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Abstract - For better benefits and yields, a good estimation of grapes quantity in vineyard is 
necessary. In this paper, three-dimensional (3D) imagery technique using conventional 24GHz 
Frequency-Modulated Continuous-Wave (FMCW) Radar is applied for detecting and remotely 
estimating the intra-parcel quantity of grapes. An estimation is possible even in presence of natural 
or artificial clutters such as leaves, wood or irrigation hoses. The microwave sensing is performed 
from the radar beam scanning of a vineyard and an estimator is defined to derive the quantity of 
grapes in grapevines from radar echoes distribution in the interrogated 3D scene. An algorithm 
based on contour detection is applied to the 3D radar image and a new parameter, called the spread 
factor, is defined for classifying the echo levels of grapes. The quantity of grapes is finally deduced 
from an appropriate estimator. This remote sensing approach brings a new and flexible solution for 
precision viticulture by estimating the grape quantity even for grapes hidden by leaves. 

 

 

Introduction 

Nowadays precision agriculture (PA) is mandatory to optimize crop yields, particularly for very 
large field areas. It requires a well understanding of crop science and environmental impacts. When 
it concerns specifically the study of vineyards, the PA refers to precision viticulture (PV). Two 
main technologies applied to PV can be identified: (a) variable-rate-technologies (VRT) which use 
agricultural machines controlled by data from sensors and Global Positioning Systems (GPS) and, 
(b) monitoring technologies which focus on the observation of biological or structural parameters 
such as the leaf area index (LAI) [1, 2], the canopy and vigour (that is, leaf area and pruning 
weight), the chlorophyll content or/and the anthocyanin concentration [3], the sugar content [4] or 
the soil properties [5]. Satellites [1,2], airborne [6] or un-manned aerial vehicles (drones) are also 
solutions for multi-parcels and large areas monitoring while sensors based on ground, such as low 
frequency Ground-Penetrating Radar (GPR) [7], LiDAR [8] or optical cameras [9], are good 
candidates for monitoring the LAI, the vigour or the ground electrical conductivity.  

The major challenge addresses in this paper is to monitor the quantity of grapes on grapevines. 
Be able to know the volume of grapes in advance, that is, before the crop, offers many economic 
advantages: (a) it allows predicting the appropriate quantity of materials to rent several months 
before the grapes harvesting and, (b) it could estimate grapes losses to be fairly compensated by 
insurances in case of severe weather conditions. Grapes detection has already been investigated 
mostly from optical technologies (see, e.g., [9]). The main drawback of such approach is that grapes 
may be partially or completely hidden by leaves or wood and consequently they cannot be easily 
detected by optical sensors. Moreover volume estimation of grapes is difficult since only 2D images 
are available from such sensors.    

In this paper the objective is to estimate the volume of grapes on grapevines using a ground-
based Frequency Modulated Continuous Wave (FMCW) radar operating at 24 GHz. Compared to 
optical systems, the microwave radar technology allows remotely sensing the scene in depth and 



detecting most hidden grapes. Microwave frequencies, especially Super High Frequencies (3 to 30 
GHz), are advantageously used here for grapes quantity estimation since the water in the grapes is 
highly reflective at these frequencies. We show here that the estimation of grapes volume can be 
derived from the proposed microwave sensing even in presence of natural or artificial clutters such 
as leaves, wood and irrigation hoses. The sensing is performed from the radar beam scanning of a 
vineyard. An appropriate estimator is proposed for deriving the quantity of grapes in grapevines 
from radar echoes distribution in the 3D scene.  

 

Description of the measurement setup 

A 24GHz FMCW radar used in the experiment generates a frequency-modulated signal with a 
carrier frequency f0 = 23.8 GHz and a bandwidth B = 2 GHz. The bandwidth is a crucial parameter 
leading directly to the theoretical depth resolution cm
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light in vacuum. The signal is transmitted using a horn lens antenna (Tx antenna) with a gain of 28 
dBi and a beamwidth of 6°. Electromagnetic waves backscattered by the grapevines are received by 
a 1x5 patch array antenna (Rx antenna) with a gain of 8.6 dBi and a beamwidth of 60° in azimuth 
and 25° in elevation. The backscattered signal is received by the radar antenna and is converted into 
a beat frequency spectrum which gives the echo level of the grapevine in a given direction as a 
function of the interrogation range. The power transmitted by the radar front-end is of 20dBm 
(100mW). The radar and antennas are mounted on a mechanical platform controlled by a computer 
unit (Fig. 1). The system performs a rotation of the Rx and Tx radar antennas with an accuracy of 1° 
in azimuth (θ) and in elevation (φ). This rotation allows performing the mechanical scanning of the 
radar beam and the 3D representation of the grapevine echo level distribution in the interrogated 3D 
scene can be derived. 

 

Fig 1. Ground-based microwave FMCW radar proposed for precision viticulture 
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density of grapes is known) in each grapevine, even if the grapes are hidden by leaves. This 
estimation has been applied with success to two grape varieties and to six grapevines. The 
sensitivity of the estimator is found to be 0.17 g/cm3 for a linear model with R²=0.947 and a 
standard error of 0.02g. This model will be applied to numerous radar data for reaching the targeted 
accuracy (<10%) of grapes volume estimation.    
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