
HAL Id: hal-01875890
https://laas.hal.science/hal-01875890v1

Submitted on 15 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using column generation to compute lower bound sets
for bi-objective combinatorial optimization problems

Boadu Mensah Sarpong, Christian Artigues, Nicolas Jozefowiez

To cite this version:
Boadu Mensah Sarpong, Christian Artigues, Nicolas Jozefowiez. Using column generation to compute
lower bound sets for bi-objective combinatorial optimization problems. RAIRO - Operations Research,
2015, 49 (3), pp.527 - 554. �10.1051/ro/2014054�. �hal-01875890�

https://laas.hal.science/hal-01875890v1
https://hal.archives-ouvertes.fr

Using Column Generation to Compute Lower

Bound Sets for Bi-Objective Combinatorial

Optimization Problems

Boadu Mensah Sarpong,1,2 Christian Artigues1,3, Nicolas Jozefowiez1,3

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse,
France

2 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
3 Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract

We discuss the use of column generation in a bi-objective setting.
Just as in single objective combinatorial optimization, the role of column
generation in the bi-objective setting is to compute dual bounds (i.e. lower
bounds for minimization problems and upper bounds for maximization
problems) which can be used to guide the search for efficient solutions or to
evaluate the quality of approximate solutions. The general idea used in this
paper is to first transform the bi-objective problem into single objective
by a scalarization method and then solve the transformed problem several
times by varying the necessary parameters. We show that irrespective
of the scalarization method used, similar subproblems are solved when
applying column generation. For this reason, we investigate possible ways
of intelligently searching for columns for these subproblems in order to
accelerate the column generation method.

keywords Multi-Objective Optimization, Bound Sets, Combinatorial Opti-
mization, Column Generation

1 Introduction

Exact methods for solving difficult single objective optimization problems rely
heavily on lower and upper bounds. The number of exact methods for multi-
objective problems is very few and a possible explanation for this is that the
notion of bounds is not very well developed for multi-objective problems in
comparison to single objective problems. For this reason, it is necessary to
develop models and strategies for computing good bounds for multi-objective
problems and this paper aims at contributing to this goal. Without loss of
generality, we suppose that all objective functions of the considered problems
are to be minimized. We study the use of column generation in computing lower

1

bound sets for bi-objective combinatorial optimization (BOCO) problems. This
study is expected to serve a broad range of applications since an important class of
combinatorial optimization problems can be formulated as integer programs with
exponential number of variables that are efficiently solved by column generation
methods. An advantage of this type of formulations is that they usually have
good linear relaxations and thus strong lower bounds.

1.1 Multi-Objective Combinatorial Optimization

A general multi-objective combinatorial optimization (MOCO) problem deals
with the minimization of a vector of two or more functions F (x) = (f1(x), . . . , fr(x))
over a finite domain of feasible solutions X . The vector x = (x1, . . . , xn) is the
decision variable or solution, Y = F (X) corresponds to the images of the feasible
solutions in the objective space, and y = (y1, . . . , yr), where yi = fi(x), is a point
of the objective space. A solution x′ dominates another solution x′′, (denoted
x′ � x′′), if for any index i ∈ {1, . . . , n}, fi(x′) ≤ fi(x′′) and there is at least one
index i ∈ {1, . . . , n} for which fi(x

′) < fi(x
′′). A feasible solution dominated by

no other feasible solution is said to be efficient or Pareto optimal and its image in
the objective space is said to be nondominated. The set of all efficient solutions is
called the efficient set (denoted XE) and the set of all nondominated points is the
nondominated set (denoted YN). In general, more than one efficient solution may
correspond to the same nondominated point and so solving a MOCO problem
in most practical cases usually means finding at least one efficient solution for
each nondominated point. The nondominated set defines what is known as the
Pareto frontier. An efficient solution that maps onto a nondominated point lying
on the convex part of the Pareto frontier is called a supported efficient solution
and its image is called a supported nondominated point. An efficient solution
that is not supported is called a nonsupported efficient solution.

1.1.1 Lower and Upper Bounds for a MOCO Problem

Although the meaning of bounds in single objective optimization is well studied
and understood, the situation is quite different in the multi-objective case. Ideal
and nadir points are well known lower and upper bounds, respectively, of the set
YN . The coordinates of the ideal point are obtained by optimizing each objective
function independently of the others, whereas the coordinates of the nadir point
correspond to the worst value of each objective function when we consider the set
XE . From Figure ??, it can be seen that these points are usually poor bounds
since they just estimate the whole region where a member of YN may lie. In
this paper, we will be interested in bounds that can reduce the region where the
members of YN are and thus narrow down the search for nondominated points.

Given that a MOCO problem is a discrete problem, its lower bound can
be defined as a set of points L such that the image of every feasible solution
is either a member of L or is dominated by at least one member of L. The
members of a lower bound set do not necessarily belong to Y. That is, they
may or may not correspond to feasible points of the problem. An upper bound

2

Ideal

Nadir
Feasible point

Member of lower

bound set

Estimate of

nondominated region

f1

f2

Figure 1: Lower and upper bounds for a BOCO problem.

may also be defined as a finite set of points in Y that do not dominate one
another. The idea of using sets to define bounds for multi-objective problems
was first introduced in [?]. The constuction and use of bound sets for bi-objective
combinatorial optimization (BOCO) problems has recently been addressed by
some authors [?, ?, ?]. The main idea used by these authors in defining a
lower bound set is to transform the bi-objective problem into single objective by
using a weighted sum method and solving the transformed problem for different
weights in order to compute the complete set of supported nondominated points.
A lower bound set for the considered bi-objective problem may be defined as
the line connecting the set of supported nondominated points. This procedure
is only possible if there is an efficient algorithm for solving the single objective
problem associated to the bi-objective problem. If the single objective problem
associated to the bi-objective problem is NP-hard, then we have to resort to
computing the set of supported nondominated points for a relaxation of the
single objective problem. As pointed out in [?], any scalarization method may
be used to convert a bi-objective problem into single objective when computing
bound sets. Nevertheless, we could not find a published paper that uses a
method not based on the weighted sum scalarization. One reason for this may
be that the weighted sum method converts a multi-objective problem into single
objective by changing only the objective function. In this way, well known single
objective methods can be used to solve the transformed problem. A well known
disadvantage of the weighted sum method is that it cannot find nonsupported
solutions no matter the choice of weights used. If there is a large number of
nonsupported points, a lower bound set produced by using a weighted sum
method can be very poor. For this reason, it seems worthy to study the use of
another scalarization method like the ε-constraint method in computing bound
sets. A disadvantage of an ε-constraint method is that it is not very easy to define
values for the parameter ε in such a way that all members of the nondominated
set are found. Nevertheless, this is possible for some practical problems (see
for example [?, ?]). An advantage of the ε-constraint method is that, unlike a
weighted sum method, it is capable of finding both supported and nonsupported

3

solutions.
An important class of combinatorial optimization problems (e.g. vehicle

routing problems) can be formulated as (mixed-)integer linear programs with an
exponential number of variables. These type of formulations (set covering, and
set packing models) are efficiently solved by column generation based methods.
In spite of the challenge posed by the large number of variables, an advantage of
this type of models is that they usually have strong linear relaxations and so
produce good lower bounds. In this paper, we discuss how column generation
can be used to compute lower and upper bound sets for BOCO problems which
are modeled by an exponential number of variables. In particular, we show that
a set of similar subproblems are solved whether we use a weighted sum method
or an ε-constraint method. For this reason, we investigate the possibility of
treating some of these subproblems simultaneously in order to speed up the
column generation algorithm.

1.2 Contributions and Organization of Work

A first contribution of this work is the application of column generation to BOCO
problems. Although column generation and multi-objective optimization are well
studied independently, the application of column generation to multi-objective
problems seems to have been neglected. This current paper contributes in this
respect. In particular, we propose different approaches to effectively search
for columns when applying column generation to BOCO problems. Another
contribution of this work is in the use of a scalarization method, different from
the weighted sum, in computing lower bound sets for BOCO problems. To the
best of our knowledge, this is the first attempt at designing such a method.

In Section ??, we discuss how column generation can be used in computing
bound sets for BOCO problems. We show that whether we use a weighted sum
method or an ε-constraint method, a similar type of subproblem is encountered.
Due to this, we propose different strategies to effectively search for relevant
columns. An application problem is presented in Section ?? and evaluation of
the bound sets computed for this problem as well as a comparison of the different
column search strategies are given in Section ??. In section ??, we draw some
conclusions and point out possible ways of extending this work.

2 Column Generation for BOCO Problems

In this section, we discuss how column generation can be used to compute
lower and upper bound sets for BOCO problems by considering the following
bi-objective set-covering based formulation, P :

Minimize (c1)Tx (1)

Minimize (c2)Tx (2)

subject to : Ax ≥ b , (3)

x ≥ 0 and integer. (4)

4

In the above formulation, x is a vector of n decision variables and ci is a vector
of n integer coefficients in the ith objective function (i = 1, 2). The constraints
are expressed by using an m × n matrix of coefficients, A, and a vector of m
constants, b.

2.1 Computing Lower and Upper Bound Sets

The main idea used in computing bound sets for BOCO problems is to convert
the problem into single objective by using a scalarization method and solving the
resulting problem (or a relaxation of it) several times by varying the necessary
parameters. In this paper, we consider the ε-constraint method and the weighted
sum method.

The weighted sum method transforms Formulation (??–??) into single ob-
jective by using a vector of non-negative weights λ = (λ1, λ2). The resulting
problem P (λ) is given by

Minimize λ1 · (c1)Tx+ λ2 · (c2)Tx (5)

subject to : Ax ≥ b , (6)

x ≥ 0 and integer. (7)

On the other hand, the ε-constraint approach obtains a single objective
problem by restricting the worst possible value of one objective (say the second
one) to a constant ε ∈ R. Thus, we obtain the single objective problem P (ε) :

Minimize (c1)Tx (8)

subject to : Ax ≥ b , (9)

−(c2)Tx ≥ −ε , (10)

x ≥ 0 and integer. (11)

In a first instance, we suppose that Formulation (??–??) is manageable in
the sense that we have a “small” number of variables in x (i.e. n is small). In
such a case, there is no need for column generation in computing a lower bound
set for problem P . This has been discussed extensively in [?] for the weighted
sum method. Given that Formulation (??–??) is NP-hard in the general case,
we need to find the set of supported nondominated points for a relaxation of it.
We consider the linear relaxation which is obtained by dropping the requirement
for x to be integer. The set of supported nondominated points can be obtained
by a method proposed in [?] which is used widely as the first phase of the two
phases method [?]. A lower bound set can then be defined by the line joining
the points of the computed set.

2.1.1 Using an ε-Constraint Method

The main idea in using an ε-constraint method to compute lower bound sets is
similar to the case where we use a weighted sum method. That is, we need to
solve linear relaxations of P (ε) for different values of ε. In doing so, we need

5

δ1

δi

...

...

ε1 = max ε

ε2

εi

εi+1

min ε

Feasible point

Member of lower

bound set

Infeasible region

f1

f2

Figure 2: Constructing a lower bound set through an ε-constraint method.

to ensure that every feasible point of the problem P is either generated or is
dominated by at least one of the generated points. The general procedure is
summarized in Algorithm ?? and we suppose that all feasible values for (c2)Tx
lie in the range [min ε,max ε]. The output of Algorithm ?? is the set L and a
sequence of values max ε = ε1 > ε2 > · · · > min ε corresponding to the elements
of the set. Note that each step size δi is chosen in such a way that there can be
no feasible point (f∗1 = (c1)Tx∗, f∗2 = (c2)Tx∗) of the original integer program
such that εi+1 < f∗2 < f i2 (see Figure ??). This is a very difficult thing to do for
a general bi-objective problem. For the considered problem, however, we have
integer objective coefficients so we can use an idea similar to the one used in
[?] and which was formalized in [?]. At iteration i, we define the step size as
δi = 1− (df i2e − f i2). As we will later see, it is possible to define even better step
sizes for specific problems. It can be clearly seen that the set, L, returned by
the algorithm is indeed a lower bound set for the considered problem.

Algorithm 1 Using an ε-constraint method to compute a lower bound set

1: Set L← ∅.
2: Set i← 1, and εi ← max ε.
3: while εi ≥ min ε do
4: Solve linear relaxation of P (εi) and let x∗ be the optimal solution vector.
5: Compute the corresponding objective values f i1 = (c1)Tx∗ and f i2 =

(c2)Tx∗.
6: Set L← L ∪ (f i1, f

i
2).

7: Choose δi > 0 such that there can be no feasible point (f∗1 , f
∗
2) of the

original integer program satisfying f i2 − δi < f∗2 < f i2.
8: Set i← i+ 1 and εi ← f i−1

2 − δi−1.
9: end while

Whether we use a weighted sum method or an ε-constraint method, the
members of a lower bound set may correspond to points that are infeasible for

6

problem P . The definition of an upper bound set, however, requires that its
members are feasible points of P . For this reason, heuristics and metaheuristics
are used in computing upper bound sets when necessary. An example is the
greedy heuristic used in computing upper bound sets for instances of the bi-
objective set covering problem in [?]. We stress that the heuristic or metaheuristic
used in computing an upper bound set does not necessarily need to depend on
a particular scalarization method. Any known heuristic or metaheuristic for
problem P may be used.

2.2 Computing Lower Bound Sets by Column Generation

Many practical problems can be formulated in the form of (??–??) with an
exponential number of decision variables in order to obtain a tight linear pro-
gramming relaxation. It is impractical and sometimes impossible to consider
all the variables at once when dealing with such formulations. The idea of a
column generation method for solving such a problem is to start with only a
reasonable number of variables (and the corresponding columns of matrix A) for
which the problem is primal feasible. The other variables together with their cor-
responding columns of A are introduced when necessary by solving an auxiliary
problem. In column generation terminology, the original integer problem with an
exponential number of variables (or columns) is called the integer programming
master problem (IPM) and its linear relaxation is called the linear programming
master problem (LPM). A restriction of IPM (respectively, LPM) to a reasonable
number of columns is called a restricted IMP (RIPM), respectively, RLPM. The
auxiliary problem solved to propose new variables to add to the RLPM or prove
the convergence of the method is called the subproblem (S). Each iteration of
column generation starts by solving the RLPM in order to obtain optimal primal
and dual solutions. The subproblem (S) uses the optimal dual values to search
for new columns that can possibly improve the current objective value of the
RLPM. One or several of such columns, if found, are added to the RLPM and
the process repeats. The method converges when the subproblem finds no new
columns that can possibly improve the current objective value of the RLPM.

Next, we discuss how to use column generation in computing lower bounds
for BOCO problems modelled with an exponential number of variables. We list
the different models involved in a column generation method in the case of a
weighted sum method and also those in the case of an ε-constraint method.

2.2.1 Using a Weighted Sum Method

Linear Programming Master Problem (LPM(λ)):

Minimize (λ1c
1 + λ2c

2)Tx (12)

subject to : Ax ≥ b , (13)

x ≥ 0 . (14)

7

Dual of LPM (DLPM(λ)): Let π be the vector of dual variables associated
with Constraints (??). The dual formulation is

Maximize bTπ (15)

subject to : ATπ ≤ λ1c
1 + λ2c

2 , (16)

π ≥ 0 . (17)

Subproblem (S(λ)): It is defined as finding variables that correspond to
columns of matrix A and which satisfy an equality of the form

λ1c
1
j + λ2c

2
j −AT

j π < 0 , (18)

where Aj is the j-th column of matrix A.

2.2.2 Using an ε-Constraint Method

Linear Programming Master Problem (LPM(ε)):

Minimize (c1)Tx (19)

subject to : Ax ≥ b , (20)

(−c2)Tx ≥ −ε , (21)

x ≥ 0 . (22)

Dual of LPM (DLPM(ε)): Let π be the vector of dual variables associated
with Constraints (??) and ϕ the dual variable associated with Constraint (??).
The dual is formulation is

Maximize bTπ − εϕ (23)

subject to : ATπ − ϕc2 ≤ c1 , (24)

π, ϕ ≥ 0 . (25)

Subproblem (S(ε)): It is defined as finding variables that correspond to
columns of matrix A and which satisfy an equality of the form

c1j + ϕc2j −AT
j π < 0 , (26)

where Aj is the j-th column of matrix A.

2.2.3 General Form of the Subproblem

By comparing the inequalities (??) and (??), we can see that the subproblems
encountered in both cases have a similar form. In addition, the general form of
the subproblem obtained by using a particular scalarization method does not
change when we modify the parameters. Only the values of the dual variables
and coefficients change. A similar result is obtained if we consider problems with
more than two objectives. This means that strategies we describe in solving

8

the subproblems obtained by one of these scalarization methods can easily be
adapted to the other scalarization methods. Moreover, for any given scalarization
method, it is possible to treat more than one subproblem at the same time when
searching for columns. We present different strategies to search for column in
Section ??.

2.2.4 Computing an Upper Bound Set

A direct and intuitive way of computing an upper bound set after computing a
lower bound set by column generation is to solve the RLPM (with its current
columns) as an integer program several times by following the idea of Algo-
rithm ??. Before applying this algorithm, it is possible to use knowledge of the
problem in order to generate more columns that were not necessary in computing
a lower bound set but may be useful when solving the RLPM as an integer
program. It is also possible to use metaheuristics and other problem specific
heuristics if they are available.

2.3 Column Search Strategies

As we have already noted, the general form of subproblem obtained by using a
particular scalarization method does not change when we modify the parameters.
Also, irrespective of the scalarization method used, the subproblem has a similar
form. We discuss some approaches to search for relevant columns when computing
a lower bound set by column generation. We will demonstrate the strategies for
the case where we use an ε-constraint method. They can, however, be easily
adapted to the case where a weighted sum method is used. In the case where a
particular idea applies uniquely to an ε-constraint method, this will be stated.

2.3.1 Point-by-Point Search (PPS)

A standard and very intuitive approach to apply column generation to a BOCO
problem involves solving the RLPM completely for any given value of ε before
continuing to the next value of ε. That is, for any given value of ε, RLPM(ε) is
solved by column generation until the subproblem proposes no new columns that
can improve the current objective value of the RLPM. We call this approach the
point-by-point search (PPS) since the search is completely dedicated to finding
a particular point of a lower bound set (corresponding to a particular value of
ε) before moving on to another point. The algorithm for the PPS is similar
to the one described in Algorithm ?? except that in Step ?? we need to solve
an RLPM to optimality by column generation. The columns generated while
solving the RLPM for a given value of ε are kept in the model throughout the
whole algorithm. This is because they may still be relevant for other values of ε
due to the similar structures of the subproblems. The PPS identifies the points
of a lower bound set following a predictable order. The point corresponding
to a smaller value of ε can be found only after all the points corresponding to
greater values of ε have been found. Although the PPS is simple and easy to

9

implement, it takes no advantage of the similar form of the subproblems solved
for the different values of ε. The column generation method may also be slow to
converge for a given value of ε but the PPS requires us to wait for it to converge
before moving on to another value of ε. This can result in a huge number of
“irrelevant” columns being added to the RLPM and a long computational time.
Two approaches which aim at addressing some of these problems are discussed
below.

2.3.2 k-Step Point-by-Point Search (k-PPS)

In this approach, we have the freedom to leave a given value of ε before the
RLPM has converged for it and switch to another value of ε. If it is necessary,
we will return to a previously skipped value of ε later on. The k-PPS approach
is summarized in Algorithm ??. The first step of this approach is to define
a condition, O, under which a given value of ε for which the RLPM has not
converged will be skipped either temporarily or permanently. The condition
can be as simple as setting a fixed number, k, of column generation iterations.
Instead of using a fixed number of iterations, we may also decide to skip a given
value of ε when the objective value of the RLPM has not improved significantly
after k iterations. This can be a way of addressing some column generation
problems like the plateau effect and the tailing-off effect that were described in
[?]. It is also possible to use any other condition we find appropriate for a given
problem. In Step ?? of Algorithm ??, there is no need to solve RLPM(εi) if
either of these two conditions are satisfied:

1. There is a converged point (f∗1 , f
∗
2) ∈ L such that f∗2 ≤ εi ≤ ε∗, where ε∗

denotes the value of ε for which (f∗1 , f
∗
2) was computed.

2. There is a converged point (f∗1 , f
∗
2) ∈ L and another point (f j1 , f

j
2) such

that f j1 − f∗1 ≤ 1 and f j2 < εi < f∗2 . Note that the point (f j1 , f
j
2) may have

converged or not.

If the first condition is satisfied, there is no need to solve RLPM(εi) since we
are sure to end up with a solution that maps onto (f∗1 , f

∗
2). In the case of the

second condition, the new point that will be generated by solving RLPM(εi) to
optimality will not make the current lower bound set any better since we have
integral objective coefficients.

Unlike in the case of the PPS, the points of a lower bound set are identified by
the k-PPS in no predictable order. That is, the RLPM can converge for a smaller
value of ε before it converges for a greater value. Figure ?? illustrates a possible
order in which the points of a lower bound set are identified by the k-PPS.
This illustration is based on a fictitious example. We suppose that feasible
values for the ε-constraint objective function are integers between min ε = 1
and max ε = 10. Each complete iteration of the k-PPS approach will thus start
by solving RLPM(ε) for ε = 10 as in Figure ??. A description of the series of
diagrams is given below. Note that we can obtain non-integral points since we
are solving linear relaxations rather than integer programs. During the process,
converged points are saved in the lower bound set.

10

i ith converged point from the start of the algorithm

i ith unconverged point generated at current iteration

10

7

4

1

1

2

3

(a)

10

7

4

1

1

2

3

1

4

5

6

7

(b)

10

7

4

1

2

1

1

2

3

4

(c)

10

7

4

1

2

1

1

2

3

3

(d)

10

7

4

1

2

1

1

2

3

4

(e)

10

7

4

1

2

1

1

5

3

4

(f)

Figure 3: Possible order in which points of a lower bound set are identified by the
k-PPS.

11

Algorithm 2 k-Step Point-by-Point Search (k-PPS)

1: Define a condition, O, under which a given value of ε will be skipped before
RLPM(ε) converges for this value.

2: Set L← ∅.
3: repeat
4: Set i← 1, and εi ← max ε.
5: while εi ≥ min ε do
6: if it is necessary to solve RLPM(εi) then
7: Solve RLPM(εi) by column generation until the method converges or

condition O is satisfied.
8: Let x∗ be the current optimal solution vector.
9: Compute the current optimal values f i1 = (c1)TJ x

∗
J and f i2 = (c2)TJ x

∗
J ,

where J is the index set of the columns of A in RLPM(εi).
10: if the method converged in Step ?? then
11: Set L← L ∪ (f i1, f

i
2).

12: end if
13: Choose an appropriate step size δi > 0.
14: Set i← i+ 1 and εi ← f i−1

2 − δi−1.
15: end if
16: end while
17: until the RMP converges for all values of ε in the inner loop.

Figure ??. There are no converged points at the start of the algorithm.
Condition O is satisfied before RLPM(10) converges and the current unconverged
point is (7.0, 3.0). Similarly, condition O is satisfied before RLPM(2) and
RLPM(1) converge. The corresponding unconverged points are (9.5, 2.0) and
(10.75, 1.0), respectively.

Figure ??. This iteration of k-PPS also starts with no converged points from
the previous iteration. Condition O is satisfied before RLPM(10), RLPM(7),
and RLPM(6) converge. The corresponding points are (1.25, 8.0), (1.5, 7.0),
and (1.75, 6.0), respectively. RLPM(5) converges to the point (1.75, 5.0) before
condition O is satisfied. Four more unconverged points (5.0, 4.0), (5.75, 3.0),
(6.25, 2.0), and (7.5, 1.0) corresponding to RLPM(4), RLPM(3), RLPM(2), and
RLPM(1), respectively, are generated in this iteration.

Figure ??. RLPM(10) converges to the point (1.0, 8.0) and becomes the
second converged point since the start of the algorithm. RLPM(7) and RLPM(6)
are permanently skipped for the rest of the algorithm since these values of
ε satisfy the second condition for skipping a value of ε. Four unconverged
points (3.75, 4.0), (4.5, 3.0), (5.5, 2.0), and (7.5, 1.0) corresponding to RLPM(4),
RLPM(3), RLPM(2), and RLPM(1), respectively, are generated in this iteration.

12

Figure ??. There are two previously converged points at the start of this
iteration. RLPM(10), RLPM(9), and RLPM(8) are skipped permanently for rest
of the algorithm based on the first and second conditions for skipping a value
of ε. Condition O is satisfied before RLPM(4) and RLPM(3) converge and the
corresponding points are (3.25, 4.0) and (3.75, 3.0), respectively. One converged
point (4.0, 2.0) corresponding to RLPM(2) is generated whereas an unconverged
point RLPM(1) corresponding to (6.5, 1.0) is also produced.

Figure ??. There are three previously converged points at the start of this iter-
ation. The values of ε which were skipped in previous iterations are also skipped
here for the same reasons as before. Two unconverged points (2.5, 4.0) and
(3.5, 3.0) corresponding to RLPM(4) and RLPM(3), respectively, are generated.
RLPM(1) converges to the point (5.5, 1.0).

Figure ??. This iteration starts with RLPM(4) and which fails to converge
before condition O is satisfied. The corresponding unconverged point is (2.0, 4.0).
RLPM(3) converges to the point (2.5, 3.0). There is no need for an additional
iteration to return to RLPM(4) thanks to the second condition for skipping a
value of ε.

It is important to note that the set returned by the k-PPS represents a
lower bound for the considered BOIP. In other words, if a given value of ε is
skipped, then the algorithm will either return to the skipped value later on or
prove that it is unnecessary to do so. Hence, no relevant points are missed. One
main challenge of the k-PPS is that it is not easy to decide on a good condition
O when we don’t have enough information on how the RLPM behaves at the
start of the algorithm. For this reason, it may be necessary to have an adaptive
condition O that can be modified across the iterations when we have enough
information.

2.3.3 Sequential Search

The main idea behind the sequential search approach is to work on a whole
frontier rather than deal with individual points. This is achieved by returning
a set of columns that are relevant for several values of ε at each iteration of
column generation. A description of the approach is given in Algorithm ??.
Each iteration of the sequential search approach consists of two main steps. In
step I (steps ?? to ?? of Algorithm ??), we solve the RLPM (without generating
any columns) for several values of ε for which it has not converged. The search
for relevant columns is done in step II (steps ?? to ?? of Algorithm ??). During
an iteration, the sets Π and Ω are used to temporary store the vectors of dual
values and the generated columns, respectively. Before solving the subproblem
corresponding to a given point generated in step I, we first need to verify
if any of the columns already found for the other points are relevant (has a
negative reduced cost) for this new point. If this is the case the new point is
skipped without solving the subproblem corresponding to it since the point is
already represented by the set of generated columns. Thus, the subproblem

13

corresponding to a new point is only solved if there are no previously found
columns in the same iteration that are relevant for this point.

Algorithm 3 Sequential Search

1: Set L← ∅.
2: repeat
3: Set i← 1, εi ← max ε, Π← ∅, and Ω← ∅.
4: while εi ≥ min ε do
5: if it is necessary to solve RLPM(εi) then
6: Solve RLPM(εi) once without generating any columns.
7: Let x∗ and πi be the optimal solution and dual vectors, respectively.
8: Compute the current optimal values f i1 = (c1)TJ x

∗
J and f i2 = (c2)TJ x

∗
J ,

where J is the index set of the columns of A in RLPM(εi).
9: Set Π← Π ∪ πi.

10: Choose an appropriate step size δi > 0.
11: Set i← i+ 1 and εi ← f i−1

2 − δi−1.
12: end if
13: end while
14: for each element πi of Π do
15: if no column of Ω is of negative reduced cost for πi then
16: Solve the subproblem corresponding to πi.
17: Let Λi be the set of columns found and set Ω← Ω ∪ Λi.
18: if Λi = ∅ then
19: Set L← L ∪ (f i1, f

i
2).

20: end if
21: end if
22: end for
23: Add all columns of Ω to the RMP.
24: until Ω = ∅.

There is no particular order in which the points of a lower bound set are
identified by a sequential search method. Note, however, that a point generated
in step I of an iteration can be proven to have converged in step II only if the
subproblem corresponding to it is solved directly by an exact algorithm and no
relevant columns are found. A fictitious example to demonstrate a possible order
in which the points of a lower bound set are identified by a sequential search
approach is given in the series of diagrams in Figure ??. An explanation of each
of the diagrams is given below.

Figure ??. There are no converged points at the start of the algorithm. Step
I produces three points (7.0, 3.0), (9.5, 2.0) and (21.5, 1.0) corresponding to
RLPM(10), RLPM(2), and RLPM(1), respectively. None of these points is
proven to have converged in step II.

14

i ith converged point from the start of the algorithm

i ith unconverged point generated at current iteration

10

7

4

1

1

2

3

(a)

10

7

4

1

1

1

2

3

4

5

6

7

(b)

10

7

4

1

1

1

2

3

2

4

5

6

(c)

10

7

4

1

1

1

2

3

3

2

4

5

(d)

10

7

4

1

1

3

2

4

5

(e)

10

7

4

1

1

3

2

4

5

(f)

Figure 4: Possible order in which points of a lower bound set are identified by a
sequential search approach.

15

Figure ??. There are no converged points at the start of this iteration. In step
I, seven points are generated. Out of these points, only one of them (1.0, 8.0)
corresponding to RLPM(10) is proven to have converged in step II. For the rest
of the algorithm, RLPM(10), RLPM(9), and RLPM(8) will be skipped since the
first condition for skipping a value of ε is satisfied for these values.

Figure ??. This iteration starts from RLPM(7) and generates seven points
in step I out of which only one is proven to have converged in step II. The
converged point is (2.5, 3.0) and corresponds to RLPM(3).

Figure ??. The two points that converged in the preceding iterations are known
at the beginning of this iteration. Step I starts from RLPM(7) and generates six
points and one of these points, (1.75, 5.0) corresponding to RLPM(5), is proven
to have converged in step II. It is noted that the second condition for skipping
a value of ε is satisfied for the first three unconverged points. For this reason,
RLPM(7), RLPM(6), and RLPM(4) will be skipped for the rest of the algorithm.

Figure ??. Step I produces two points (4.0, 2.0) and (6.5, 1.0) corresponding
to RLPM(2) and RLPM(1), respectively. In step II, the point (4.0, 2.0) is proven
to have converged whereas the other point remains unconverged.

Figure ??. RLPM(1) is solved by column generation until it converges to
the point (5.5, 1.0). Note that this is the same as repeating steps I and II the
necessary number of times until RLPM(1) converges.

An advantage of the sequential search approach is that, it ensures some
uniformity in the convergence of the members of L. This can be a very useful
technique in the design of heuristics and metaheuristics that are based on column
generation since we are sure to find a set of points that is representative of
the whole range of the Pareto frontier. Another advantage of the sequential
search approach is that it encourages similar columns to appear in the solution
of the points in a bound set and this is very necessary in some applications. An
example is the case of creating treatment plans in the field of radiotherapy [?].
A bi-objective problem studied in this field is to treat defective cells and also
reduce the side effects resulting from the use of radio waves. A column in the
model used represents a weekly treatment plan which may require the expertise
of several workers. A complete treatment program consists of several weekly
treatment plans. Clearly, a treatment program that is made up of too many
different weekly plans will be impractical to implement. Applying a sequential
search approach to such a problem can help in obtaining more practical plans.

16

3 Application to the Bi-Objective Multi-Vehicle
Covering Tour Problem

In this section, we use the ideas presented in the preceding section to compute
lower and upper bound sets for a bi-objective multi-vehicle extension of the
covering tour problem (CTP) [?]. This extension is called the bi-objective multi-
vehicle CTP (BOMCTP). We compute a lower bound set by using an ε-constraint
scalarization since we have a condition to efficiently determine possible values of
ε.

3.1 Problem Description

The CTP consists in designing a route over a subset of locations with the aim of
minimizing the length of the route. In addition, each location not visited by the
route should lie within a fixed radius from a visited location. The fixed radius
is called the cover distance. The CTP has a generic application in the design
of bi-level transportation networks [?]. The aim in this kind of problems is to
construct a primary route of minimum length in such a way that all points that
are not on it can easily reach it. Specific applications arise in the problem of
choosing where to locate post boxes among a set of candidate locations [?] and
also in the delivery of medical services to villages in developing countries [?, ?].
A bi-objective generalization [?] as well as a multi-vehicle extension [?] of the
CTP have been proposed. The cover distance in the bi-objective version is not
fixed in advance but rather induced by the constructed route. It is computed by
assigning each non-visited location to the closest visited location and calculating
the maximum of these distances. The objectives are to minimize the length of
the route as well as the induced cover distance. In the multi-vehicle version, the
combined length of a set of routes is minimized for a fixed cover distance. In
addition, all routes must start from a common location (called the depot) and
the number of locations that a single route can visit is limited by a predetermined
constant p.

The BOMCTP discussed in this paper can be seen as a combination of the
bi-objective and the multi-vehicle versions of the CTP and it is defined on a
graph G = (V ∪W,E). The nodes of V represent locations which may be visited
by a route whereas the members of W are to be assigned to visited nodes of V .
There is a subset of nodes T ⊆ V which must be visited by at least one route.
In particular, v0 ∈ T is the depot where all routes must start and also end. Set
E consist of edges connecting all pairs of nodes in V ∪W and a distance matrix
D = (dij) satisfying the triangle inequality is defined on this set. The BOMCTP
consists in designing a set of routes over a subset of V which should include all
nodes of T and such that each route visits not more than p nodes of V \{v0}.
The two objectives are to minimize the total length of the set of routes and the
cover distance induced by the set.

17

3.2 A Set Covering Formulation for the BOMCTP

Let Ω represent the set of all feasible routes. A feasible route is defined as a
Hamiltonian cycle over a subset of V which includes the depot and visits not
more than p nodes. The cost of a route k ∈ Ω is given by the sum of the cost of
the edges it uses and we denote it by ck. Let variable θk = 1 if route k is selected
in the solution and θk = 0, otherwise. Constant aik = 1 if route k visits node
vi ∈ V \{v0} and aik = 0 if this is not the case. Variable zij is used to indicate
whether node wj ∈ W is assigned to vi ∈ V \{v0} in the solution (zij = 1) or
not (zij = 0). Let Γmax be the cover distance induced by a given set of routes.
Note that Γmax = max{dijzij : vi ∈ V \{v0} and wj ∈W}. The BOMCTP can
be described with the following set covering model.

Minimize
∑
k∈Ω

ckθk (27)

Minimize Γmax (28)

subject to : Γmax − dijzij ≥ 0 (vi ∈ V \{v0}, wj ∈W) ,
(29)∑

vi∈V \{v0}

zij ≥ 1 (wj ∈W) , (30)

∑
k∈Ω

aikθk − zij ≥ 0 (vi ∈ V \{v0}, wj ∈W) ,

(31)∑
k∈Ω

aikθk ≥ 1 (vi ∈ T\{v0}) , (32)

Γmax ≥ 0 , (33)

zij ∈ {0, 1} (vi ∈ V \{v0}, wj ∈W) ,
(34)

θk ∈ N (k ∈ Ω) . (35)

In this formulation, the objectives of minimizing the total length of the set
of routes and the induced cover distance are represented in (??) and (??),
respectively. Constraints (??) indicate that the induced cover distance should be
large enough to respect the distances of all assignments of a node wj ∈W to a
node vi ∈ V \{v0}. Constraints (??) and (??) specify that each node of W should
be assigned to at least one node of V \{v0} which is visited by a route selected
in the solution. The requirement that each node of T\{v0} is visited by at least
one selected route is represented in Constraints (??). Constraints (??–??) define
the domains of the decision variables used. We define θk to be a non-negative
integer instead of binary in order to prevent constraints of the form θk ≤ 1 in
the linear relaxation. The optimal solution of the problem is not affected by this
change.

18

3.3 Restricted Linear Programming Master Problem

We restrict the value of the cover distance induced by the set of routes to be at
most ε to obtain the constraint

−Γmax ≥ −ε . (36)

The LPM is defined by the linear relaxation of the formulation with objective
function (??) and Constraints (??–??). The RLPM is obtained by replacing Ω
in the LPM with a subset Ω1 for which the problem is primal feasible.

Clearly, there is a finite number of values for Γmax in the range [min ε,max ε].
The value for min ε can be obtained when all nodes of V \{v0} are visited by a
route so that each node of W can be assigned to the node of V \{v0} which is
closest to it. In a similar way, a value for max ε can be obtained by constructing
a single route of the form v0 → vi → v0 where vi is the closest node of V \{v0}
to the depot, v0. In such a situation, vi will be required to cover all the
nodes of W and so induce a maximum reasonable value for Γmax. From the
definition of the induced cover distance (Γmax), the value of dij for every couple
(vi, wj) ∈ V \{v0}×W is a candidate value for Γmax. Nevertheless, some of these
candidate values will never be the cover distance. We use an idea introduced in
[?] and which we state in the next proposition to determine the values that can
be the cover distance for any given instance.

Proposition 3.1. Given vi ∈ V \{v0} and wj ∈ W , dij is a feasible value for
Γmax if and only if the following two conditions are satisfied.

1. ∀vt ∈ T\{v0} such that vt 6= vi, dij ≤ dtj and
2. ∀wl ∈W such that wl 6= wj , ∃vh ∈ V \{v0} such that dhl ≤ dij ≤ dhj.

Proof. The proof is given in two parts. Part I shows that if dij is a feasible value
for Γmax then conditions (??) and (??) are satisfied. Part II also shows that if
conditions (??) and (??) are satisfied then dij is a feasible value for Γmax.
Part I. The necessary conditions for dij to be the value of Γmax are that vi is

visited by a selected route and wj is assigned to vi. Yet, each node of
W is assigned to a visited node of V \{v0} that is closest to it. Since all
nodes vt ∈ T\{v0} are visited in any feasible solution, wj will be assigned
to vi only if dij ≤ dtj . This proves condition (??). Next, suppose that
Γmax = dij but condition (??) is false. That is, there exists wl ∈W such
that wl 6= wj and either dij > dhj or dij < dhl for all vh ∈ V \{v0}. Then,
either wj will be assigned to vh (since vh is closer to it than vi) or if
wj is assigned to vi then dhl is a better candidate for Γmax (since it is
greater than dij and Γmax is determined by the maximum of the assigned
distances). In both cases, dij cannot be the value for Γmax and so condition
(??) must be true if Γmax = dij .

Part II. If conditions (??) and (??) are satisfied then wj will be assigned to vi
(if it is visited) rather than to a node vt ∈ T\{v0}. If vi is visited and wj

is assigned to vi, then condition (??) implies that dij can possibly be the
maximum value among all assigned distances and so a feasible value for
Γmax.

19

Using the two conditions in Proposition ??, all the feasible values of Γmax can
be computed for any given instance of the BOMCTP. Thus, instead of fixing ε
to the next integer value less than the value of Γmax obtained in a previous step,
we rather fix it to the next feasible value of Γmax. By doing so, some unnecessary
iterations can be avoided during the computation of the set of lower bounds.

3.4 Dual of LPM

Let γij (vi ∈ V \{v0}, wj ∈ W), βj (wj ∈ W), αij (vi ∈ V \{v0}, wj ∈ W),
πi (vi ∈ T\{v0}) and λ be the non-negative dual variables associated with
Constraints (??), (??), (??), (??) and (??), respectively. The dual formulation
of the LPM is given by:

maximize
∑

wj∈W
βj +

∑
vi∈T\{v0}

πi − ελ (37)

subject to :∑
vi∈V \{v0}

wj∈W

aikαij +
∑

vi∈T\{v0}

aikπi ≤ ck (k ∈ Ω) , (38)

βj − dijγij − αij ≤ 0 (vi ∈ V \{v0}, wj ∈W) , (39)∑
vi∈V \{v0}

wj∈W

γij − λ ≤ 0 , (40)

γij ≥ 0 (vi ∈ V \{v0}, wj ∈W) , (41)

αij ≥ 0 (vi ∈ V \{v0}, wj ∈W) , (42)

βj ≥ 0 (wj ∈W) , (43)

πi ≥ 0 (vi ∈ T\{v0}) , (44)

λ ≥ 0 . (45)

3.5 Sub-problem

The sub-problem is to search for feasible routes k ∈ Ω\Ω1 (Ω1 is the set of
columns in the RLPM at any given time) such that

ck −
∑

vi∈V \{v0}
wj∈W

aikαij −
∑

vi∈T\{v0}

aikπi < 0 . (46)

We define π∗i = πi if vi ∈ T\{v0} and α∗ij = αij if vi ∈ V \{v0}, wj ∈ W . In all
other cases these variables are set to 0. We also let xijk = 1 if route k visits vj
immediately after visiting vi and xijk = 0 if this is not the case.

Note that ck =
∑

(vi,vj)∈E

xijkdij and
∑

vi∈V \{v0}

aik =
∑
vi∈V

aik =
∑

(vi,vj)∈E

xijk .

20

The starred versions of the dual variables (α∗ij and π∗i) also allow us to write the
summations over V \{v0} and T\{v0} as a summation over V . We get∑

vi∈V \{v0}
wj∈W

aikαij =
∑
vi∈V

(∑
wh∈W

α∗ih

)
aik =

∑
(vi,vj)∈E

(∑
wh∈W

α∗ih

)
xijk

and
∑

vi∈T\{v0}

aikπi =
∑
vi∈V

aikπ
∗
i =

∑
(vi,vj)∈E

π∗i xijk .

Condition (??) can, thus, be simplified to∑
(vi,vj)∈E

(
dij − π∗i −

∑
wh∈W

α∗ih

)
xijk < 0 . (47)

Feasible routes satisfying condition (??) are searched for by solving an elementary
shortest path problem with resource constraints (ESPPRC) given by

Minimize
∑

(vi,vj)∈E

(
dij − π∗i −

∑
wh∈W

α∗ih

)
xijk subject to k ∈ Ω\Ω1 .

(48)
That is, we seek feasible routes with negative reduced costs where the reduced
cost of (vi, vj) ∈ V ×V is given by dij −π∗i −

∑
wh∈W α∗ih. The ESPPRC is very

well studied since it appears as a subproblem in many vehicle routing problems
solved by column generation. The problem is NP-hard in the strong sense [?].
Several algorithms based on dynamic programming have been proposed to solve
the ESPPRC. These algorithms rely mainly on the label setting algorithm for
the shortest path problem with resource constraint (SPPRC) [?] where a route
may visit a given node more than once. An exact algorithm for the ESPPRC is
given in [?]. We solve the subproblem by the decremental state space relaxation
(DSSR) algorithm [?, ?]. The only resource constraint considered is the limit on
the total number of nodes a route can visit.

4 Computational Experiments

We have performed numerical experiments to evaluate the quality of lower and
upper bound sets for the BOMCTP and also compare the relative performance
of the different column search approaches. In order to evaluate the quality of
a lower bound set and a corresponding upper bound set, we used a distance
based measure (µ1), and an area based measure (µ2) which were presented in [?].
Combining an area based measure with a distance based measure gives a good
indication of the quality of the bounds. Roughly speaking, µ1 represents the
worst distance (with respect to the range of objective values) between a point
of the upper bound set and a point of lower bound set closest to it. Also, µ2

represents the fraction of the area that is dominated by the lower bound set but
not by the upper bound set. This is, the area where additional points of YN can

21

be found. If a lower bound set and a corresponding upper bound set are good,
then we expect that both µ1 and µ2 will be small in value. The smaller both
values are, the better the quality of the bounds. These two measures complement
each other and as explained by the authors of [?], the measures can be seen
to play a role analogous to the optimality gap in single objective optimization.
The reader is referred to the relevant paper [?] for further explanation of the
measures.

Before presenting the results obtained for the BOMCTP, we first give an
overview of the quality of lower bound sets obtained by the weighted sum and
the ε-constraint methods for the bi-objective set covering problem.

4.1 Quality of Lower Bound Sets for the Bi-Objective Set
Covering Problem

We compare the quality of lower bound sets computed by the weighted sum and
ε-constraint methods for the bi-objective set covering problem (BOSCP). Since
the BOSCP serves as a base formulation for most problems solved by column
generation, the aim of this section is to give a general idea of the quality of lower
bounds computed by the two scalarization methods for this kind of problem and
its extensions. The BOSCP is formulated as :

Minimize

n∑
j=1

c1jxj (49)

Minimize

n∑
j=1

c2jxj (50)

subject to :

n∑
j=1

aijxj ≥ 1 i = 1, 2, . . . ,m , (51)

xj ∈ {0, 1} j = 1, 2, . . . , n . (52)

The integral objective coefficients are c1j and c2j . The matrix coefficients are
aij ∈ {0, 1} and we say that constraint i is covered by variable xj if aij = 1.
The BOSCP instances used for the tests can be found at http://xgandibleux.
free.fr/MOCOlib/MOSCP.html. They are the same instances that were used in
[?]. Since the goal is to evaluate the quality of lower bound sets, we used the
exact nondominated sets computed by the algorithm proposed in [?] as upper
bound sets. For this reason, the values of the two quality measures obtained
for the weighted sum method are different from those obtained in [?] when
greedy heuristics are used to compute upper bound sets. All computer codes
were written in C/C++ and the LP/MIP optimizers of ILOG CPLEX 12.4
were used. The tests were run on an Intel(R) Core(TM)2 Duo CPU E7500
@ 2.93GHz computer with a 2 GiB RAM and a summary of the results are
presented in Table ??. In this table, |U∗| represents the number of points in the
exact nondominated set, time is the computational time in cpu seconds, |ext| is
the number of extreme points computed when the weighted sum method is used,

22

Table 1: Comparison of lower bound sets for the BOSCP

Weighted Sum ε-Constraint

Instance |U∗| time |ext| µ1% µ2% time |L| µ1% µ2%

2scp11A 39 0.00 13 2.9 2.5 0.02 192 2.7 2.1
2scp11C 10 0.00 21 13.7 34.1 0.01 117 13.9 32.7
2scp41A 105 0.01 23 1.5 1.3 0.14 1028 1.4 1.2
2scp41C 24 0.02 17 2.6 4.5 0.04 280 2.7 5.7
2scp42A 206 0.02 37 0.6 0.5 0.45 1663 0.5 0.4
2scp42C 87 0.04 51 3.0 3.4 0.44 2245 2.9 3.4
2scp43A 46 0.04 63 3.6 4.3 0.12 473 3.5 4.1
2scp43C 12 0.02 38 6.3 11.1 0.04 225 6.3 10.6
2scp61A 254 0.06 58 1.1 0.8 1.39 2829 1.1 0.8
2scp61C 28 0.02 17 1.0 3.7 1.02 732 0.9 4.4
2scp62A 98 0.28 236 3.5 3.6 1.01 1240 3.5 3.7
2scp62C 6 0.23 180 38.9 46.6 0.00 2 36.6 58.5
2scp81A 424 0.07 47 0.5 0.4 3.49 5580 0.4 0.3
2scp81C 14 0.12 77 0.3 0.5 0.60 147 0.4 0.7

and |L| is the total number of points in a lower bound set when an ε-constraint
method is used. Values of the two quality measures are expressed as percentages
under the headings µ1% and µ2%.

The results show that, the lower bound sets obtained by both methods for
almost all the instances are of good quality. The lower bounds obtained in the
case of the ε-constraint method are slightly better than those obtained for the
weighted sum method. The situation is quite different when we compare the
computational times and the computational complexities of the two methods.
In the case of the weighted sum method, relatively few extreme points need
to be calculated and this is done in negligible time for the instances tested.
The number of points that needs to be calculated when an ε-constraint method
is used can be very large (possibly exponential) and this may require a very
long computational time. For example, the ε-constraint method computed 5580
points in a time of 3.49 cpu seconds for instance 2scp81A. This is very large when
we compare it with the 47 points computed in 0.07 seconds when a weighted
sum method was used. This stresses the need to reduce the number of points
calculated when using an ε-constraint method by determining good step sizes.

4.2 Experiments for the BOMCTP

We now present results from experiments conducted to evaluate the quality of
lower and upper bound sets computed for the BOMCTP. We also compare the
relative perfomance of the different column search approaches.

23

Table 2: Quality of bound sets for the BOMCTP (p = 5)

PPS k-PPS Sequential

|T | |V | |W | |L∗| |U | µ1% µ2% |U | µ1% µ2% |U | µ1% µ2%

1 30 60 64 29 5.2 26.2 28 5.2 26.1 29 5.1 26.0
1 30 90 66 29 6.0 27.6 29 6.1 27.5 28 5.9 27.5
1 40 80 58 30 5.5 26.1 29 5.6 26.0 30 5.4 25.9
1 40 120 67 37 5.1 25.4 29 5.1 25.4 36 5.0 25.2
1 50 100 65 34 4.9 24.7 34 4.9 24.5 35 4.8 24.5
1 50 150 67 35 4.5 24.8 39 4.6 24.7 36 4.5 24.0

8 30 60 15 9 7.7 54.1 9 7.7 54.1 9 7.6 54.1
8 30 90 17 10 11.0 53.3 10 11.1 53.3 10 11.0 53.2
10 40 80 15 11 1.4 58.1 11 1.4 58.1 12 1.3 58.1
10 40 120 16 13 9.1 61.7 12 9.1 61.7 14 9.0 61.8
13 50 100 18 11 16.7 72.9 11 16.7 80.0 11 16.6 72.7
13 50 150 19 10 21.6 72.6 11 21.5 72.7 12 21.6 72.9

15 30 60 2 6 20.3 54.7 5 20.3 54.6 6 20.3 54.6
15 30 90 5 6 40.5 55.7 6 40.5 55.7 6 40.4 55.7
20 40 80 6 4 57.3 61.4 5 57.3 61.4 5 57.3 61.4
20 40 120 7 5 31.2 62.3 6 31.2 62.3 6 31.2 62.3
25 50 100 6 4 24.3 76.8 4 24.3 76.5 4 24.3 76.8
25 50 150 9 4 28.9 79.1 4 28.9 78.9 5 28.9 79.0

4.2.1 Description of Instances and Experiments

The Mersenne Twister random number generator was used to generate in-
stances similar to those described in the literature [?, ?, ?] but which are not
publicly available. The generator can be obtained at http://www.math.sci.

hiroshima-u.ac.jp/~m-mat/MT/emt.html. The node sets were obtained by
generating |V |+ |W | points in the [0, 100]× [0, 100] square with the depot re-
stricted to lie in [25, 75] × [25, 75]. Set T (respectively, V) is taken to be the
first |T | (respectively, |V |) points and set W is taken as the remaining points.
The distance between two points is calculated as the Euclidean distance be-
tween them. Five instances for every combination of |V | ∈ {30, 40, 50} and
|W | ∈ {2|V |, 3|V |} were generated. Values of |T | in {1, d0.25|V |e, d0.50|V |e}
and p in {5, 8} were tested. The exact instances used for our experiments can
be found at http://homepages.laas.fr/bmsarpon/ctp_instances.zip. All
computer codes were written in C/C++ and the RMP was solved with ILOG
CPLEX 12.4. Tests were run on an Intel(R) Core(TM)2 Duo CPU E7500 @
2.93GHz computer with a 2 GiB RAM. Summary of the results are given in
Tables ?? to ??. All the values in these tables are averages over the five generated
instances.

The condition we used in implementing the k-PPS, is to skip a current value
of ε when the objective value of the RLPM has not improved (i.e. decreased)

24

Table 3: Quality of bound sets for the BOMCTP (p = 8)

PPS k-PPS Sequential

|T | |V | |W | |L∗| |U | µ1% µ2% |U | µ1% µ2% |U | µ1% µ2%

1 30 60 64 29 5.3 26.3 29 5.3 26.1 30 5.2 26.2
1 30 90 63 30 6.5 28.2 29 6.5 28.1 29 6.4 28.0
1 40 80 58 28 5.6 26.0 28 5.5 26.0 30 5.6 26.0
1 40 120 65 35 5.2 25.7 26 5.3 25.4 36 5.1 25.2
1 50 100 65 34 4.9 24.7 34 4.9 24.6 33 4.7 24.6
1 50 150 64 36 4.7 24.8 38 4.6 24.5 36 4.7 24.4

8 30 60 15 10 10.2 65.1 10 10.2 65.0 10 10.2 65.1
8 30 90 15 9 28.7 69.5 10 26.8 69.7 10 20.3 69.6
10 40 80 14 8 16.6 68.0 8 16.6 67.9 9 16.6 67.8
10 40 120 17 11 9.3 73.4 10 9.3 73.3 11 9.2 73.3
13 50 100 16 10 35.2 74.2 10 35.2 74.2 10 35.1 74.2
13 50 150 17 9 30.1 76.7 9 30.1 76.7 10 30.1 76.7

15 30 60 2 6 29.0 65.4 6 29.0 65.4 6 29.0 65.4
15 30 90 2 6 35.4 71.1 6 35.4 71.3 6 35.4 71.0
20 40 80 2 4 41.2 72.9 5 41.3 73.0 5 41.1 72.7
20 40 120 4 6 9.2 73.8 6 9.1 73.8 6 9.1 73.2
25 50 100 3 5 34.9 81.3 5 35.0 81.1 6 34.9 81.0
25 50 150 4 5 24.3 87.9 6 24.2 87.3 7 24.2 87.2

by more than 1 after k = 3 iterations of column generation. Given that column
generation is an exact method for the RMP, the same lower bound set is obtained
for a given instance irrespective of the column search approach used. The number
of elements in the common lower bound set for each instance is given under the
column with heading |L∗|. The number of elements in an upper bound set is
given under the columns with heading |U |. We recall that for each approach, an
upper bound set is computed after computing a lower bound set by following
the idea of PPS. The only difference is that we solve integer programs rather
than linear relaxations. For each instance, these values are different for the
different column search approaches since different columns are generated by
each approach when computing a lower bound set. The columns with headings
dssr and cols give the number of times the sub-problem was solved with the
DSSR algorithm and the total number of columns generated, respectively, when
computing a lower bound set. All the other column headings have the same
meanings as those for the BOSCP in Table ??.

4.2.2 Discussion of Results

A first general comment is that, the number of points in a bound set decreases
when the size of T increases. This can be seen in Tables ?? and ?? under

25

Table 4: Computational times for the BOMCTP (p = 5)

PPS k-PPS Sequential

|T | |V | |W | time dssr cols time dssr cols time dssr cols

1 30 60 7.78 160 358 6.72 126 388 7.00 98 372
1 30 90 12.81 93 332 10.82 95 364 9.13 73 351
1 40 80 14.99 72 416 11.37 70 479 7.83 59 461
1 40 120 15.98 129 435 12.51 112 521 7.76 90 478
1 50 100 25.96 152 570 13.33 147 574 8.81 135 583
1 50 150 24.66 137 591 15.29 116 573 11.51 106 619

8 30 60 6.32 165 808 8.74 147 823 7.89 123 747
8 30 90 15.28 143 837 13.06 139 891 14.14 104 865
10 40 80 18.60 157 969 19.37 142 1036 15.60 132 974
10 40 120 28.21 195 1048 28.16 176 986 23.92 155 1096
13 50 100 42.39 243 1160 39.49 198 1171 36.34 174 1235
13 50 150 51.69 286 1395 52.67 201 1343 42.11 194 1480

15 30 60 16.81 149 825 15.08 126 891 13.97 114 926
15 30 90 26.41 153 973 25.54 148 974 23.78 141 969
20 40 80 35.83 168 1232 36.83 160 1235 27.43 143 1198
20 40 120 53.45 192 1568 50.74 174 1549 42.81 158 1480
25 50 100 55.49 227 1913 49.03 195 1629 44.19 172 1670
25 50 150 68.22 285 2194 61.64 223 2160 53.30 206 2075

26

Table 5: Computational times for the BOMCTP (p = 8)

PPS k-PPS Sequential

|T | |V | |W | time dssr cols time dssr cols time dssr cols

1 30 60 11.82 245 374 15.83 183 392 6.85 119 449
1 30 90 14.86 144 357 14.23 141 383 8.33 132 417
1 40 80 53.97 124 436 22.24 109 451 17.54 93 491
1 40 120 47.20 154 438 29.32 127 492 18.30 120 524
1 50 100 96.60 189 618 22.55 142 575 15.09 132 633
1 50 150 86.50 199 566 31.13 132 573 19.58 111 578

8 30 60 52.13 231 738 53.92 211 718 48.12 176 619
8 30 90 58.00 195 953 62.17 176 949 51.30 164 946
10 40 80 81.38 206 1087 76.11 184 1093 69.26 153 1074
10 40 120 69.48 237 988 61.90 201 1027 54.67 159 1080
13 50 100 123.70 273 1439 115.14 258 1335 79.89 213 1326
13 50 150 110.41 294 1712 103.65 272 1726 87.10 219 1766

15 30 60 42.09 259 952 42.89 209 968 38.16 182 825
15 30 90 60.33 198 1071 58.67 177 1108 46.50 169 1151
20 40 80 153.70 281 1209 129.85 275 1160 109.25 227 1080
20 40 120 118.65 296 1841 103.09 278 1833 98.37 254 1766
25 50 100 209.85 317 2058 196.46 297 2051 182.32 261 2049
25 50 150 264.91 334 2314 251.92 312 2217 201.49 259 2147

27

the column headings |L∗| and |U |. From these two tables, the quality of the
bound sets obtained are quite good. There seem to be no clear preference for
one column search approach with respect to another in terms of the quality of
the bound sets obtained. Nevertheless, the quality of bound sets obtained by
the sequential search approach are slightly better than those obtained by the
PPS and k-PPS in most cases. This can be seen, for example, in row |T | = 1,
|V | = 40, |W | = 120 of Table ??. The value of the pair (µ1%, µ2%) for the PPS,
the k-PPS, and the sequential search approaches are (5.2, 25.7), (5.3, 25.4), and
(5.1, 25.2), respectivley.

In terms of computational times (see Tables ?? and ??), the sequential search
approach performs the best. The k-PPS also performs better than the PPS.
For example, in the row for |T | = 13, |V | = 50, |W | = 150 of Table ??, the
computational time for the PPS is 110.41, the one for the k-PPs is 103.65 and
that of the sequential search is 87.10. From the same row, we can also see that
the sequential search approach solves a fewer number of subproblems (219) with
respect to the PPS (294) and the k-PPS (272). This is a very good sign in favour
of the sequential search approach since solving the subproblem is usually the
most costly operation in a column generation algorithm.

5 Conclusions

This paper discusses the use of column generation in computing bound sets for
bi-objective combinatorial optimization problems. The main idea used is to
convert the bi-objective problem into single objective by a scalarization method
and solve the linear relaxation of the resulting single objective problem several
times by varying the necessary parameters. Two very popular scalarization
methods (weighted sum and ε-constraint) are studied for this purpose. We saw
that the subproblems encountered for both scalarization methods have a similar
structure. For this reason, we presented some strategies to effectively search for
columns in order to possibly take advantage of the similar subproblems. The
k-PPS and the sequential search approaches were proposed to address some
challenges faced by a rather standard approach (the PPS). The ideas presented
are applied to the bi-objective multi-vehicle covering tour problem and the results
show that the proposed methodology and column search approaches are effective.
In particular, the sequential search method is faster and also solves relatively few
number of subproblems when computing a lower bound set. A possible extension
of this current work is to test the presented strategies in the case of the weighted
sum method and also develop other similar strategies. It will also be interesting
to develop column generation based heuristics and metaheuristics that use the
idea of the sequential search method.

28

References

[1] Yash P Aneja and KPK Nair. Bicriteria transportation problem. Manage-
ment Science, 25(1):73–78, 1979.

[2] Jean-François Bérubé, Michel Gendreau, and Jean-Yves Potvin. An exact
ε-constraint method for bi-objective combinatorial optimization problems:
Application to the Traveling Salesman Problem with Profits. European
Journal of Operational Research, 194(1):39–50, 2009.

[3] Natashia Boland, John Dethridge, and Irina Dumitrescu. Accelerated label
setting algorithms for the elementary resource constrained shortest path
problem. Operations Research Letters, 34(1):58–68, 2006.

[4] John R. Current and David A. Schilling. The median tour and maximal
covering tour problems: Formulations and heuristics. European Journal of
Operational Research, 73(1):114–126, 1994.

[5] Charles Delort and Olivier Spanjaard. Using bound sets in multiobjective
optimization: Application to the biobjective binary knapsack problem. In
Experimental Algorithms, pages 253–265. Springer, 2010.

[6] Martin Desrochers and François Soumis. A generalized permanent labelling
algorithm for the shortest path problem with time windows. INFOR, 26:191–
212, 1988.

[7] Moshe Dror. Note on the complexity of shortest path models for column
generation in VRPTW. Operations Research, 42(5):977–978, 1994.

[8] Matthias Ehrgott and Xavier Gandibleux. Bound sets for biobjective
combinatorial optimization problems. Computers & Operations Research,
34(9):2674–2694, 2007.

[9] Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An
exact algorithm for the Elementary Shortest Path Problem with Resource
Constraints: Application to some vehicle routing problems. Networks,
44(3):216–229, 2004.

[10] Michel Gendreau, Gilbert Laporte, and Frédéric Semet. The Covering Tour
Problem. Operations Research, 45(4):568–576, 1997.

[11] Mondher Hachicha, M John Hodgson, Gilbert Laporte, and Frédéric Semet.
Heuristics for the multi-vehicle covering tour problem. Computers & Opera-
tions Research, 27(1):29–42, 2000.

[12] M. John Hodgson, Gilbert Laporte, and Frédéric Semet. A Covering Tour
Model for Planning Mobile Health Care Facilities in SuhumDistrict, Ghama.
Journal of Regional Science, 38(4):621–638, 1998.

29

[13] Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. The bi-objective
covering tour problem. Computers & Operations Research, 34(7):1929–1942,
2007.

[14] Martine Labbé and Gilbert Laporte. Maximizing user convenience and
postal service efficiency in post box location. Belgian Journal of Operations
Research, Statistics and Computer Science, 26:21–35, 1986.

[15] Giovanni Righini and Matteo Salani. New dynamic programming algorithms
for the resource constrained elementary shortest path problem. Networks,
51(3):155–170, 2008.

[16] Ehsan Salari and Jan Unkelbach. A column-generation-based method for
multi-criteria direct aperture optimization. Physics in medicine and biology,
58(3):621–639, 2013.

[17] Francis Sourd and Olivier Spanjaard. A multiobjective branch-and-bound
framework: Application to the biobjective spanning tree problem. IN-
FORMS Journal on Computing, 20(3):472–484, 2008.

[18] E.L. Ulungu and J. Teghem. The two phases method: An efficient procedure
to solve bi-objective combinatorial optimization problems. Foundations of
Computing and Decision Sciences, 20(2):149–165, 1995.

[19] François Vanderbeck. Implementing mixed integer column generation. In
Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors,
Column Generation, pages 331–358. Springer, 2005.

[20] Bernardo Villarreal and Mark H. Karwan. Multicriteria integer program-
ming: A (hybrid) dynamic programming recursive approach. Mathematical
Programming, 21(1):204–223, 1981.

30

