOTION PROBLEM

A. Natural splitting of the robot dynamics

If we consider a legged robot dotted with n DoF, its
whole-body dynamics is represented by the Lagrangian
equations of motion:[

Hu

Ha

]
q̈ +

[
bu
ba

]
=

[
gu
ga

]
+

[
06

τ

]
+

K∑
k=1

[
J>k,u
J>k,a

]
λk (1)

where H denotes the joint space inertia matrix, b
encompasses the nonlinear effects, g corresponds to the
generalized gravity vector, and Jk is the geometric Jacobian
for contact k and λk is the vector of contact forces at
contact point k. This dynamics can be split into two distinct
parts: subscript u denotes the 6 rows correspond to the
under-actuated dynamics; subscript a denotes the n rows
correspond to the actuated dynamics.

The under-actuated dynamics of (1) is also known as
the centroidal dynamics of the robot. It is governed by the
Newton-Euler equations of motion which link the variations
of the linear momentum and AM to the contact forces:

m c̈ =
∑
k λk +mg

L̇ =
∑
k(pk − c)× λk

(2)

where pk is the position of the kth contact point, the
operator × denotes the cross product, m is the total mass of
the system, c, ċ, c̈ are the center of mass position, velocity
and acceleration vectors and L, L̇ are the AM vector and its
time derivative.

Thus, a natural splitting appears between two sets of state
and control variables, namely:
• the centroidal set called dc with state xc = (c, ċ,L)

and control uc = (λ1,λ2, . . . ,λk);
• the Lagrangian set named dl with state xl = (q, q̇) and

control ul = τ .

B. The global Optimal Control Problem for locomotion

Consider the scenario where the set of contact phases
S and their corresponding contact timings ∆ts are already
defined. Further, if we assume that the actuators are capable
enough to provide sufficient torque (which is true for current
generation of robots), it is possible to split the global motion
planning Optimal Control Problem (OCP) between two states
of the robot (xinit, xfinal) into two hierarchical stages,
which successively solve for dc and dl. However, such
an approach mandates that the solution of the first OCP
is feasible for the second OCP. The kinematic feasibility
condition between q and c has been explored [7] previously
by our team.

The motion planning OCP, governed by the dynamics
defined by (1) and (2), and the feasibility criteria given in [7]
is given by1:

minimize
dc,dl

S∑
s=1

∫ ts+∆ts

ts

`cs(dc) dt+

S∑
s=1

∫ ts+∆ts

ts

`ls(dl) dt (3a)

subject to ∀t c = CoM(q) (3b)

∀t
[
mċ
L

]
= Ag (q) q̇ (3c)

∀t λ = gλ(q, q̇, τ ) (3d)
∀t λ ∈ K (3e)
∀t gλ(q, q̇, τ ) ∈ K (3f)
∀t ẋc = fc(dc) (3g)
∀t ẋl = fl(dl) (3h)

xc(0) is given,xc(T ) is viable (3i)
xl(0) is given,xl(T ) is viable (3j)

where s is the index of the contact phase, ts is the start
time of the contact phase s. `cs and `ls are local cost
functions related to the phase. K denotes the admissible
set of the friction forces corresponding to zero slippage.
Ag is the so-called centroidal momentum matrix [3], and
CoM maps the current joint configuration q to the center of
mass position. gλ is the mapping between the whole-body
dynamics and contact forces, and may be dependent [15] or
independent [18] from τ , depending on the choice of contact
model.

1Note that for all variables, underlines denote a trajectory of the variable
over time. Similarly he dependency to the time variable is kept implicit i.e.
∀t c is preferred to ∀t c(t).



Most of constraints and the two cost terms only depend
on one of the two groups of variables dc,dl: `cs(dc),
(3e), (3g) and (3i) define a problem over the centroidal
dynamics ; `cs(dl), (3f), (3h) and (3j) define a problem over
the Lagrangian dynamics. The two groups are coupled by
constraints (3b), (3c) and (3d). One way to solve the two
problems independently is to replace these three coupling
constraints by some proxy constraint, i.e. reformulation
which enforces the existence of a global consensus solution
acceptable by both subproblems. In [7], we have proposed to
learn such a proxy constraints for the centroidal optimization.
In the experiments of this paper, we will use again this
learned proxy in the initial step of our algorithms.

Constraints (3e) and (3f) are redundant (i.e. (3e) and (3d)
implies (3f)). Both of these constraints impose non-slippage
conditions on the contact forces. (3e) and (3g) enforce
consistent centroidal dynamics (2), while (3f) and (3h)
enforce consistence of the Lagrangian dynamics (1) with
respect to the contact model. We explicitly formulate both
constraints to make the split evident. Similar remark holds
for initial and terminal conditions (3i) and (3j). As terminal
constraints are often difficult to formulate in practice, they
should likely be replaced by stopping motion conditions (e.g.
capturability) [19].

The near-perfect split has already been observed [12]. In
this nice work, the observation was mostly used to justify the
classical approach of separately solving each subproblem.
Here we rather want to insist on the coupling and pave the
way to the use of alternated descent.

C. Why should we alternate?

In a first implementation, it is often proposed to first
compute the centroidal pattern and then track it by solving
the Lagrangian dynamics. The whole-body movement is
usually computed with an Inverse Kinematics (IK)/Inverse
Dynamics (ID), which are theoretically equivalent to solving
the Lagrangian part of (3) but with a void horizon T = 0.
With such a simplification, it is desired that the AM output
from the centroidal problem must match near perfectly to
the AM requirement by the Lagrangian part. However, this
is not possible without some form of feedback (in the form
of alternation) on the AM value. While this requirement is
known by many teams, we believe that it is not sufficiently
documented and explain why alternating is important.

Momentum variations are caused by the forces exerted
by the environment at the contact level, and they result in
the motion of the limbs (also called “gesticulation” [13]). As
the centroidal model does not understand gesticulation(which
depends on the kinematic and dynamic structure of the
robot), it is not possible to get the correct momentum
estimate when considering only the centroidal quantities.
Consider the example of the biped locomotion gait: an
astronaut mimicking walk in deep space would rotate (pitch
rotation) on the spot (same for a falling cat [13]). This is
due to the asymmetry in the movements of the limbs during
the forward and backward motions. As we are not rotating
during locomotion, we can conclude that we exert some

contact forces to counterbalance this rotation effect. These
extra forces, which are required due to gesticulation, cannot
be decided from the centroidal model alone. Consequently,
trying to approximately match the AM computed by the
centroidal solver is a bad idea. The same is also true for
CoM (linear momentum) trajectory, which should change to
account for the change in forces, according to (2).

A pragmatic solution is to compute the centroidal pattern
by trying to match the AM that the limbs will generate.
This implicitly suggests that we are not expecting to use the
AM variations to improve the walk, but we are just trying
to compensate for it. This is the standard implementation
of the table-cart pattern generator, by adding a second stage
of ZMP-CoM computation [11]. It has also been proposed
to couple an IK with a centroidal solver [5]. In both cases,
it has been experimentally observed that alternating twice
is enough to obtain a consensus. However, no theoretical
basis has yet been provided. In Sec III, we propose to
alternate using an existing theoretical framework which
forces consensus as an output of the optimization.

III. ALTERNATING METHOD FOR LOCOMOTION

In this section, we first review the ADMM technique. We
then apply it on the global OCP for locomotion (3).

A. Alternating Direction Method of Multipliers

ADMM is a simple optimization technique to solve
constrained problems of the form:

minimize
x,z

l1(x) + l2(z)

subject to Ax+Bz = c
(4)

where the cost function is composed of two separable
objectives l1(x) and l2(z). The main idea behind ADMM
is to exploit this splitting between cost terms in a recursive
manner, allowing to solve simpler problems than the original
one [16]. This precise point can be highlighted by writing
the augmented Lagrangian associated with the constrained
optimization problem (4):

Lρ(x, z,y) = l1(x) + l2(z) + yT (Ax+Bz − c)

+
ρ

2
‖Ax+Bz − c‖22 (5)

where y is the vector of dual variables associated with the
constraint Ax+Bz = c and ρ > 0 is the penalty parameter
which penalizes the violations of this constraint. The solution
is then found by the following steps recursions2:

xk+1 = argmin
x
Lρ(x, zk,yk) (6a)

zk+1 = argmin
z
Lρ(xk+1, z,yk) (6b)

yk+1 = yk + ρ(Ax+Bz − c) (6c)

Problem (6a) and (6b) are minimization over l1 and
l2 respectively (with an additional quadratic term). It is
also worth noticing that the dual variable y, through the

2Throughout the paper, superscripts are used to refer to the current
iteration of the solver



update (6c) acts as an integral term by collecting the residues
on the consensus between the two subproblems, and forces
the residual to converge to 0 along the iterations.

B. ADMM for locomotion rational

ADMM provides a way for us to exploit the splitting
of dynamic variables exposed in Sec II-B, and defines a
mathematical framework to feedback and optimize the AM
variable inside the centroidal OCP.

OCP (3) does not match exactly the pattern of (4): (3)
has three nonlinear coupling constraints((3b), (3c), (3d))
and additional decoupled constraints((3e) to (3j)). For the
3 semi-infinite (i.e. defined ∀t) coupling constraints, we
have to introduce 3 multipliers functions of time. For the
additional decoupled constraints, we handle them in the
solvers of each subproblems. Let us remember that the
partial solutions dc and dl of each subproblems should
respect these additional constraints. In this section, we
explain the alternating algorithm with the hypothesis that
some oracles can be called to provide the optimum of the
two subproblems. The next section will describe with more
details which centroidal and whole-body solvers we used for
the experiments.

Non-linearity is a theoretical issue and it makes the
problem non-convex. Convergence guarantee with ADMM
are yet only obtained for convex problems with linear
constraints. Yet ADMM with non-convex problems would
act as just another local optimizer; and we at least know that
the linearization of (3) will converge. In practice, ADMM is
often used, with good empirical results, for solving problems
with non-convex objectives [16] [20], and for non-linear
constraints [21].

C. Application of ADMM to the locomotion problem

Let us associate with each coupling constraint a residual
function:

∀t rc(c,q) = c− CoM(q) (7a)

∀t rm(ċ,L,q, q̇) =

[
mċ
L

]
−Ag (q) q̇ (7b)

∀t rλ(λ,q, q̇, τ) = λ− gλ(q, q̇, τ) (7c)

Residuals rc, rm, rg respectively corresponds to constraints
(3b), (3c), (3d). We also respectively define y

c
,y

m
,y

g
as

the multipliers corresponding to these 3 constraints.
For convenience, let us define r as the augmentation of

(3) (i.e. sum of linear and quadratic penalization):

r(dc,dl,y) =
∑

k=m,c,λ

∫ Tf

0

yTk (t)rk(t) +
ρk(t)

2
‖rk(t)‖22 dt

(8)
We can now separate the augmented Lagrangian of the global

OCP into centroidal and full body parts:

Lcρ(dc,dl,y) =

S∑
s=1

∫ ts+∆ts

ts

`cs(dc) dt+ r

Llρ(dc,dl,y) =

S∑
s=1

∫ ts+∆ts

ts

`ls(dl) dt+ r

(9)

where y is the stack of the 3 multipliers. Note that the
multipliers are trajectories of vectors, while ρc, ρm, ρλ are
trajectories of scalars.

Using the definition of ADMM from Sec III-A, the global
OCP can thus be solved by the following iterations:

dk+1
c = argmin

dc

Lcρ(dc,d
k
l ,y

k) subject to (3e), (3g), (3i)

dk+1
l = argmin

dl

Llρ(d
k+1
c ,dl,y

k) subject to (3f), (3h), (3j)

∀t yk+1
c = ykc + ρc(c

k+1 − CoM(qk+1))

∀t yk+1
m = ykm + ρm(

[
mċk+1

Lk+1

]
−Ag

(
qk+1

)
q̇k+1)

∀t yk+1
λ = ykλ + ρλ(λk+1 − gλ(qk+1, q̇k+1, τk+1))

(10)

IV. ALTERNATING USING DEDICATED SOLVERS

In this section, we describe the practical details of our
implementation, enabling us to simply add the alternating
descent on top of our existing frameworks for solving
centroidal and whole-body dynamics OCP, with only a minor
additional cost in terms of development.

A. The locomotion pipeline

Our locomotion pipeline called Loco3d is described in
detail in [22]. It is composed of three main stages:

1) The Contact Sequence Generator: It is a randomized
motion planner [23], which ensures the feasibility of the
sequence at the kinematic level, with real-time performances;

2) The Centroidal Optimizer: It solves the trajectory
optimization problem over the centroidal dynamics using
feasibility measures to enforce the kinematic feasibility
of the solution with respect to the whole-body problems.
We use MUSCOD-II [24], which implements an efficient
multiple-shooting algorithm particularly suited for the
multiple contact phases of the locomotion problem. The
output of the solver is the centroidal trajectories dc;

3) The Whole-Body Optimizer: It solves the full-body
trajectory optimization problem subject to the dynamics
constraints. We use a new iterative Differential Dynamic
Programming solver [15] which accounts for the contact
constraints in the dynamics of the problem. The output of
the solver is the whole-body trajectories dl.

B. On the advantages of scaling the dual variables

Scaling the dual variables through z = y
ρ is more

convenient to implement as it combines under a single
norm minimization both the linear and quadratic terms in



the augmented Lagrangian (9). The subproblems are then
reduced to simply minimize the residual squared norm of
the constraints linking the two problems [16].

C. The ADMM solver for locomotion
By using z, we can simplify the notation further by

collecting the constraints (3b), (3c) and (3d) into a single
quantity. For that aim, let us define Φc to contain the
elements (c,mċ,L and λ). Similarly, let us define Φl to
contain the mappings (CoM(q),Ag (q) q̇ and gλ(q, q̇, τ )).
Let us define addition/subtraction operations on Φ to be
the addition/subtraction on its corresponding elements and
a function DMap which maps the centroidal(dc) and
whole-body(dl) variables onto these elements. The iterations
(10) can be then written equivalently as Algorithm 1.
In Algorithm 1, the first input to the solvers is the solution of
the previous iteration (as a warm start), and the second input
is the reference to be tracked for the augmented Lagrangian
quadratic costs.

Algorithm 1: ADMM solver for locomotion

Data: d0
c ,d

0
l

1 dc ← d0
c , dl ← d0

l ;
2 Φc ← DMap(dc), Φl ← DMap(dl);
3 Φd ← Φc − Φl;
4 repeat
5 dc,Φc ← CentroidalSolver(dc,Φl − Φd);
6 dl,Φl ←WholebodySolver(dl,Φc + Φd);
7 Φd ← Φd + Φc − Φl;
8 until convergence;
9 d∗c ← dc, d∗l ← dl;

Result: d∗c ,d
∗
l

D. Initializing the dual variables
Many of the currently available centroidal and whole-body

dynamics solvers are tailored for producing solutions which
are almost always mutually feasible [12] [15] [25]. As a
result,with this assumption of feasibility, a simple feedback
from the whole-body solver to the centroidal solver generates
acceptable result within the second iteration [12]. On the
other hand, since ADMM transmits the residual of the two
subproblems and not the output, an uninitialized ADMM
solver would overshoot and only promise convergence from
the third iteration, as we later see in Sec V. There is indeed
a minimum number of iterations to synchronize the two
subproblems.

However, this extra iteration of the solver could be avoided
by setting the dual after the first iteration as Φ1

d ← Φ1
c . This

change makes the feedback from the first iteration to be equal
to the output, and the knowledge of individual solvers can
then be exploited to converge within two iterations. Indeed,
the second iteration of the ADMM solver then becomes
equivalent to [12], and would provide similar results without
affecting convergence. While not used in this paper, this trick
needs to be evaluated further.

E. Key observations for the centroidal solver

In the centroidal OCP, there is a redundancy in the state.
The state c, ċ,L has a dimension of 9, while the control
can be represented in a dimension 6 (with a centroidal
wrench acting on the center of mass). This redundancy is
usually suppressed by predefining or regularizing L [7], and
solving for the rest. The same principle can be exploited in
the present case, by predefining Lk+1 to be equal to the
AM part of Φkl − Φkd and solving the centroidal step only
for ck+1, ċk+1,λk+1. This method ensures that the AM is
always consistent with the full body dynamics.

As a result, angular part of rm is always zero after the
centroidal step of (10). Equivalently, variations in the AM
part of Φk+1

d are only dependent on the variations in the AM
part of Φk+1

l (L is given as a feedback from the full-body
OCP to centroidal OCP via rm)

F. Key observations for whole-body solver

During the full-body step of (10), the knowledge of λk+1

from the centroidal step can be exploited to ensure that the
Constraint (3f) is never violated. In the full-body step (by the
mapping gλ) λ is dependent on q, q̇, τ . A predefined λk+1

ref

provides a good reference for the contact forces. With a good
tracking, Constraint (3f) can be relaxed. An implementation
of the full-body step with rigid contacts which exploits such
a reference tracking is proposed in [15]. Note that in [15] c
and λ were being tracked in the full-body OCP, while in the
present formulation they are updated during the dual ascent.

V. EXPERIMENTAL RESULTS

In this section, we validate and highlight the efficiency of
the proposed approach in simulation. For that purpose, we
study the convergence properties of our solver on a simplified
version of the humanoid robot HRP-2 only composed of its
lower limbs. We generate a walking motion composed of 3
steps of 40 cm step length, depicted in Fig. 1.

A. Cost functions

1) The centroidal cost function: for the first iteration of
the centroidal solver, we minimize the log barrier on the
feasibility measure of the CoM [7], and we regularize the
CoM velocity (weight: 10) and contact forces (weight:10−4

for linear and 10−2 for angular) with quadratic costs. For
subsequent iterations, we solely minimize the dual terms with
ρc = 1.0, ρm = 10−2 and ρλ = 10−4.

2) The whole-body cost function: For the whole-body
solver, we use only quadratic costs to regularize the posture
(weight: 10−6) and the free-flyer orientation (weight: 20) in
addition to the augmented Lagrangian terms.

B. Convergence analysis

We stopped the alternating resolution after only 10
iterations of the solver described in Algorithm 1. While
3 iterations were empirically sufficient to compute a
feasible motion in simulation, we show here the continuing
convergence. As shown in Fig. 2, the total residuals of the
matching constraints decrease rapidly over the first three



Fig. 1: Walking sequence generated for HRP-2 robot using the proposed ADMM solver.
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Fig. 2: Evolution of the total norm of the constraint residual
along the iterations of the ADMM solver.

iterations and more slowly after. This really means that
the two problem are able to find a consensus in very few
iterations. This behavior is also well depicted in Fig. 3, where
one can observe the CoM trajectories of both centroidal and
whole-body subproblems. Already at iteration 3, the two
trajectories match almost perfectly.

The mismatching of CoM and AM quantities is also
reflected in Fig. 4. The two first iterations show a large
mismatch between the centroidal and the whole-body
problems, but the residual decreases rapidly towards the
value 0. This phenomena can be explained by the delay
induced by the ADMM approach: the solver overshoots and
then builds and maintains a consensus between the two
subproblems as discussed in Sec IV-D.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a systematic approach to
build a consensus on the dynamics constraints between the
centroidal and whole-body optimization problems. Based on
previous observation between the nice articulation between
under-actuated and actuated dynamics of legged robots, we
have given a mathematical framework to separate the two
problems, and proposed a solution which iterates between the
two subproblems and maintains consensus in the solutions.
Finally, we demonstrate with a walking sequence on HRP-2
the performance of the solver.

While some heuristics are available allowing similar
behaviors, the ADMM solver encompasses the dynamics
constraints within the framework of the solver itself. In
this way, the current method deals with not only individual
and separated subproblems, but tackles the global problem
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Fig. 3: CoM trajectory in the XY plane for the first three
iterations of the ADMM solver.
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Fig. 4: Residue between the centroidal and whole-body
trajectory of AM and CoM over the iterations.

defined in (3). To the best of our knowledge, this is the first
time that a consensus between centroidal and Lagrangian
dynamic solvers is obtained based on theoretical grounding.

However, even if this solver currently solves the full-body
dynamics problem, it assumes a dependence on the upstream
contact planner to provide feasible contact planning. Thus,
we need to ensure a similar consistency between the
upstream contact planner and the full body optimizer as well.
This is a future avenue of research for the community.
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