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Robust Machine Scheduling Based on Group 
of Permutable Jobs

Christian Artigues, Jean-Charles Billaut, Azzedine Cheref, Nasser Mebarki,
and Zakaria Yahouni

Abstract This chapter presents the “group of permutable jobs” structure to represent
set of solutions to disjunctive scheduling problems. Traditionally, solutions to dis-
junctive scheduling problems are represented by assigning sequence of jobs to each
machine. The group of permutable jobs structure assigns an ordered partition of
jobs to each machine, i.e. a group sequence. The permutation of jobs inside a group
must be all feasible with respect to the problem constraints. Such a structure pro-
vides more flexibility to the end user and, in particular, allows a better reaction to
unexpected events. The chapter considers the robust scheduling framework where
uncertainty is modeled via a discrete set of scenarios, each scenario specifying the
problem parameters values. The chapter reviews the models and algorithms that
have been proposed in the literature for evaluating a group sequence with respect
to scheduling objectives for a fixed scenario as well as the recoverable robust op-
timization methods that have been proposed for generating robust group sequence
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LUNAM, Université de Nantes, IRCCyN Institut de Recherche en Communication et Cybernétique
de Nantes, UMR CNRS 6597, Nantes, France
e-mail: nasser.mebarki@univ-nantes.fr

Z. Yahouni
LUNAM, IRCCyN/MELT, Manufacturing Engineering Laboratory of Tlemcen,
Tlemcen University, Tlemcen, Algeria
e-mail: zakaria.yahouni@irccyn.ec-nantes.fr

1



against scenario sets. The methods based on group sequences are compared with
standard robust scheduling approaches based on job sequences. Finally, methods for
exploiting group sequences in an industrial context are discussed and an experiment
for human decision making in a real manufacturing system based on groups is
reported.

List of Notations

• J set of jobs {Jj} j=1,...,n

• M set of machines {Mk}k=1,...,m

• pk, j duration of job Jj ∈J on machine Mk ∈M
• p j duration of job Jj ∈J (one machine case)
• Ck, j completion time of job Jj ∈J on machine Mk ∈M
• Cj completion time of job Jj ∈J (one machine case or Cj = maxMk∈M Ck, j).
• r j release date of job Jj ∈J
• d j due date of job Jj ∈J
• L j =Cj −d j lateness of job Jj ∈J
• Cmax = maxJj∈J Cj makespan
• Lmax = maxJj∈J L j maximum lateness
• σERD sequence of jobs according to the earliest release date rule
• σEDD sequence of jobs according to the earliest due date rule
• S set of uncertainty scenarios
• rs

j release date of job Jj ∈J under scenario s ∈S
• ds

j due date of job Jj ∈J under scenario s ∈S
• ps

j duration of job Jj ∈J under scenario s ∈S (one machine case)
• ps

k, j duration of job Jj ∈J on machine Mk ∈M in scenario s ∈S
• rs

k, j release date of job Jj ∈J on machine Mk ∈M in scenario s ∈S
• ds

k, j due date of job Jj ∈J on machine Mk ∈M in scenario s ∈S
• C s set of feasible schedules for scenario s ∈S
• Ck, j completion time of job Jj ∈J on machine Mk ∈M
• πk

j index of the machine that precedes machine Mk in job Jj routing

• Ω k
j index of the machine that follows machine Mk in job Jj routing.

• Ls
max(C) maximum lateness in scenario s ∈S of a schedule C ∈ C s

• σ k
i index of the job at position i on machine Mk ∈M in job sequence σ

• C s(σ) set of feasible schedules compatible with job sequence σ in scenario s
• ECs(σ) earliest feasible schedule compatible with job sequence σ in scenario s
• Ls

max(σ) maximum lateness of ECs(σ) in scenario s
• Σ set of feasible job sequences (scenario independent)
• G group sequence (ordered partition of jobs on each machine)
• νk number of groups on machine Mk ∈M
• Gk

i ith group on machine Mk ∈M
• G the set of (scenario-independent) feasible group sequences
• Σ(G) set of job sequences compatible with group sequence G
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• C s(G) set of schedules compatible with group sequence G in scenario s
• EC s(G) set of earliest schedules compatible with group sequence G in scenario s
• gk

j position of the group containing Ok, j

• θk, j lower bound for the earliest starting time of Ok, j in a group sequence (head)
• χk, j lower bound on the earliest completion time of Ok, j in a group sequence
• θ ′

k, j lower bound on the time between Ck, j and Cmax (tail)
• γ(G) lower bound on the completion time of group G
• τk, j largest earliest start time of Ok, j in a group sequence
• Ck, j largest earliest completion time of Ok, j in a group sequence
• τk, j smallest latest start time of Ok, j in a group sequence
• Ck, j smallest latest start time of Ok, j in a group sequence
• Precs

j set of jobs that precede Jj according to the ERD rule in scenario s
• Succs

j set of jobs that succeed to Jj according to the ERD rule in scenario s
• y j,q binary variable equal to 1 if job Jj is in the group at position q in the group

sequence
• x j,q binary variable equal to 1 if job Jj is at position q in the job sequence
• μ , α , β , ω parameters for instance generation
• mseq(Ok, j) free sequential margin of an operation Ok, j in a group sequence
• msn(Ok, j) net margin of an operation Ok, j in a group sequence
• msg(Ok, j) group margin of an operation Ok, j in a group sequence

9.1 Introduction to Scheduling and Robust Scheduling

In this section, disjunctive scheduling problems are defined and notations are intro-
duced. The standard solution representations based on job sequences and disjunctive
graphs are reviewed. Robustness definitions are given and the ways robustness can
be tackled are also presented.

9.1.1 Scheduling Problems

A scheduling problem consists in defining a set of a start times for a set of tasks
that share common resources, taking into account specific time constraints (such as
deadlines), and with the aim to optimize an objective function. Sometimes, one also
has to decide which resources will perform each task. A schedule is a solution to a
scheduling problem (see [8] for a global overview of scheduling problems).

Scheduling problems can be found in all types of organizations or systems.
The most famous application domain is the production industry, where scheduling
problems take an important place for the production management. Other classical
scheduling problems are encountered in computer systems, project management,
timetabling, etc. More recent application domains appear, particularly for treat-
ing requests in big data environment [4, 5], in hospital environments [14], in rail
companies [11], etc.
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The theory of scheduling was developed together with the theory of complexity.
The methods for solving scheduling problems come from the field of combinatorial
optimization, with exact solution methods for finding one optimal solution to the
problem and approximate solution methods for finding solutions that are as good as
possible.

We denote by J the set of n jobs to schedule. A job is either a single opera-
tion, or is composed by several operations. In this case, a graph allows to define
the precedence relations between the operations. In the case of a shop scheduling
problem, this graph is called the route or the routing of the job, and it is generally a
chain. A set M of m resources is available for performing the operations. Each re-
source (called machine in the case of a shop scheduling problem) is supposed to be
ready at time 0, and can perform at most one operation at a time. To each operation
is associated a performing resource in M and a processing time, denoted by pk, j for
processing time of job Jj on machine Mk (index k is omitted when there is only one
resource). It is assumed that the operations are performed without interruption, and
that preemption is not allowed.

A schedule is completely characterized by the definition of a vector of start-
ing times, or equivalently by a vector of completion times. We denote by Cj =
maxMk∈M Ck, j the completion time of the last operation of job Jj, Ck, j denoting the
completion time of job Jj on machine Mk.

The quality of a schedule is given by a performance measure, based on the jobs
completion times. The most common objective function is the makespan, denoted
by Cmax and defined by Cmax = maxJj∈J Cj. If the job Jj is supposed to be finished
at date d j, called the due date of Jj, we define by L j the lateness of Jj, with L j =Cj−
d j, and Lmax = maxJj∈J L j, also called the maximum lateness, is another important
performance measure for a schedule. Other performance measures can be defined
for a schedule, please refer to [8] or [7] for a complete overview of scheduling
problems.

In the rest of this chapter, we will consider only two scheduling problems: a
scheduling problem with the environment composed by a single machine, and a
scheduling problem with a shop environment, where the routes of the jobs are dif-
ferent (also called a job shop environment). These two problems are illustrated in
the following example.

Example 1: Single Machine Environment

Let consider a single machine environment, and n = 5 jobs to schedule. To each job
Jj is associated a processing time p j, a due date d j, and a release time r j, which is a
date before which a job cannot start. The objective is to schedule these jobs so that
the maximum lateness Lmax is as small as possible. The data set is given in Table 9.1.

Suppose that the jobs are scheduled in the non decreasing order of the release
times. We obtain sequence σERD. Suppose that the jobs are scheduled in the non
decreasing order of the due dates (also called EDD rule for Earliest Due Date first),
we obtain sequence σEDD. The sequences and their evaluations are given in Fig. 9.1.
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Table 9.1: Instance for the single machine problem

Jj J1 J2 J3 J4 J5

r j 0 7 3 4 3
p j 3 4 1 2 4
d j 3 14 4 6 10

Notice that this problem is NP-hard in the strong sense, i.e. no polynomial
time algorithm can be proposed for solving the problem to optimality, unless
P = NP [13].

Example 2: Job Shop Environment

Let consider now a job shop environment, and n = 3 jobs to schedule on m = 3
machines and the data given in Table 9.2. To each job Jj are associated exactly
3 operations (one per machine). The objective is to schedule the jobs so that the
makespan Cmax is as small as possible.

Table 9.2: Instance for the job shop problem

Machine (duration)

J1 M1(6) M2(3) M3(7)
J2 M3(8) M1(6) M2(4)
J3 M1(5) M3(5) M2(6)

0 2 4 6 8 10 12 14 16 18 20

Sequence sEDD

J1 J3 J5J4 J2

Lmax(sEDD) =max(0,0,0,0,0) = 0

0 2 4 6 8 10 12 14 16 18 20

SequencesERD

J1 J3 J5 J4 J2

Lmax(sERD) =max(0,0,0,4,−2) = 4

Fig. 9.1: Gantt representation of sequences σERD and σEDD and their evaluations
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Figure 9.2 represents a feasible solution of the problem with a makespan equal
to 27. Note that the sequences of the jobs on each machine can be different from
each other.

9.1.2 Robustness in Scheduling

Robustness considerations receive more and more attention in the literature [6] be-
cause in real life situations, unexpected events and uncertainty of the data are chal-
lenging the expected plans, making then unusable, sometimes very quickly. This is
the reason why a lot of practitioners prefer a robust solution with a lower quality to
a vulnerable solution with optimal quality.

Several definitions of the robustness can be found in the literature. We refer to
the book by Kouvelis and Yu [15], where a chapter is devoted to robust scheduling
problems. As in [15], we consider that there is a significant data uncertainty and the
aim is to propose an algorithm returning a solution that hedges against the worst
contingency that may arise. Such an approach is called a robust approach.

A scenario based approach is used to model the data uncertainty. Each scenario
is a data set corresponding to a potential realization. Several scenarios are defined.
More formally, let us denote by S the set of scenarios and s one scenario in S .

We now informally illustrate the concept of robustness on the two scheduling
problems that we consider.

Example 1: Single Machine Environment

Let us consider the single machine scheduling problem. We denote by rs
j, ps

j and
ds

j the release time, the processing time and the due date of Jj under scenario s. We
assume that the previous data set is scenario number 1, and we add a new scenario.

M1

M2

M3

J1

J1

J1

J2

J2

J2

J3

J3

J3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Fig. 9.2: Gantt representation of a solution to the job shop problem
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The data set is now given in Table 9.3. Figure 9.1 presents the solutions for the
first scenario, we present the sequences σERD and σEDD for the second scenario in
Fig. 9.3.

Table 9.3: Instance for the single machine problem with two scenarios

s = 1 J1 J2 J3 J4 J5

r1
j 0 7 3 4 3

p1
j 3 4 1 2 4

d1
j 3 14 4 6 10

s = 2 J1 J2 J3 J4 J5

r2
j 3 3 0 1 7

p2
j 2 5 1 3 3

d2
j 6 11 2 5 14

0 2 4 6 8 10 12 14 16 18 20

Sequence sERD and sequence sEDD

J1J3 J5J4 J2

Lmax(sERD) = Lmax(sEDD) =max(0,0,−1,−1,0) = 0

Fig. 9.3: Gantt representation of sequences σERD and σEDD and their evaluations
for the second scenario

We can see that for the second scenario, sequences σERD and σEDD are the same:
(J3,J4,J1,J2,J5). We can say that sequence σEDD is more robust than sequence σERD

because the worse evaluation of σEDD is 0 and the worse evaluation of σERD is 4.

Example 2: Job Shop Environment

A second scenario is considered for the job shop problem. The two scenarios are
presented in Table 9.4. Only the jobs durations are changed, not the routing of the
jobs. Let ps

k, j denote the duration of job Jj on machine Mk in scenario s. If we keep
the same sequence on each machine as before and schedule the operations as early
as possible, we now obtain the solution represented in Fig. 9.4. The makespan is
now equal to 29, which is the worst case makespan on the job sequences.

Table 9.4: Instance for the job shop problem to do

s = 1 performing machine (duration)

J1 M1(6) M2(3) M3(7)
J2 M3(8) M1(6) M2(4)
J3 M1(5) M3(5) M2(6)

s = 2 performing machine (duration)

J1 M1(8) M2(2) M3(5)
J2 M3(10) M1(6) M2(5)
J3 M1(6) M3(5) M2(4)
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0 2 4 6 8 10 12 14 16 18 20

M1

M2

M3

J1

J1

J1

J2

J2

J2

J3

J3

J3

22 24 26 28

Fig. 9.4: Gantt representation of the same solution to the job shop problem with
scenario s = 2

9.1.3 Feasible Schedules and the Absolute Robustness Problem

We consider in this section an integration of the job shop scheduling problem and
of the single machine problem by defining operation release dates and due dates in
the job shop model. More precisely, rs

k, j ≥ 0 is the release date of the operation of
job Jj on machine Mk in scenario s and ds

k, j is the due date of the operation of job Jj

on machine Mk in scenario s.
For a scenario s ∈S , a feasible solution is a feasible schedule, given by a com-

pletion time Ck, j of each job Jj on each machine Mk that satisfies:

• Operations release date constraints:

Ck, j ≥ rs
k, j + ps

k, j ∀Jj ∈J ,∀Mk ∈M (9.1)

• Jobs routing constraints:

Ck, j ≥Cs
πk

j , j
+ ps

k, j ∀Jj ∈J ,∀Mk ∈M ,πk
j �= 0 (9.2)

where πk
j denotes the machine that precedes machine Mk in job Jj routing, with

πk
j = 0 indicating that machine Mk is the first machine in the routing of job Jj,

• Non-overlapping (also called disjunctive) constraints:

Ck, j ≥Ck,i + ps
k, j ∨ Ck,i ≥Ck, j + ps

k,i ∀Ji,Jj ∈J , i < j,∀Mk ∈M (9.3)

We denote by C s the set of feasible schedules for scenario s, i.e. the set of vectors
(Ck, j)Mk∈Mk,Jj∈J that satisfy constraints (9.1)–(9.3). The maximum lateness of a
schedule C ∈ C s is given by

Ls
max(C) = max

Jj∈J
Ck, j −ds

k, j. (9.4)
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The standard absolute robustness problem (AR) as defined in [15] can now be
stated as

(AR) min
C∈∩s∈S C s

max
s∈S

Ls
max(C) (9.5)

9.1.4 The Standard Solution Representation for (Robust)
Disjunctive Scheduling

We note that a schedule may be feasible for a scenario and infeasible for another
one. In robust scheduling, it is convenient to consider the concept of job sequence
that allows to represent compactly for each scenario a family of feasible sched-
ules. The determination of the feasibility of a job sequence and the computation of
the scenario-dependent schedules can be both supported by the classical disjunctive
graph representation of the problem [22], defined as follows.

The disjunctive graph has the same vertices and arcs for all scenario but the
weights of the arcs are scenario dependent. The disjunctive graph has nm+ 2 ver-
tices, with a vertex jk per operation , for j = 1, . . . ,n and for k = 1, . . . ,m plus
dummy start and end vertices 0 and nm+1. The disjunctive graph is a 2-graph that
contains precedence arcs and disjunctive arcs. For a scenario s, we define a prece-
dence arc (0, jk) between vertex 0 and vertex jk valuated by rs

k, j for each release

date constraint (9.1). We define a precedence arc between vertex jπk
j and jk, val-

uated by ps
k, j for each precedence constraint (9.2). For each disjunctive constraint

(9.3), we define two opposite disjunctive arcs, one from node ik to node jk valuated
by ps

k, j and one from node jk to node ik valuated by ps
k,i. Last we have an arc from

each node jk such that � ∃k′,πk′
j = k and node nm+1 valuated by ps

k, j −ds
k, j.

A complete selection of the disjunctive graph is, for each pair of disjunctive arcs,
the selection of a single arc (and the removal of the opposite one). A complete se-
lection is acyclic if there is no cycle in the graph issued from the selection. Once
an acyclic selection is obtained, it defines m total orders of the set of jobs via the
selected disjunctive arcs. Hence an acyclic selection can be associated with a job se-
quence σ = (σ k

i )
k=1,...,m
i=1,...,n where σ k

i gives the index of the job sequenced at position
i on machine Mk. Notice that in the job shop problem a “job sequence” designates
in fact a set of job sequences (one per machine). There is a one-to-one mapping be-
tween the acyclic selections and the feasible job sequences. Note that in the single
machine problem, all job sequences are feasible, which yields to n! job sequences.
For the job shop problem, only a subset of job sequences are feasible due to prece-
dence constraints, so we have at most mn! feasible job sequences.

An acyclic complete selection/job sequence σ represents for each scenario a fam-
ily of feasible schedules C s(σ) given by the infinite set of potentials in the graph
issued from the selection. In this family, a dominant schedule with respect to the
Lmax objective function is the earliest schedule ECs(σ) such that ECs

k, j(σ) is the
length of the longest path from vertex 0 to vertex k j in the graph issued from the
selection , the corresponding Ls

max(σ) is the longest path between 0 and nm+ 1.
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Note that given a complete selection, the earliest schedule as well as the cycle de-
termination can be computed in O(nm) by topological sorting and Bellman-Ford
algorithm.

Let Σ denote the set of feasible job sequences, which is independent of the sce-
narios. For a fixed scenario s the standard job shop scheduling problem can be de-
fined as

min
σ∈Σ

Ls
max(σ)

Similarly the absolute robust job shop scheduling problem can be defined as the
search for a feasible job sequence that minimizes the worst case maximum lateness

(AR)min
σ∈Σ

max
s∈S

Ls
max(σ)

In terms of robust scheduling, the job sequence σ represents the first stage de-
cision variables that can be taken in advance without knowledge of the realized
scenario, while the completion times are the second-stage decision variables that
are adjusted according to the realized scenario by picking a schedule in set C s. In
case of an objective function defined as the sum or the maximum of non decreas-
ing job individual functions of the completion time (also called a regular objective
function), the earliest schedule ECs(σ) dominates all other schedules of C s.

Example 1: Single Machine Environment

In Fig. 9.5, we give the disjunctive graph representation of the one-machine problem
instance. Because there is no routing constraint between the jobs, the disjunctive
arcs form a clique. In Fig. 9.6 we give the conjunctive graph corresponding to the
feasible job sequence given by σERD for scenario s = 2.

Fig. 9.5: Disjunctive graph
of the single machine schedul-
ing problem

0

J1

6

3

J2

J3

J4

J57

3

1

2-6

5-11

3-14

3-5

1-20
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0

J1

6

3

J2

J3

J4

J5
7

3

1

2-6

5-11

3-14

3-5

1-20
0

1

13

2

5

4
6

11

max(6-6,11-11,1-2,4-5,14-14)=0

Fig. 9.6: Conjunctive graph corresponding of the solution to the single machine
scheduling problem for scenario s = 2

Example 2: Job Shop Environment

In Fig. 9.7 we give the disjunctive graph representation of the job shop instance. The
conjunctive graph of the complete selection that gives the schedule represented in
Fig. 9.2 with scenario s = 1 is given in Fig. 9.8.

O1,1 O2,1 O3,1

O3,2 O1,2 O2,2

O1,3 O3,3 O2,3

0

1 2 3

4 5 6

7 8 9

10

6 3

7

8 6 4

5 5
6

0

0

0

Fig. 9.7: Disjunctive graph corresponding to the instance of the job shop scheduling
problem

9.2 Groups of Permutable Jobs: A Solution Structure
for Robust Scheduling

This sections present the groups of permutable jobs structure for disjunctive schedul-
ing. Then, it reviews combinatorial optimization problems that have been studied
and solved on the group of permutable jobs solution structure.
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O1,1 O2,1 O3,1

O3,2 O1,2 O2,2

O1,3 O3,3 O2,3

0

1 2 3

4 5 6

7 8 9

10

7

8 6 4

5 5
6

0

0

0

6 3

6

5

3

5 4

Fig. 9.8: Conjunctive graph corresponding to the solution of the job shop schedul-
ing problem presented for scenario s = 1

9.2.1 Groups of Permutable Jobs: A Flexible Solution
Representation

A sequence of groups of permutable jobs on a machine Mk is defined as an ordered
set partition of the set of jobs J on machine Mk. An element of each partition is
called a group of permutable operations. As for the job sequence, the term “group
sequence” is used to name a set of group sequences (one on each machine). This
structure was proposed by François Roubellat in the early 1980s [17].

A group sequence G = (Gk
i )

k=1,...,m
i=1,...,νk

with ∩νk
i=1Gk

i = /0 and ∪νk
i=1Gk

i = J repre-
sents a partial job sequence to a disjunctive scheduling problem that specifies on
each machine Mk a sequence of νk groups of permutable operations, such that Gk

i
is the ith group on machine Mk and such that all operations inside a group can be
permutated without violating the feasibility of the sequence.

Example 1: Single Machine Environment

Let consider the group sequence presented in Fig. 9.9. This sequence is composed
of one group composed by jobs {J1,J3} and of group composed by jobs {J2,J4,J5}.
Of course, the first group starts at time 3 because J3 cannot start before date 3. The
duration of the group is the sum of the durations of the jobs. One can see easily that
whatever the order of the jobs in the first group, the jobs of the second group can
be executed at time 7 (or earlier if one starts with job J1). One can also see that the
flexibility provided by this group sequence (12 sequences are characterized) has a
price, since the makespan is now equal to 17 instead of 14 before.
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0 2 4 6 8 10 12 14 16 18 20

J1 J3 J5J4J2

Fig. 9.9: Gantt representation of a group sequence for the single machine problem

Example 2: Job Shop Environment

In Fig. 9.10, two groups of permutable operations are proposed. The first one is
composed by the operations of J1 and J3 performed on the first machine. The second
is composed of the operations of the same jobs on the third machine. One can see
that whatever the order of the operations inside each group, the sequence remains
feasible. Of course, this flexibility has a price since the makespan is now equal to 32.

M1

M2

M3

J1

J1

J1

J2

J2

J2

J3

J3

J3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fig. 9.10: Gantt representation of a group sequence for the job shop scheduling
problem

In terms of disjunctive graph, a group sequence matrix corresponds to an incom-
plete selection that has a particular structure representing the group sequences. Each
group is a strongly connected component (via unselected disjunctive arcs) and the
selected disjunctive arcs define m totally ordered group sets. We denote by G the set
of (scenario-independent) feasible group sequences.

Given a group sequence G ∈ G , we denote by Σ(G) the set of job sequences
that can be obtained from G, and by C s(G) the set of schedules issued from the
represented job sequences, i.e.:

C s(G) = ∪σ∈Σ(G)C
s(σ)

For regular objective function, we are interested in the set of earliest schedules that
can be issued from a group sequence on a scenario:

EC s(G) = ∪σ∈Σ(G){ECs(σ)}
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It follows that for a group sequence, there is a non unique dominant schedule
for a given scenario. Consequently, as a solution representation, a group sequence
provides (much) more flexibility. Indeed a group sequence represents Π k=1,...,m

i=1,...,νk
|Gk

i |
different job sequences and earliest schedules.

In turn, there is a much bigger number of feasible group sequences. The number
of different weak orders on set J is equal to

bn =
n

∑
k=0

k

∑
j=0

(−1)k− j
(

k
j

)
jn.

Then, for the single machine problem we have |G |= bn. For the job shop problem,
since not all job sequences are feasible, neither are all group sequences and the
number of group sequences is bounded by |G | ≤ mbn.

Finally, we have to remark that the set of feasible job sequences maps the set of
feasible group sequences such that each group has a single job.

9.2.2 Combinatorial Optimization Problems on Group Sequences

Several combinatorial optimization problems can be defined on the group sequence
solution representation and have been studied in the literature. We restrict to the case
where earliest schedules are dominant, which corresponds to regular scheduling ob-
jective functions. As a given group sequence G represents in general an exponential
number of feasible earliest schedules, given a scenario, a question arises on how
to select one schedule among the represented ones. In a robust optimization frame-
work, we assume that, given a disjunctive scheduling problem and a scenario set,
a group sequence G is computed as a first-stage decision set. In a second stage de-
cision setting, once the scenario is revealed, we assume that one of the represented
job sequence (and its corresponding earliest schedule) is selected with algorithm
A(G,s). A typical example would be to define A(G,s) as a list scheduling algorithm
that selects an order inside each group according to a priority rule. In fact, we can
identify the set of list scheduling algorithms compatible with G and the set of job
sequences represented by G. This gives rise to several combinatorial optimization
problems.

9.2.2.1 Best Earliest Schedule Within a Fixed Group Sequence
for a Fixed Scenario

The objective of the second stage algorithm A(G,s) is naturally to obtain the best
schedule according to the realized scenario, which yields problem (GP1). This gives
a lower bound on the performance that an algorithm A(G,s) can reach.
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(GP1) min
σ∈Σ(G)

Ls
max(σ)

As we can define a group sequence G such that |G|= 1 for the one machine prob-
lem, finding the best schedule in this sequence amounts to solve the one-machine
problem itself (denoted by 1|ri|Lmax), which is an NP-hard problem).

Methods that explicitly solve problem (GP1) for shop problems in an exact or
approximated way can be found in [20, 24]. We illustrate these methods for the
makespan objective (by considering that all dk, j are equal to 0). These methods rely
on the computation for each operation Ok, j of the head of the operation, noted θk, j,
i.e., a lower bound for the earliest starting time, and a tail of the operation, noted
θ ′

k, j, i.e., a lower bound of the time between the operation’s latest completion time
(Ck, j) and the end of the schedule (Cmax).

Heads and tails, which are classical notions in shop scheduling, are adapted for
groups of permutable operations. The computation of θk, j involves the computation
of a lower bound for the earliest completion time for each predecessor of operation
Ok, j: the predecessor operation in job routing (Oπk

j , j
) and the predecessor group on

the same machine
Let gk

j the position of the group containing operation Ok, j on machine Mk. Then,

Gk
gk

j−1
(resp. Gk

gk
j+1

) is its predecessor (resp. successor) group on machine Mk. γ(G)

denotes a lower bound of the completion time of group G. The computation of γ(G)
is based on a one-machine relaxation by making the assumption that each machine
has an infinite capacity [20, 24]. Below, a lower bound for the earliest completion
time of operation Ok, j is denoted χk, j.

For an operation Ok, j, its head is computed as follows:

θk, j = max(rk, j,γ(Gk
gk

j−1
),χπk

j , j
) (9.6)

γ(Gk
i ) =Cmax of 1|rk, j|Cmax with rk, j = θk, j, ∀Ok, j ∈ Gk

i

χk, j = θk, j + pk, j

Because of the symmetry of heads and tails, tails can be computed as heads
using a reversed version of Eq. (9.2.2.1): rather than starting the computation at the
beginning of the scheduling problem, the computation begins at the end. We use
below symmetrical intermediate values γ ′

(G) and χ ′
k, j to compute the tail θ ′

k, j.

Ω k
j denotes the machine that follows machine Mk in job Jj routing.

θ
′
k, j = max(γ

′
(Gk

gk
j+1

),χ
′
Ω k

j , j
)

γ
′
(Gk

i ) =Cmax of 1|rk, j|Cmax with rk, j = θ
′
k, j, ∀Ok, j ∈ Gk

i

χ
′
k, j = θ

′
k, j + pk, j

15



These heads and tails can be directly used for the computation of a valid lower
bound for any regular objective. For example, for the makespan objective, a lower
bound is :

max
k∈M

max
i=1,...,νk

(γ(Gk
i ))

For the makespan, this lower bound can be improved using the one-machine re-
laxation proposed by Carlier and Chretienne [10] also based on the computation of
heads and tails. In our case the relaxation is made on the groups instead of machines;
for each group a lower bound is computed using the exact method of [9]. The max-
imum value for all groups represents an improved lower bound for the makespan.

In [20], it was shown that the computation of a lower bound for the best earliest
schedule has a complexity of O(n logn) for any regular objective.

9.2.2.2 Worst Earliest Schedule Within a Fixed Group Sequence
for a Fixed Scenario

This problem, denoted (GP2) seeks to determine the worst performance that any
algorithm A(G,s) can achieve on a given scenario. This gives an upper bound on
the performance of the second stage algorithm. In conjunction with problem (GP1),
we may obtain a lower and an upper bound of the performance of any second stage
algorithm compatible with G on a given scenario.

(GP2) max
σ∈Σ(G)

Ls
max(σ)

As for the preceding problem, a limit case is to consider a single group of n jobs for
the one-machine problem. In this case, we obtain maximization one-machine prob-
lems, which are in general easier than their minimization counterpart as shown in
[3] that provide polynomial algorithms and complexity proofs for several cases. Fur-
thermore, in [2], it was shown that (GP2) is polynomial for any disjunctive schedul-
ing problem. The calculation of this worst earliest schedule relies on the compu-
tation of the worst earliest starting time and the worst earliest completion time for
each operation denoted τk, j and Ck, j respectively.

The computation of τk, j corresponds to executing this operation at its worst po-
sition where all its predecessors are placed at their worst latest time. This problem
can be formulated as follows :

τk, j = max(rk, j,Cπk
j , j
, max

Ok,l∈Gk
gk

j−1

Ck,l) (9.7)

To compute Ck, j, either the worst earliest completion time of operation Ok, j does
not depend on another operation of the same group, in this case the first term of the
following formula is used. Otherwise, in the worst case, the operation ends last in
its group and the second term is used.
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Ck, j = max(τk, j + pk, j, max
Ok,l∈Gk

gk
j
,l �= j

τk,l + ∑
Ok,l∈Gk

gk
j

pk,l) (9.8)

The computation of τk, j and Ck, j can be performed efficiently by longest path
computation in a special conjunctive graph, as described in [2]. We do not describe
this graph here for sake of conciseness.

Finally, maxJi∈J ,Mk∈M (Ck, j − d j) represents the worst case evaluation for the
groups of permutable operations for the Lmax objective. More generally, the worst
case evaluation can be computed in polynomial time for regular min-max objectives.

This calculation can also be used as an upper bound for min-sum regular objec-
tives.

9.2.2.3 Worst Latest Schedule Within a Fixed Group Sequence
for a Fixed Scenario

This problem, denoted (GP
′
2) is similar to (GP2) with due dates for the jobs (dk, j).

It seeks to determine the worst performance that any algorithm A(G,s) can achieve
on a given scenario such that there is no late schedule described by the groups of
permutable operations.

For this, it needs the computation of the worst latest starting time τk, j and the
worst latest completion time Ck, j of an operation Ok, j which is similar to the com-
putation of τk, j and Ck, j. A reverse version of Eqs. (9.7) and (9.8) can be used.
Rather than starting from the beginning, the computation starts from the end using
the due dates of jobs as explained in [19, 23].

τk
j and C

k
j can be expressed as follows:

Ck, j = min(dk, j,τΩ k
j , j
, min

Ok,l∈Gk
gk

j+1

τk,l)

τk, j = min(Ck, j − pk, j, min
∀Ok,l∈Gk

gk
j
,l �= j

Ck,l − ∑
∀Ok,l∈Gk

gk
j

pk,l) (9.9)

9.2.2.4 Flexibility Maximization with a Bounded Objective
for a Fixed Scenario

Without any assumption on the second stage algorithm A(G,s), a question arises to
maximize a flexibility measure of the group sequence G, denoted f lex(G), while
ensuring an upper bound UB on the objective. Intuitively, this allows to propose
a group sequence such that the largest number of represented job sequences (or
with an alternative view, the largest number of compatible second stage algorithms)
satisfy the upper bound.This yields problem (GP3):
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(GP3) max
G∈G

f lex(G) s.t. Ls
max(σ)≤UB,∀σ ∈ Σ(G)

As an outcome, we obtain a performance guarantee on the worst earliest schedule for
the considered scenario but we have no indication of the best achievable objective,
which would require to solve (GP1). As problem (GP1) is generally NP-hard, an
alternative from computing the best schedule represented by a group sequence is to
ask that the group sequence represents a fixed sequence σ0, which yields

(GP4) max
G∈G

f lex(G) s.t. σ0 ∈ Σ(G),Ls
max(σ)≤UB,∀σ ∈ Σ(G)

Provided that σ0 is selected as the optimal solution for scenario s, then solving
(GP4) gives for a given scenario a group sequence G of maximal flexibility such
that any job sequence σ issued from G (or any list scheduling algorithm compatible
with G) verifies Ls

max(σ0)≤ Ls
max(σ)≤UB.

Several flexibility measures are available from the literature. The most natural
one is the number of represented job sequences/earliest schedules

f lex1(G) = |Σ(G)|

In [2], a surrogate flexibility measure is used, as the number of groups. Indeed it
holds intuitively that generating less groups yield more flexibility. We define this
measure as

f lex2(G) = |G|
To normalize this criterion, for a disjunctive problem with m machines we can de-
fine.1

f lex3(G) =
mn−|G|
mn−m

In case of full flexibility, we have m groups and f lex3 = 100%. In case of no flexi-
bility we have mn groups and f lex3 = 0%.

In [2], an O(n3) algorithm has been proposed to solve problem (GP3) with f lex1

for the one-machine problem without release dates, and in the case where the due
dates are agreeable, i.e. for any two jobs i, j ∈ J , pi ≤ p j ⇔ di ≤ d j. The same
algorithms solves also (GP4) with f lex1 for the same problem, but without the re-
striction of agreeable due dates. In the same context, (GP3) is solved with f lex2 by a
simpler O(n logn) algorithm. Adding now release dates, (GP4) is solved with f lex1

by an O(n7) algorithm and with f lex2 by an O(n4) algorithm. Hence f lex2 yields
generally simpler problems than f lex1.

By varying UB, different compromise solutions can be found between the flexi-
bility criterion and the represented schedule performance. This was illustrated for a
job in [2], where a (GP4) was heuristically solved with f lex2. The represented job
sequence σ0 was set to the optimal job shop solution and UB was set to different
values above Ls

max(σ0). In [12], the two-machine flow-shop, open-shop and job shop

1 This was initially proposed in [12] for m = 2.
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problems are studied. A problem dual to (GP3) with f lex2 is also considered, in the
sense that it consists in minimizing the makespan while the number of groups is
bounded.

(GP5) min
G∈G ,σ∈Σ(G)

Ls
max(σ) s. t. k1 ≤ |G| ≤ k2

For the 2-machine flow shop problem (GP3) and (GP5) with f lex2 are both NP-
hard in the strong sense. However, for any integer 1 ≤ k ≤ n the authors propose
a heuristic to build a group sequence G such that |G| = k a job sequence σ such

that Cs
max(σ)

Cs
max(σ∗) ≤ |G|+1

|G| , where σ∗ is the job sequence that minimizes the makespan
with no restriction on the number of groups. This is a theoretical bound on the
makespan increase when the flexibility is increased. They also propose a heuristic
for (GP4) with f lex2. Complexity results are also given for (GP5) and f lex2 for the
two machine job shop and flow shop problems.

9.2.2.5 Recoverable Robust Optimization for a Fixed List Scheduling
Algorithm on a Scenario Set

If we consider now a fixed list scheduling algorithm A(G,s) that outputs a job se-
quence that is both compatible with group sequence G and feasible for scenario s,
we may seek the group sequence that maximizes the robustness of the earliest sched-
ule selected by the list scheduling algorithm according to the realized scenario. We
obtain problem (GP6).

(GP6) min
G∈G

max
s∈S

Ls
max(A(G,s))

Note that compared with the job sequence representation, the group sequence
representation introduces a third decision level. The first decision level builds the
group sequence. The second decision level selects the job sequence. The third deci-
sion stage selects the schedule. In Sect. 9.3 we present a method to solve (GP6) for
the single machine problem that we compare with the standard robust scheduling
method.

9.3 Solution Methods: A Recoverable Robust Approach Based
on Groups of Permutable Operations

Using the concept of recoverable robustness (GP6) proposed in Sect. 9.2, we present
in this section a mixed integer linear program (MILP) and a heuristic method for
the maximum lateness minimization on the single machine problem. Given a group
sequence and according to the realized scenario, the A(G,s) algorithm schedules the
jobs inside a group following the Earliest Release Date (ERD) rule. To evaluate the

19



interest of the recoverable robust approach, a MILP model as well as a tabu search
algorithm are proposed for standard robust scheduling method. Experimental tests
are performed and comparisons are given.

9.3.1 MILP Formulation

In order to simulate the ERD rule, a list of predecessors and successors denoted
Precs

j and Succs
j are defined for each job Jj and each scenario s as follows:

Precs
j = {Ji ∈J /(rs

i < rs
j) or (rs

i = rs
j and i < j)}

Succs
j = {Ji ∈J /(rs

i > rs
j) or (rs

i = rs
j and i > j)}

We define binary variables y j,q equal to 1 if job Jj is in group Gq (i.e. the group
at position q), and 0 otherwise. Cs

j ≥ 0 is the completion time of job Jj in scenario s.

• Assignment constraints: assign each job to exactly one group

n

∑
q=1

y j,q = 1, ∀ j ∈ {1, . . . ,n} (9.10)

• Non-overlapping constraints: for a given sequence, the completion time of a job
Jj is at least equal to the release date of Ji plus the duration of the jobs that are
between Ji and Jj in the sequence, including these two jobs. The following two
constraints compute the minimum value of the job completion time under each
scenario as set by the list scheduling algorithm. The case were Ji and Jj are in
the same group is considered by constraints (9.11), whereas constraints (9.12)
consider the case where these two jobs are not in the same group.

rs
i + ps

i + ∑
l∈(Succs

i∩Precs
j)

ps
l yl,q + ps

j −M(2− yi,q − y j,q)≤Cs
j,

∀i, j,q ∈ {1, . . . ,n}, j ∈ Succs
i ,∀s ∈S (9.11)

According to the ERD rule, the expression ∑l∈(Succs
i∩Precs

j)
ps

l yl,q computes the
total duration of the jobs between Ji and Jj except pi and p j.

rs
i + ps

i + ∑
l∈Succs

i

ps
l yl,q +

q′−1

∑
f=q+1

n

∑
l=1

ps
l yl, f + ∑

l∈Precs
j

ps
l yl,q′ + ps

j

−M(2−yi,q −y j,q′)≤Cs
j, ∀i, j,q,q′ ∈ {1, . . . ,n},q′ > q,∀s ∈S (9.12)

The total duration between the jobs Ji and Jj is represented by the expres-

sion ∑l∈Succs
i

ps
l yl,q+∑q′−1

f=q+1 ∑n
l=1 ps

l yl, f +∑l∈Precs
j
ps

l yl,q′ . Given a scenario s and
according to the ERD rule, expressions ∑l∈Succs

i
ps

l yl,q and ∑l∈Precs
j
ps

l yl,q′ com-
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pute the total duration of Ji successors and the total duration of Jj predecessors,

respectively. The remaining expression ∑q′−1
f=q+1 ∑n

l=1 ps
l yl, f compute the total du-

ration of groups between those including the two jobs.
• The maximum lateness of a schedule

Lmax ≥Cs
j −ds

j, ∀ j ∈ {1, . . . ,n},∀s ∈S (9.13)

• Objective function
min Lmax

This model contains n2 binary variables, n|S |+ 1 continuous variables and
O(n4|S |) constraints.

9.3.2 Tabu Search Algorithms

The proposed MILP can only be used to solve small problem instances. To over-
come the difficulty of solving large instances, we propose a tabu search heuristic to
solve larger instances. The metaheuristic works as follows. Starting from an initial
solution and defining the neighborhood structure, the procedure selects the best ap-
propriate neighbor solution. The selected solution can be chosen if it is not in the
tabu list. Otherwise this solution is rejected and the procedure seeks another neigh-
bor solution. The process is repeated if the global stopping condition is not reached.

• Step 1. Initial solution: the initial sequence of groups is obtained by sorting the
jobs in their due dates increasing order over the first scenario s = 1. From this
sequence, n groups are created, by assigning each job to one group.

• Step 2. Selection of the best neighbor: starting with the current group sequence
solution, each neighbor is evaluated and the best non tabu is kept.

• Step 3. Stopping condition: the algorithm stops when a global time limit, fixed to
30 s, is reached.

In the following, the implementation of the encoding, neighborhood structure
and tabu list for the proposed algorithm are respectively described.

9.3.2.1 Encoding

Because the group sequence and the composition of groups do not depend on the
scenario, a solution of the problem can simply be encoded by a vector of size n.
Let v be the used vector for encoding a solution and g j the index of the group to
which job Jj is assigned on the solution sequence. A complete solution is encoded
by assigning a value g j to vector v for each j, 1 ≤ j ≤ n.
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9.3.2.2 Neighborhood Definition

We denote by |G| the number of groups. Four neighborhood are defined as follows:

• Groups swap: let v j the position to swap, select vk and swap the values v j and vk.
This neighborhood swaps the groups assigned to jobs Jj and Jk.

• Group insert: insert a job Jj of group v j to an existing group vk.
• Group split: split a group into two groups. The fact that the sequence inside the

group depends on the realised scenario makes the split infeasible. To rectify it,
we order the jobs inside a group in increasing order according to the average due
dates of the jobs over the scenarios.

• Groups fusion: merge two consecutive groups into one.

9.3.2.3 Tabu List

The tabu list contains solutions that are recently selected and prevents to choose
them again. The experiment analysis do not really show the contribution of a tabu
list. Therefore, we have fixed a size of 10n for the Tabu list, which gives relatively
better results.

9.3.3 Solution Algorithms for the Standard Robust
Scheduling Method

To evaluate our algorithms for the recoverable robust approach based on groups of
permutable jobs, the algorithms presented above are compared with those of the
standard robust scheduling method (without groups of permutable operations). In
order to do that, we propose a mixed integer linear program (MILP) and a tabu
search heuristic for the standard robust scheduling method. The MILP as well as the
tabu search proposed algorithms are briefly presented.

Positional variables x j,k ∈ {0,1} are defined for this model and Lmax is a contin-
uous variable to minimize. Variable x j,k takes value 1 if the job Jj is in position k,
and 0 otherwise.

• Assignment constraints: assign one job at each position, and one position to each
job

n

∑
j=1

x j,k = 1, ∀k ∈ {1, . . . ,n}
n

∑
k=1

x j,k = 1, ∀ j ∈ {1, . . . ,n}

• Guarantee that the worst earliest schedule Lmax is larger than the maximum late-
ness of each scenario
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Lmax ≥
n

∑
j=1

rs
jx j,k +

k′

∑
q=k

n

∑
j=1

ps
jx j,q −

n

∑
j=1

ds
jx j,k′ ,

∀k,k′ ∈ {1, . . . ,n},k ≥ k′,∀s ∈S

• Objective
min Lmax

This model contains n2 binary variables, one continuous variable and O(n2|S |)
constraints.

To make a fair comparison of the two robust solution paradigms, the proposed
tabu search algorithm is based on the same principles as before and starts with the
same initial solution. In the following, we describe the implementation of the en-
coding and the neighborhoods structure, without changing the rest of the algorithm.

A vector v′ of size n is used to encode a solution in which v′j represents the
position of job Jj in the schedule. The two used neighborhoods are the following:

• Position swap: This neighborhood performs an exchange of the positions of two
jobs. Let v j be the position to swap, select v′k and swap the values v′j and v′k.

• Position insert: insert a job at position v′j to position v′k. The jobs between v′j and
v′k will be shifted.

9.3.4 Computational Experiments

The algorithms have been evaluated on randomly generated instances using the
following scheme. We first generate (p1

j ,r
1
j ,d

1
j ) for the scenario s = 1 which is

called “reference scenario”, then for each s ∈ S , s �= 1, uncertainty was gen-
erated from the data (p1

j ,r
1
j ,d

1
j ). Processing times p1

j were uniformly generated
in the interval [1,50] and we denote by P = ∑n

j=1 p1
j the total processing times

on the reference scenario. Release and due dates were generated in the intervals

[1,μP] and
[
α − β

2 P,α + β
2 P

]
, respectively. For modelling the uncertainty on the

data, for each scenario s ∈ S , s �= 1, (ps
j,r

s
j,d

s
j) are generated uniformly from

the “reference scenario” by taking values from the intervals
[
1−ω p1

j ,1+ω p1
j

]
,[

1−ωr1
j ,1+ωr1

j

]
and

[
1−ωd1

j ,1+ωd1
j

]
, respectively. Parameters μ , α and β

take a fixed value {0.5}, {1} and {1}, respectively. The last parameter ω takes val-
ues from the set {0.2,0.4,0.6}. For each couple (n,s) ten instances are generated in
which n ∈ {10,25,40,100} and S ∈ {2,5,10}. The experiments have been run for
the 360 instances on an Intel i7-4770 CPU 3.40 GHz computer with 8 GB.

We evaluated and compared the performance of the solutions obtained by the
MILP models and the tabu search algorithms. We call RRA the recoverable robust
approach and SRA the standard robust approach. Let zE(A) and zH(A) denote the
objective value of the algorithm A ∈ {RRA,SRA} returned respectively by the exacts
methods given by MILPs and the heuristic one given by the tabu search algorithm.
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In Table 9.5, we provide the aggregate results for each n. The statistics take
account of the average CPU times ttb needed to reach the best solution for both
tabu search algorithms. The average gap between the exact solution found and
the tabu search solution are given by gap columns. gap takes value (zH(SRA)−
zE(SRA))/zH(SRA) in the SRA case and (zH(RRA)− zE(RRA))/zH(RRA) in the
RRA one. The last column Δ = (zH(SRA)− zH(RRA))/zH(SRA) gives the average
gap between the two tabu search algorithms.

Table 9.5: Experimental comparisons
SRA RRA

n ttb(s) gap ttb(s) gap Δ
10 0.01 1.7 % 0.01 0 % 24.79 %
25 0.14 2.3 % 0.15 – 17.28 %
40 0.39 – 0.52 – 16.83 %

100 3.21 – 12.58 – 13.71 %

The experiments show the limits of MILP models, especially for the recoverable
robust approach. In ttb columns, one can see that the RRA tabu search algorithm has
a faster growth than the one for SRA. However, the difference remains not very sig-
nificant and both algorithms have comparable CPU times for considered instances.
As expected finally, column Delta reveals the benefits of the recoverable robust ap-
proach to obtain better worst case maximum lateness values. This is due to the fact
that the RRA can react to the realized scenario thanks to the group structure.

9.4 Using Groups of Permutable Operations in an Industrial
Context

As mentioned in Sect. 9.2.2 robust machine scheduling based on groups of per-
mutable operations is composed of three decisions stages. The second stage decision
set consists, once the scenario is revealed, in selecting a job sequence and we assume
in this chapter that the earliest schedule is selected from a given job sequence. In an
industrial context the selection of a job sequence has to be made in a very short time.
In order to fulfill this timing constraint, either heuristics adapted to groups of per-
mutable operations may be used (as the ERD list scheduling algorithm used in the
previous section) or the selection may be done by a human operator during the ex-
ecution of the schedule. This section describes several alternative ways of selecting
job sequence from a group sequence on a realized scenario (index s is consequently
dropped), keeping industrial requirements in mind.
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 9.4.1 Heuristics for the Reactive Phase of Groups
of Permutable Operations

To solve the job shop scheduling problem one of the most common approaches is
the use of heuristics based on priority dispatching rules (PDR), which are rules used
to select the next job to process from jobs awaiting service on a resource. The lower
bounds presented in Sect. 9.2.2 are used to build PDRs for groups of permutable
operations when the objective is to minimize the makespan.

First a PDR based on the operation’s tail is proposed. The idea is to give more
priority to an operation which exhibits a large tail. As the tails of different operations
may be equal, the rule Shortest Processing Time (SPT), which aims at selecting the
operation with the shortest imminent processing time, is used to break the ties. This
heuristic named SQUTAIL (Square Tail) is formulated as:

min(pk, j −θ
′
k, j)

From the lower bounds another PDR is proposed, with the following behavior:

1. For each operation waiting in the queue, a partial group of operations is generated;
2. The lower bound for the makespan is computed for these partial generated

schedules;
3. The operation with the lowest lower bound is then chosen.

To break the ties, this rule, named LB (Lower Bound), is combined with ei-
ther rule SQUTAIL or the PDR Most Work Remaining (MWR) which selects the
operation with the highest remaining processing time. The use of MWR together
with LB is named LB+MWR and the use of SQUTAIL together with LB is named
LB+SQUTAIL.

Another heuristic, which is not based on the lower bounds, is also proposed.
Shifting Bottleneck (SB) heuristic, described in [1], is a very effective heuristic in
job shop scheduling for the makespan. In order to adapt the shifting bottleneck for
groups of permutable operations, the relaxation in one-machine problem, is used.
In our case, the algorithm is not applied to the machines but to the groups. As the
number of re-optimizations is higher than with the classical SB, better performances
are expected as well as higher computation time. Another benefit of the relaxation
applied to the groups is that all the computed schedules are feasible contrarily to
the classical SB which may give schedules that are not feasible. This heuristic is
named SB.

In [19], these heuristics have been evaluated on a well-known benchmark for
job shop scheduling, the Lawrence’s instances composed of 40 instances of 8 dif-
ferent sizes [16]. They show that these heuristics are very effective to evaluate the
makespan with the following ranking:

• SQUTAIL is the less efficient (in average a deviation of 13.7 % from the optimal)
but the fastest (less than 0.13 s in average with a maximum of 0.46 s),
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• LB+MWR and LB+SQUTAIL are quite similar in performance (an average of
3.6 % from the optimal) and computing time (an average of 0.94 s with a maxi-
mum of 3.8 s),

• SB is the most effective, giving the optimal for 17 instances (in average a de-
viation of 1.5 % from the optimal and a maximum of 3.2 %). It is also more
time-consuming (an average of 3.7 s with a maximum of 10.74 s).

Each heuristic has specific strengths and weaknesses. To give in a very short
time a solution, SQUTAIL is a good compromise, SB is a very effective heuristic in
regards with the performance, LB+MWR and LB+SQUTAIL are in between.

9.4.2 A Multi-Criteria Decision Support System (DSS)
for Groups of Permutable Operations

Another approach to select a job sequence is to let a human operator choose in
real-time the next operation to process within a group of permutable operations, ac-
cording to the operator’s knowledge of the context. In order to make his choice, the
operator needs criteria adapted to groups of permutable operations. In Sect. 9.2.2 a
best earliest schedule and a worst earliest schedule evaluation for any regular ob-
jective within a group sequence for a fixed scenario have been presented. In [23] an
adaptation of the free margin to the groups of permutable operations is presented.
The so-called free sequential margins allows to evaluate during the execution of the
schedule, the schedule lateness.

9.4.2.1 Free Sequential Margin

The free sequential margin computes for an operation according to its earliest exe-
cution, the maximum tardiness which ensures that all schedules enumerated in the
group sequence will present no tardiness.2 The free sequential margin of an opera-
tion mseq(Ok, j) has two components:

• the operation’s net margin msn(Ok, j), which is related to the operation itself re-
gardless the other operations of the group.

• the operation’s group margin msg(Ok, j), which is related to the other operations
of the group.

The computation of the proper free sequential margin of Ok, j corresponds to
the difference between its worst latest starting time τk, j (9.9) and its worst earliest
starting time τk, j (9.7).

Using the worst case earliest starting time and the worst case latest completion
time, the free sequential margin can be expressed as follows :

2 Positive lateness.
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mseq(Ok, j) = min(msn(Ok, j),msg(Ok, j))

msn(Ok, j) =Ck, j − pk, j − τk, j

msg(Ok, j) = min∀Ok,l∈Gk
gk

j
,l �= j Ck, j −∑∀Ok,l∈Gk

gk
j

pk,l − τk, j

For a given group of permutable operations, several situations may occur:

• All the free sequential margins of the current group are positive or zero, in that
case whatever the chosen operation, all possible permutations on the group will
give schedules with no tardiness. Nevertheless, choosing the operation with the
highest group margin permits to maximize the margins.

• There is at least one operation in the group which presents negative free sequen-
tial margin. In that case, there may be sequences in this group which give tardi-
ness, but it is also possible to have sequences with no tardiness:

• If all net margins are positive then there may be sequences on this group with
no tardiness. It is recommended to execute the operation with the highest group
margin in order to increase the negative margins, trying to make them become
positive.

• If there is at least one operation with a negative net margin then all possible
permutations on the group will give late schedules.

An industrial manufacturing scheduling software named ORDO have been de-
veloped in France, based on the concept of groups of permutable jobs and using
the free sequential margin indicator at the shop floor. At the early 2000s ORDO
was used in more than 70 make-to-order manufacturing companies. The software is
described in [21] and more references can be found in the book [17].

9.4.2.2 Multi-Criteria DSS

The free sequential margin is the only criterion used in an industrial context (ORDO
software) to help the operator choose an operation within a group of permutable
operations. However, with only one criterion at his disposal, the operator has little
choice to make his decision.

An experiment conducted at the University of Nantes has tried to evaluate if a
DSS composed of several criteria could be more efficient [18]. This experiment was
realized on a real manufacturing system that can be represented by a six machines
job shop problem. During the first stage decision set, groups of permutable opera-
tions with a fixed scenario were computed. In the second stage, 18 students at the
end of their bachelor degree in production management studies have played the role
of the operator. Each student was asked to schedule in real time a single workstation
(the same for each student), by choosing an operation within a group. The objective
given to the students was to minimize the tardiness, measured by the Lmax.
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The students were separated in two equal groups. The first one has only the free
sequential margin at his disposal while the second group has five different criteria
to make his choice:

• The best earliest schedule evaluation, which gives the best predictable quality of
the schedule if the operation is chosen

• The worst earliest schedule evaluation, which gives the worst predictable quality
of the schedule if the operation is chosen

• The operation’s free sequential margin,
• The operation’s sequence in the routing,
• The operation’s processing time

For the second group, students have to explicitly query for each criterion, one by
one. Thus, the criteria used to help the operator for taking his decision are registered.

The performance of the human-machine system is measured through the qual-
ity of the decision process and not through the scheduling performance. Indeed,
it would only take one “bad” decision to downgrade the scheduling performance.
The quality of the decision making process is evaluated through the proportion of
“good solutions” taken by the operator. A solution is considered “good” if it is not
dominated by another potential choice considering the Lmax.

The results, presented in form of Boxplots (Fig. 9.11), show that with a multi-
criteria DSS, the proportion of good solutions increases, and this effect is significant.
Using the multi-criteria system the mean proportion of good solutions is 0.86 while
it is 0.78 using only the free sequential margin. However, Fig. 9.12 shows that the
free sequential margin remains the most used criterion, the best and the worst case
evaluation are the less used.

This experiment indicates that with a multi-criteria DSS the quality of the deci-
sion process is better. Concerning the criteria, the free sequential margin remains the
dominating criterion. This is not surprising because the instruction was to minimize
the tardiness and this criterion measures the capacity to absorb expected delays. The
best and the worst earliest schedules are less used. This can be explained by the fact
that they have a great anticipation effect contrarily to the operation’s sequence and
the operation’s processing time. These two criteria give direct information on the
operation and thus are better understood by the operator.

Free

sequential margin

Multi-criteria

system

40% 100%60%20% 80%

Fig. 9.11: Proportion of good solutions
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Fig. 9.12: Average proportion of queries by criterion
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23. Thomas, V.: Aide à la décision pour l’ordonnancement d’atelier en temps réel. Ph.D. thesis,
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