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Abstract Many practical combinatorial optimization problems can be de-
scribed by integer linear programs having an exponential number of variables
and they are efficiently solved by column generation algorithms. For these
problems, column generation is used to compute good dual bounds that can be
incorporated in branch-and-price algorithms. Recent research has concentrated
on describing lower and upper bounds of bi-objective and general multi-objective
problems with sets of points (bound sets). An important issue to address when
computing a bound set by column generation is how to efficiently search for
columns corresponding to each point of the bound set. In this work, we propose
a generalized column generation scheme to compute bound sets for bi-objective
combinatorial optimization problems. We present specific implementations of
the generalized scheme for the case where one objective is a min-max function
by using a variant of the ε-constraint method to efficiently model these prob-
lems. The proposed strategies are applied to a bi-objective extension of the
multi-vehicle covering tour problem and their relative performances based on
different criteria are compared. The results show that good bound sets can be
obtained in reasonable times if columns are efficiently managed. The variant of
the ε-constraint presented is also better than a standard ε-constraint method
in terms of the quality of the bound sets.
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1 Introduction

The success of exact methods for solving difficult single objective optimization
problems relies greatly on the computation and use of lower and upper bounds.
For this reason, we can expect that lower and upper bounds are equally
important in designing exact methods for multi-objective optimization problems.
The number of exact methods for multi-objective optimization problems is
relatively small when compared to that of single objective problems and a
possible reason is that the idea of bounds for multi-objective problems and
efficient methods to compute them are not so well developed. Column generation
is one of the most popular methods for computing strong lower bounds for single
objective problems that can be modeled by integer linear programs having
an exponential number of variables. Nevertheless, column generation is rarely
used in the multi-objective case. In this work, we study the design of efficient
column generation algorithms for computing strong bounds of bi-objective
combinatorial optimization (BOCO) problems by concentrating on the case in
which one objective is a min-max function. We will refer to these problems as
Bi-Objective Combinatorial Optimization Problems with a Min-Max Objective
(BOCOMMO).

A BOCOMMO can be defined by means of a Dantzig-Wolfe decomposition
as the selection of a set of columns with minimum total “cost” such that the
maximum value of an attribute associated with the set is minimized. More
specifically, we consider bi-objective covering problems of the form:

Minimize
∑
k∈Ω

ckθk (1)

Minimize Γmax (2)

subject to:
∑
k∈Ω

aikθk ≥ bi (i ∈ I) , (3)

Γmax ≥ σkθk (k ∈ Ω) , (4)

θk ∈ {0, 1} (k ∈ Ω) , (5)

where θk and Γmax are decision variables, Ω is the set of all feasible columns
whose description depends on the particular problem, and I is the index set
of the covered objects. For each column k ∈ Ω, ck and σk are two associated
costs. The values σk are supposed to be integer. That way, we know that it
is always possible to set a bound on the second objective in an ε-constraint
method. However, in some cases, it could be possible for the σk to not be
integer if the number of possible values is finite or if a step could be computed
to ensure that no solution is lost in an ε-constraint method. We need to select
columns with minimum sum of ck such that Γmax = maxk∈Ω{σkθk} is also
minimized. Bi-objective generalizations of several combinatorial optimization
problems satisfying this condition can be defined. For vehicle routing problems,
we generally want to minimize the combined cost of a set of routes such that the
value of a property associated with the selected routes (eg. the maximum length
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of a route, max capacity of a route, etc.) is also minimized. Another example
of a BOCOMMO is a bi-objective extension of the Bin Packing Problem in
which we seek to minimize both the number of bins used and the maximum
size of a bin.

Multi-Objective Combinatorial Optimization.

The class of problems we will be dealing with (BOCOMMO) is a special case
of multi-objective combinatorial optimization (MOCO) problems. A general
MOCO problem consists in minimizing a vector of two or more objective
functions F (x) = (f1(x), f2(x), . . . , fr(x)) over a finite domain of feasible
solutions X . The vector x = (x1, x2, . . . , xn) is the decision variable, Y = F (X )
corresponds to the images of the feasible solutions in the objective space,
and y = (y1, y2, . . . , yr), where yi = fi(x), is a point in the objective space.
We say that a solution x′ dominates another solution x′′ if for any index
i ∈ {1, 2, . . . , n}, fi(x′) ≤ fi(x′′) and there is at least one index i ∈ {1, 2, . . . , n}
for which fi(x

′) < fi(x
′′). A feasible solution dominated by no other feasible

solution is said to be efficient or Pareto optimal and its image in the objective
space is said to be nondominated. The set of all efficient solutions is called
the efficient set (denoted XE) and the set of all nondominated points is the
nondominated set (denoted YN ). In general, more than one efficient solution may
correspond to the same nondominated point and so solving a MOCO problem
usually means finding at least one efficient solution for each nondominated
point. The nondominated set defines what is known as the Pareto frontier. An
efficient solution that maps onto a nondominated point lying on the convex
part of the Pareto frontier is called a supported efficient solution and its image
is called a supported nondominated point.

Lower and Upper Bounds for a MOCO Problem.

Ideal and nadir points are well known lower and upper bounds, respectively,
of the non-dominated set YN of a MOCO problem. The coordinates of the
ideal point are obtained by optimizing each objective function independently
of the others, whereas the coordinates of the nadir point correspond to the
worst value of each objective function when we consider the efficient set XE .
Ideal and nadir points are usually poor bounds since they give very little
information on where the members of the nondominated set lie (see Figure 1).
Given that the solution of a multi-objective problem is a set of solutions rather
than a single solution, a better way of defining lower and upper bounds is to
use sets of points. [26] were the first to propose the use of sets of points to
define bounds for multi-objective problems. They defined a lower bound for a
multi-objective integer program as a set of points L such that the image of each
feasible solution of the problem is dominated by at least one of the members
of L. A member of L may or may not correspond to the image of a feasible
solution. In a similar way, an upper bound may be defined as a set of points U
corresponding to images of feasible solutions that do not dominate one another.
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Fig. 1: Lower and Upper Bounds of a Bi-Objective Integer Program.

Recently, the idea of using sets to define bounds for MOCO problems has
been used by other authors like [7], [25] and [5]. [7] introduced the terminology
bound sets to describe the use of sets in defining bounds of a multi-objective
problem. They proved some general results and discussed how bound sets can
be constructed for bi-objective combinatorial optimization (BOCO) problems
by using a weighted sum method [10]. [25] and [5] use ideas similar to those
introduced by [7] to compute bound sets for the bi-objective spanning tree
problem and the bi-objective binary knapsack problem, respectively.

The main idea used by all these authors in defining a lower bound set is to
transform the bi-objective problem into single objective by using a weighted
sum method and solve the transformed problem for different weights in order
to compute the complete set of supported nondominated points. A lower bound
set for the considered bi-objective problem is then defined as the line connecting
the set of supported nondominated points. This procedure is only possible if
there is an efficient algorithm for solving the single objective problem obtained
after the transformation. If the transformed problem is NP-hard, then the
set of supported nondominated points for a relaxation of the single objective
problem rather needs to be computed (see Figure 1). As pointed out by [7],
any scalarization method may be used when computing bound sets but the
weighted sum method is mostly used. In spite of the many advantages of using
a weighted sum method, it cannot find nonsupported solutions no matter the
choice of weights used [4]. If there is a large number of nonsupported points, a
lower bound set based on the weighted sum method can be very poor. A first
example of using an ε-constraint method [14] in computing bound sets was
given by [23]. A disadvantage of an ε-constraint method is that it is not very
easy to define values for the parameter ε in such a way that all members of the
nondominated set are found. Nevertheless, this is possible for many practical
problems including those presented by [17] and [1].
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Column Generation in Multi-objective Optimization.

In spite of the importance of column generation and multi-objective optimiza-
tion, very little has been done in terms of applying column generation to
multi-objective optimization problems. [8] treat the use of column generation in
integer programming with applications in multi-objective optimization. Their
proposed approach consists in first converting a multi-objective problem into
single objective through an ε-constraint method before combining column
generation and cutting planes to solve the resulting problem. After finding
an efficient solution together with the necessary dual information, a form of
sensitivity analysis is used to search for neighbouring efficient solutions without
changing the value of ε. An example of applying column generation to multi-
objective problems has also been presented by [22]. The example uses column
generation to create radiotherapy treatment plans. A bi-objective problem that
arises in this field is to treat defective cells and also reduce the side effects
resulting from the use of radio waves. A continuous convex model in which
each column represents a certain treatment dose is proposed for the problem.
A weekly plan (feasible point) consists of one or several doses (columns) and
a complete treatment program (upper bound set) consists of several weekly
treatment plans. The bi-objective problem is first converted into single objective
through a weighted sum approach before applying column generation to obtain
an approximation to the set of efficient solutions. A similar column generation
approach was proposed by [19].

Contributions and Organization of Work.

It is a well known fact that finding the complete nondominated set of a MOCO
problem is a difficult and time-consuming task. For this reason, most works that
deal with column generation for MOCO problems such as those cited above
are mainly interested in finding a set of feasible solutions that do not dominate
one another (an upper bound set). In this work, however, we are interested in
the design of efficient column generation algorithms for computing strong lower
bound sets for BOCO problems in reasonable time. In particular, we propose
a generalized column generation scheme for computing lower bound sets of
BOCO problems and also present three different strategies for implementing the
generalized scheme in the case of BOCO problems with a min-max objective.
The proposed strategies are used in computing bound sets for a bi-objective
extension of the multi-vehicle covering tour problem and their performances
based on different criteria are evaluated. This study is expected to serve a broad
range of applications since an important class of combinatorial optimization
problems can be formulated as integer programs having an exponential number
of variables and these problems are efficiently solved by column generation
based algorithms. Moreover, being able to quickly compute good bound sets
is expected to contribute to the design of more exact methods for BOCO
problems.
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In Section 2, we discuss how column generation can be used to compute
lower bound sets for a BOCO problem and present implementations for the
case of BOCOMMO. An application problem is presented in Section 3 and
evaluation of the bound sets computed for this problem as well as comparison
of the different column generation strategies are given in Section 4. We end
our discussion in Section 5 with concluding remarks and give ideas on how this
work can be extended.

2 Column Generation for a BOCOMMO

In order to compute a lower bound set for a BOCOMMO, we need to first
transform the BOCOMMO into a single objective problem before solving the
single objective problem by column generation. Any scalarization method may
be used to transform the BOCOMMO problem but in this work, we will use
an ε-constraint problem. A disadvantage of directly adding constraints of the
form Γmax ≤ ε to Formulation (1–5) is that solving linear relaxations of the
resulting problem can significantly weaken the lower bound set. In order not
to unnecessarily weaken the lower bound set, we use a different variant of
the standard ε-constraint method which does not require us to directly add
constraints of the form Γmax ≤ ε to the formulation. A close examination of
Formulation (1–5) reveals that we can decompose a BOCOMMO into two
problems since for any set of feasible columns, we can compute the corresponding
value of Γmax. So, instead of explicitly adding a constraint of the form Γmax ≤ ε
to the formulation, we rather drop Constraints 4 and use it to redefine the
feasibility of a column. We define a new set of feasible columns Ωε where the
feasibility of a column k in Ωε depends on its associated value σk, i.e. σk ≤ ε.
Depending on whether we can associate an original column k in Ω can belong
to several sets Ωε. Indeed, the column k can appear in the sets for all the
values of ε greater of equal to σk. Also, we no longer need to keep the objective
function (2) after dropping Constraints (4). In this way, we do not degrade
the quality of the linear relaxation. Moreover, if an efficient column generation
algorithm exists for the single-objective problem linked with the first objective,
we can easily adapt it for the bi-objective problem. We obtain the following
problem for a value of ε :

Minimize
∑
k∈Ωε

ckθk (6)

subject to:
∑
k∈Ωε

aikθk ≥ bi (i ∈ I) , (7)

θk ∈ {0, 1} (k ∈ Ωε) . (8)
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2.1 Computing Lower Bound Sets

For a BOCOMMO, as we suppose the value σk to be integer and we can
suppose the second objective to be bounded, Γmax can only take on a finite
number of values defining a set Γ . If the complete set of feasible columns
Ω =

⋃
ε∈Γ Ω

ε is known, a lower bound set can be computed by using a variant
of the ε-constraint approach as given in Algorithm 1 in which we consider the
following problem :

Minimize
∑
k∈Ω

ckθk (9)

subject to:
∑
k∈Ω

aikθk ≥ bi (i ∈ I) , (10)

θk ∈ {0, 1} (k ∈ Ω) . (11)

The algorithm starts with no restriction on the value of Γmax (that is,
ε = +∞). At each iteration, the linear relaxation of the problem is solved and
the optimum as well as the value of Γmax are determined. In the next iteration,
the problem is updated to exclude columns k for which σk is strictly greater
than Γmax (this can be done by removing the columns or setting them to 0).
This iterative process continues until the problem becomes infeasible after a
finite number of iterations.

Algorithm 1 Computing a Lower Bound Set

1: Set L← ∅.
2: while the problem defined by (9)-(11) is feasible do
3: Solve problem defined by (9)-(11) and let c∗ and θ∗ be the optimum and the optimal

solution vector, respectively.
4: Compute Γmax = maxk∈Ω{σkθ

∗
k}.

5: L← L ∪ {(c∗, Γmax)}.
6: Set θk ← 0 for all k ∈ Ω such that σk ≥ Γmax.
7: end while

In practice, the cardinality of Ω is too large and so a column generation
method needs to be used by considering a subset Ω1 of Ω. In column generation
terminology, the original problem based on the set Ω with an exponential
number of columns is referred to as the master problem (MP). The MP of
a BOCOMMO is given by Formulation (6–8). The linear relaxation of MP
which is obtained by writing Constraints (8) as θk ≥ 0 for k ∈ Ω is denoted by
LMP. If the MP is restricted to a subset Ω1 of Ω we obtain a restricted master
problem (RMP) whose linear relaxation is denoted by LRMP. By associating
Constraints (7) with dual variables πi (i ∈ I), the dual formulation of LMP
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(DLMP) can be defined as:

Maximize
∑
i∈I

biπi

subject to:
∑
i∈I

aikπi ≤ ck (k ∈ Ω) ,

πi ≥ 0 (i ∈ I) .

The dual formulation of LRMP (DLRMP) can equally be defined by changing
Ω in the above formulation to Ω1.

We note that the set of feasible solutions of LRMP is a subset of the set of
feasible solutions of LMP since LRMP is obtained by removing some columns
from MP. Removing some columns from LMP, however, implies the removal of
some constraints from DLMP and so the set of feasible solutions of DLMP is
a subset of the set of feasible solutions of DLRMP. For these reasons, every
feasible solution of the LRMP is also a feasible solution of LMP but DLRMP
may not always be feasible. If both LRMP and DLRMP are feasible, then the
optimal value of LRMP is also the optimal value of LMP and hence a valid
lower bound on the optimal value of MP. If LRMP is feasible but DLRMP
is infeasible, then some constraints of DLMP are violated by the obtained
solution and we need to add one or more of such constraints to DLRMP. Adding
constraints to DLRMP corresponds to introducing some new columns to LRMP.
In order to know which constraints of DLMP are violated by the DLRMP
solution, we need to solve an auxiliary problem referred to as the subproblem
in column generation terminology. In order to satisfy the constraint Γmax ≤ ε
when solving a BOCOMMO by column generation and ε-constraint method,
we need to solve a subproblem given by:

S(ε) = min
k∈Ω̄\Ω̄1

{
ck −

∑
i∈I

πiaik : σk ≤ ε
}
.

If the optimal value of the subproblem is negative, then a dual constraint is
violated and we need to add the column corresponding to this constraint.

2.2 A Generalized Column Generation Scheme

We propose the generalized column generation scheme in Figure 2 for computing
a lower bound set of a BOCO problem. The scheme does not depend on a
specific scalarization method and it can be applied to any BOCO problem whose
formulation uses an exponential number of column variables. The algorithm
starts by first transforming the BOCO problem into single objective by using
a scalarization method like a weighted sum or an ε-constraint method. Note
that each scalarization method uses a different parameter in transforming a
bi-objective problem. For example, a weighted sum method uses a vector of
weights to combine the objective functions whereas an ε-constraint method uses
a real number ε to restrict one of the objective functions. After transforming
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Fig. 2: A Generalized Column Generation Algorithm for BOCO Problems.

the BOCO problem, an LRMP based on the obtained single objective problem
is formulated before starting the column generation iterations. An iteration
consists in first solving the LRMP (without generating any columns) for one or
more different values of the parameter used to transform the BOCO problem.
For a weighted sum method, this means varying the value of the vector of weights
whereas for an ε-constraint method we have to vary the value of the parameter
ε which is used in constraining one of the objectives. After solving the LRMP,
we obtain a vector of optimal dual values and a corresponding subproblem for
each value of the parameter. Next, we need to solve the subproblem for one
or more vectors of dual values. Any relevant columns found are added to the
LRMP and the process repeats. If the LRMP is proven to have converged for
any value of the parameter, the corresponding point (optimal value of LRMP
together with value of the parameter) is saved. The algorithm terminates when
the LRMP converges for all relevant values of the parameter. In the case of
a weighted sum method, the relevant values are those that are necessary to
define the complete set of supported nondominated points of LRMP. For an
ε-constraint method, we need to ensure that the image of any feasible point of
LRMP is dominated by at least one of the generated points.

Clearly, the exact implementation details of the generalized column genera-
tion scheme depends on the scalarization method used but similar subproblems
are obtained for all values of the parameter once a scalarization method is
chosen. This means that, it is possible to treat more than one subproblem
at the same time when searching for relevant columns. For example, it may
be possible to easily modify a column found by solving the subproblem for a
specific value of the parameter in order to find another column for a different
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value of the parameter without having to solve the subproblem for this new
value. For several problems, such as Vehicle Routing Problems, solving the
subproblem is the most time consuming part of a column generation algorithm.
For these problems, we need to develop strategies and mechanisms to enable
us solve as few subproblems as possible while ensuring good properties of the
search. An implementation of the scheme based on a particular scalarization
method can also be adapted for another scalarization method.

2.3 Column Search Strategies

Different versions of the generalized column generation scheme in Figure 2 can
be defined based on how many subproblems are solved and the strategies used
to search for relevant columns. We present three different implementations of
the generalized scheme for the case of a BOCOMMO. These implementations
can, however, be adapted for other BOCO problems. In what follows, we
will denote the LRMP containing only columns k ∈ Ω1 such that σk ≤ ε by
LRMP(ε).

Point-by-Point Search (PPS).

A standard and intuitive way of implementing the generalized scheme in to solve
LRMP(ε) completely for any given value of the parameter ε before changing
this value following the process explained in Algorithm 1. That is, for any
given value of ε, LRMP(ε) is solved by column generation until the subproblem
proposes no new columns that can improve the objective value of LRMP. We
call this approach the Point-by-Point Search (PPS) and it is summarized in
Algorithm 2. Although PPS is simple and easy to implement, it takes no
advantage of the similar subproblems that need to be solved for the different
values of ε. The column generation method may also be slow to converge for a
given value of ε but PPS requires us to wait for it to converge before moving on
to a different value. This can result in a huge number of “irrelevant” columns
being added to the RLPM and a long computational time. Moreover, since
PPS treats each point of a lower bound set separately, completely different
columns are usually used to define each of the points. This is undesirable in
certain applications like the one presented by [22] where we want the columns
corresponding to different points of a lower bound set to closely resemble each
other. The following strategies avoid some of these problems by generating, at
each step, columns that are relevant for several values of ε.

Improved Point-by-Point Search (IPPS).

Using heuristics to generate columns can improve the performance of column
generation [6]. These heuristics are used to cheaply generate other relevant
columns from those found by a subproblem algorithm. Here, we are interested
in heuristics that can take advantage of the similar subproblems corresponding
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Algorithm 2 Point-by-Point Search (PPS)

Output: A lower bound set L.
1: Set ε←∞, and L← ∅.
2: while LRMP(ε) is feasible do
3: Solve LRMP(ε) once to obtain a vector of dual values.
4: Let c∗ be the optimum, θ∗ be the optimal vector, and compute σ∗ = maxk∈Ω{σkθ

∗
k}.

5: Solve the subproblem S(ε) and let Λ be the set of columns obtained.
6: if Λ 6= ∅ then
7: Add one or more columns in Λ to LRMP.
8: else
9: L← L ∪ {(c∗, σ∗)} and ε← σ∗ − 1.

10: Set θk = 0 for all k such that σk > ε.
11: end if
12: end while

to different values of ε. Once a column has been found by using the subproblem
algorithm, we wish to quickly generate other columns that are relevant for the
current subproblem and may also be relevant for other subproblems. A column
which is relevant for a current subproblem may not be relevant for another
subproblem since the associated vectors of dual values do not necessarily have
the same values. Nevertheless, we can expect that two subproblems that are
close in terms of objectives may also be close in terms of the solution of LRMP
and therefore close in terms of dual variable values. For this reason, a column
generated by an algorithm or a heuristic may also be relevant for several other
subproblems apart from the current one. Moreover, standard algorithms used to
solve a subproblem are most times only interested in finding the “best” columns
for the current subproblem. For this reason, many columns are left out because
they are not considered among the “best” for the considered subproblem. This
may be desirable for single objective problems but in the bi-objective case, a
column which is not so good for one subproblem may be very good for another
subproblem. The main idea of IPPS is to improve on the performance of PPS
by using heuristics before Step 7 in Algorithm 2 to generate more columns.
For a BOCOMMO, we are interested in an algorithm or a heuristics that can
take advantage of the redefinition of a column and efficiently search for more
columns by modifying the ones found by a subproblem algorithm. IPPS can
be useful as a column generation based heuristic since at each iteration it tries
to generate a set of columns that are relevant for several subproblems. These
columns can be directly inserted in the restricted master problem as they have
an impact on at least one subproblem. The algorithm used in searching for
more columns obviously depends on the problem being treated. The relevance
of a column found by the method is evaluated with respect to the same vector
of dual values for which the original column was found. This is a distinctive
feature of IPPS in contrast to the other strategy which we describe next.
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Solve-Once-Generate-for-All (SOGA).

Another implementation of the generalized scheme that takes advantage of
the similar subproblems is summarized in Algorithm 3. We call this approach
Solve-Once-Generate-for-All (SOGA) and it starts by generating a set of points
based on the current columns in the LRMP without generating any additional
columns. After generating a set of points, SOGA continues by solving the
subproblem corresponding to a single point. If no relevant columns are returned
by the subproblem, the convergence of the point is confirmed so it is saved in
the lower bound set. Otherwise, from Step 12 to Step 17, each column found
is modified several times by using dual information from the other generated
points in order to generate more columns. Unlike in the case of IPPS, the
relevance of a column after modification is evaluated with respect to another
vector of dual values rather than with respect to the one for which the original
unmodified column was found. This guarantees that at each iteration, a set
of columns that are relevant for a very large number of points are returned
to the RMP. For this reason, SOGA can be very useful in designing column
generation based heuristics and metaheuristics. Another advantage that SOGA
has over PPS and IPPS is that it solves only one subproblem but generates a
set of columns that is guaranteed to be relevant for several subproblems. The
main challenge of SOGA comes from the difficulty in combining information
from an original column and a vector of dual values in heuristics to search for
new columns. This may not always be easy. Just like IPPS, the heuristics used
in SOGA depend on the specific problem being treated.

3 Application to the Bi-Objective Multi-Vehicle Covering Tour
Problem

We present an application problem to demonstrate the different ideas and
approaches discussed in the preceding section. The problem considered is an
extension of the covering tour problem [11] namely the bi-objective multi-
vehicle covering tour problem (BOMCTP). The covering tour problem (CTP)
consists in designing a single route over a subset of locations with the aim of
minimizing the length of the route. In addition, each location not visited by
the route should lie within a fixed radius from a visited location. The fixed
radius is called the cover distance. The CTP has a generic application in the
design of bi-level transportation networks [3]. This kind of problems seeks to
construct a primary route of minimum length on a subset of locations in such a
way that all other locations that are not on the primary route can easily reach
it. An example of the CTP arises in the problem of choosing where to locate
post boxes among a set of candidate sites [18]. The aim of this problem is to
minimize the cost of a collection route through all post boxes and also ensure
that every user is located within a reasonable distance from a post box. Several
other examples of the CTP arise in the domain of humanitarian logistics. For
example, in the planning of routes for visiting health care teams in developing
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Algorithm 3 Solve-Once-Generate-for-All (SOGA)

Output: A lower bound set L.
1: Set ε←∞ and L← ∅.
2: repeat
3: while LRMP(ε) is feasible do
4: Solve LRMP(ε) once to obtain a vector of dual values.
5: Let c∗ be the optimum and θ∗ be the optimal vector.
6: Compute σ∗ = maxk∈Ω{σkθ

∗
k} and set ε← σ∗ − 1.

7: Set θk = 0 for all k such that σk > ε.
8: end while
9: Let P = {(ci, σi)}, Π = {πi}, and E = {εi} be the set of generated points, the

corresponding set of dual vectors, and the set of ε values, respectively, obtained from
Steps 3 to 8 indexed on i ∈ I with I the set of indexes of the generated points,

10: Solve the subproblem S(ε1) corresponding to π1 and let Λ1 be the set of columns
found.

11: if Λ1 6= ∅ then
12: for each column in Λ do
13: for each vector of dual values πi ∈ Π such that i > 1 do
14: Use heuristics that combine information from the columns in Λ and the vector

πi to generate some relevant columns corresponding to S(εi).
15: end for
16: Add found columns to the RLPM.
17: end for
18: else
19: L← L ∪ {(ci, σi)} and ε← σi − 1.
20: Set θk = 0 for all k such that σk > ε.
21: end if
22: until P = ∅.

countries where medical services can only be delivered to a subset of villages,
but all users must be able to reach a visiting medical team [3,15].

A bi-objective generalization of the CTP has been proposed by [17]. The
cover distance in the bi-objective CTP (BOCTP) is not fixed in advance
but rather induced by the constructed route. It is computed by assigning
each non-visited location to the closest visited location and calculating the
maximum of the assigned distances. The objectives are to minimize the length
of the route and the induced cover distance. The authors proposed a two-phase
cooperative strategy to solve the problem. This strategy combines a multi-
objective evolutionary algorithm with a branch-and-cut algorithm initially
designed by [11] to solve the CTP. [13] present a multiple vehicle extension
of the CTP namely the multi-vehicle covering tour problem (MCTP). In the
MCTP, the combined length of a set of routes, all of which must start from
a common location, is minimized for a fixed cover distance. In addition, the
number of locations visited by a single route and the length of the route cannot
exceed predetermined constants p and q, respectively. The authors proposed
an integer linear programming formulation as well as three heuristic methods
for the problem. Quite recently, two exact methods have been proposed for the
MCTP. The first is a branch-and-price algorithm proposed by [16] whereas the
second is a branch-and-cut algorithm proposed by [12]. A metaheuristic for the
MCTP was also proposed by [12].
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The problem discussed in this section, the bi-objective multi-vehicle covering
tour problem (BOMCTP) can be seen as a combination of the BOCTP and
the MCTP. The BOMCTP is an interesting problem as it has many features
(like multiple routes, restrictions on the tours, optional visits, etc.) that are
encountered in difficult VRPs. The subproblem which is an elementary shortest
path problems with resource constraints (ESPPRC) is also representative of
the one encountered in VRPs solved by column generation. As we will later
see, the variant of the ESPPRC encountered for this problem is more difficult
that many other variants. The BOMCTP is therefore a good benchmark and
we can expect that if the method is successful for it it should also be successful
to VRPs specially and also other combinatorial optimization problems.

3.1 Problem Description

The BOMCTP is defined on a graph G = (V ∪W,E) where V ∪W is a set of
nodes and E is a set of edges. The nodes of V represent locations which may
be visited by a route whereas the members of W are to be assigned to visited
nodes of V . There is a subset of nodes T ⊆ V , which must be visited by at
least one route. In real applications, the members of T represent important
locations where we require at least one route to pass. In particular, v0 ∈ T
is the depot where all routes must start and also end. Set E is made up of
edges connecting all pairs of nodes in V ∪W and a distance matrix D = (dij)
satisfying the triangle inequality is defined on E. The BOMCTP consists in
designing a set of routes over a subset of V which should include all nodes of T .
Each route should visit not more than p nodes of V \{v0} and its length must
not exceed q where p and q are predetermined constants. The two objectives
are to minimize the total length of the set of routes and the cover distance
induced by the set.

The cover distance induced by a set of routes (denoted by Γmax) is defined
as the maximum distance from a node of W to the closest visited node of
V \{v0}. By definition, the value of dij for every couple (vi, wj) ∈ V \{v0}×W
is a candidate value for Γmax. Nevertheless, some of these candidate values do
not correspond to feasible Γmax values. For any given instance of the BOMCTP,
we can use an idea similar to the one introduced by [17] for the BOCTP to
determine the feasible values of Γmax. Since no proof was given by [17], we
restate the idea in the following proposition and also give a simple proof.

Proposition 1 Given vi ∈ V \{v0} and wj ∈ W , dij is a feasible value for
Γmax if and only if the following two conditions are satisfied.

1. ∀vt ∈ T\{v0} such that vt 6= vi, dij ≤ dtj and
2. ∀wl ∈W such that wl 6= wj , ∃vh ∈ V \{v0} such that dhl ≤ dij ≤ dhj.

Proof The proof of this proposition is given in two parts. Part I shows that if
dij is a feasible value for Γmax then conditions (1) and (2) are satisfied. Part
II also shows that if conditions (1) and (2) are satisfied then dij is a feasible
value for Γmax.
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Part I. The necessary conditions for dij to be the value of Γmax are that vi is
visited by a selected route and wj is assigned to vi. Yet, each node of W is
assigned to a visited node of V \{v0} that is closest to it. Since all nodes
vt ∈ T\{v0} are visited in any feasible solution, wj will be assigned to vi
only if dij ≤ dtj . This proves condition (1). Next, suppose that Γmax = dij
but condition (2) is false. That is, for a given wl ∈W such that wl 6= wj ,
either dij > dhj or dij < dhl for all vh ∈ V \{v0}. Then, either wj will be
assigned to vh (since vh is closer to it than vi) or if wj is assigned to vi
then dhl is a better candidate for Γmax (since it is greater than dij and
Γmax is determined by the maximum of the assigned distances). In both
cases, dij cannot be the value for Γmax and so condition (2) must be true if
Γmax = dij .

Part II. If conditions (1) and (2) are satisfied then wj will be assigned to vi (if it
is visited) rather than to a node vt ∈ T\{v0} as it is the closest node. If
vi is visited and wj is assigned to vi, then condition (2) implies that dij
can possibly be the maximum value among all assigned distances and so a
feasible value for Γmax.

Clearly, there is a finite number of values for Γmax and by using the two
conditions in Proposition 1, all the feasible values of Γmax can be computed
for any given instance of the BOMCTP.

3.2 Mathematical Modeling

Let Ω represent the set of all feasible columns. A feasible column k ∈ Ω is
defined by a route Rk and a subset Ψk ⊆W . The route Rk is a Hamiltonian
cycle on a subset of V , including the depot, visiting not more than p nodes and
of length not exceeding q. The length of Rk is denoted ck. For each route, we
choose a subset Ψk ⊆W of nodes it may cover and define σk as the maximum
distance between a node of Ψk and the closest node of Rk\{v0}. We define
aik = 1 if column k ∈ Ω visits vi ∈ V and aik = 0 if this is not the case. The
constant bjk = 1 if wj ∈ Ψk and bjk = 0 otherwise. The binary variable θk is
used to indicate whether column k ∈ Ω is selected in a solution (θk = 1) or
not (θk = 0). The BOMCTP can be described as:

Minimize
∑
k∈Ω

ckθk (12)

Minimize Γmax (13)

subject to:
∑
k∈Ω

aikθk ≥ 1 (vi ∈ T\{v0}) , (14)∑
k∈Ω

bjkθk ≥ 1 (wj ∈W ) , (15)

Γmax − σkθk ≥ 0 (k ∈ Ω) , (16)

θk ∈ {0, 1} (k ∈ Ω) . (17)
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The objectives of minimizing the length of the set of routes and the induced
cover distance are given in (12) and (13), respectively. Constraints (14) ensure
that each node of T\{v0} is visited by at least one selected route. The fact that
each node of W should be assigned to a visited node of V \{v0} is indicated by
Constraints (15). Finally, Constraints (16) ensure that the value of the induced
cover distance conforms to its definition.

By following the idea presented in Section 2 to reformulate a BOCOMMO,
we define a new set of feasible columns Ω where the feasibility of a column k
in Ω depends not just on Rk but also on σk. The resulting master problem,
MP, is given by:

Minimize
∑
k∈Ω

ckθk (18)

subject to:
∑
k∈Ω

aikθk ≥ 1 (vi ∈ T\{v0}) , (19)

∑
k∈Ω

bjkθk ≥ 1 (wj ∈W ) , (20)

θk ∈ {0, 1} (k ∈ Ω) . (21)

We recall that the second objective to minimize Γmax and the Constraints (16)
do not appear in the above formulation due to the redefinition of a column.
The restricted master problem, RMP, is obtained by restricting MP to a subset
Ω1 of Ω and rewriting Constraints (21) as θk ≥ 0 for k ∈ Ω. The dual problem
of MP is given by:

Maximize
∑

vi∈T\{v0}

πi +
∑
wj∈W

βj

subject to:
∑

vi∈T\{v0}

aikπi +
∑
wj∈W

bikβj ≤ ck (k ∈ Ω) ,

πi ≥ 0 (vi ∈ T\{v0}) ,
βj ≥ 0 (wj ∈W ) ,

where πi for vi ∈ T\{v0} and βj for wj ∈ W are the vectors of non-negative
dual values associated with Constraints (19) and (20), respectively. From
this dual formulation, we can deduce the subproblem S(ε) corresponding to
LRMP(ε) as finding columns k in Ω\Ω1 that satisfy the condition

ck −
∑

vi∈T\{v0}

πiaik −
∑
wi∈W

βjbik < 0 .

We define π∗i = πi if vi ∈ T\{v0} and π∗i = 0 if vi ∈ V \T . We also let xijk = 1
if route Rk visits vj immediately after visiting vi and xijk = 0 otherwise. Note



Title Suppressed Due to Excessive Length 17

v1 v2 v3

w1

w2
w3

w4

w5

w6
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Range of covered nodes

Fig. 3: Non-Additive Nature of the Subproblem.
The reduced cost of the partial path v1 → v2 → v3 is different from the sum of the reduced
costs of the partial paths v1 → v2 and v2 → v3.

that ck =
∑

(vi,vj)∈V 2 dijxijk and aik =
∑

(vi,vj) xijk so the subproblem S(ε)
can be written as:

Minimize
∑

(vi,vj)∈V 2

(dij − π∗i )xijk −
∑
wi∈W

βjbik subject to k ∈ Ω\Ω1 . (22)

Given that Rk ⊆ V whereas Ψk ⊆ W , we need to construct a route on a
subset of V with the aim of minimizing its cost

∑
(vi,vj)∈V 2 (dij − π∗i )xijk and

also choose a subset of nodes wj ∈W with the aim of maximizing the profits,
βj , associated to its members. The profit associated to a node of W can be
collected at most once on any single route even though different nodes of the
route Rk may be able to cover it. Problem (22) is therefore a non-additive
ESPPRC. That is, the cost of a partial path is not necessarily the same as
the sum of the costs of its subpaths. An example is given in Figure 3 where
we suppose that d12 = 2, d23 = 1, and βj = 1 for j = 1, 2, . . . , 7. The reduced
costs of the partial paths v1 → v2 → v3, v1 → v2, and v2 → v3 are given by
3 − 7 = −4, 2 − 6 = −4, and 1 − 5 = −4, respectively. That is, the reduced
cost of v1 → v2 → v3 is not the same as the sum of the reduced costs of its
constituent partial paths because nodes w5 and w6 can be covered by both v2

and v3. [20] discuss non-additive shortest path problems and also present some
real life applications.

3.3 Solving the Subproblem S(ε)

A dynamic programming algorithm [9] accelerated by means of the decremental
state space relaxation (DSSR) algorithm [21,2] is used in solving the subproblem.
The DSSR principle is that first a relaxed problem is solved allowing to generate
a path containing cycles. The nodes that are visited several times are then
considered critical and the problem is solved ensuring that these additional
constraints are enforced. This is iterated until the solution of the relaxed
problem is cycle free as it is also an optimal solution for the problem with the
elementary constraints.

Two resources are considered when implementing the algorithm for this
problem. The first ressource is the number of nodes a route may visit and the
second one is the length of the route. There resources are limited to a maximum
of p and q, respectively. A label Λi = (c̃i, p̃i, q̃i) is used to represent a partial
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path from the depot v0 to node vi. The components of Λi are the reduced
cost up to the current node, c̃i, the total number of nodes of V \{v0} visited,
p̃i, and the length of the partial path, q̃i. In order to simplify the notation,
some components of a label will not be described here in details. The label
store information about the fact that some nodes of W can be covered by
an unvisited node in V \ {v0}, i.e. the distance between the two nodes is less
than ε, and that it is profitable to do so. This is done by keeping a boolean
set on the nodes of W that still need to be covered, which is updated when a
node of V is visited during the label extension. Another aspect of the label not
described in details here is how we check that a path is elementary or not, and
if a node is a critical node in the DSSR scheme. In the implementation, it is
done using a set. These implementation are straightforward and the validity of
our discussion is not affected by this omission.

Label Extension.

When extending a label from a node vi ∈ V to another node vj ∈ V , nodes of
W not yet covered by the label but which can be covered by vj are identified
and the resulting profit is subtracted from the current reduced cost of the label.
Doing so ensures that we obtain the minimum possible reduced cost for each
label without counting the profit associated to any node of W more than once.
That is, even when the elementary condition is relaxed in the DSSR algorithm,
there is no interest in visiting a node of V \T more than once since the reduced
cost of the path resulting from the second visit will be worse than the one from
the first visit. The other ressources are straightforward to compute.

Dominance Rule.

Given any two labels Λi1 = (c̃i1, p̃
i
1, q̃

i
1) and Λi2 = (c̃i2, p̃

i
2, q̃

i
2) on node vi ∈ V ,

we say that Λi1 dominates Λi2 if and only if c̃i1 ≤ c̃i2 − F12, p̃i1 ≤ p̃i2, q̃i1 ≤ q̃i2,
and at least one of the inequalities is strict. The factor F12 represents the sum
of the profits associated to nodes of W , i.e. the dual variable values, that are
covered by Λi1 but not yet covered by Λi2. This factor is necessary to account
for the non-additive nature of the ESPPRC as demonstrated by Figure 4. In
this figure, the label Λ1

1 represents a partial path from v0 to v1 that has already
visited v2 whereas Λ1

2 is another partial path that has not yet visited v2. That
is, Λ1

1 can no longer visit v2 but it is possible to extend Λ1
2 to v2. The total

profit that can be collected (from covering some nodes of W ) by visiting node
v2 is 4. For simplicity, we suppose that no node of W can be covered by more
than one node of V . The figure shows all the labels that are generated when
no dominance rule is applied. Three labels arrive at the copy of the depot, vd.
Out of these three labels, only Λd1 and Λd3 are actually of interest since they are
not dominated by any other labels. Without the factor F12, we would discard
Λ1

2 because it is dominated by Λ1
1 and so the nondominated label Λd3 would

not be generated. Thus, the factor F12 ensures that no label that can lead to a
nondominated path is eliminated.



Title Suppressed Due to Excessive Length 19

4

1

2v0

v1

v2

vd

0 0

2

4

Λ0 = (0,0,0)
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Λ2 = (−7,4,8)
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Fig. 4: Dominance Relationship between Labels.
Node vd is a copy of the depot, v0. Λ1

1 represents the partial path v0 → v3 → v2 → v1
and Λ1

2 represents v0 → v3 → v4 → v1. Λd1 and Λd2 are direct extensions of Λ1
1 and Λ1

2,
respectively, to vd. Λ2 is a direct extension of Λ1

2 to v2.

3.4 Implementation of Column Search Strategies

Among the three strategies presented in the preceding section, PPS is the
simplest to implement. For a given value of ε, we solve LRMP(ε) by column
generation until it converges. We need to ensure that only columns k for which
σk ≤ ε are allowed in the solution of LRMP(ε). We also need to ensure that a
visited node of V \{v0} can only cover a node of W that lies in a radius of ε
from it. The other two strategies IPPS and SOGA incorporate heuristics that
are dependent on the specific problem being treated and we present examples
of these heuristics for the BOMCTP. In the description of IPPS and SOGA,
we will let k′ := (R′k, Ψ

′
k) be a column returned by the DSSR algorithm after

solving the subproblem S(ε′). The vectors of dual values used by the DSSR
algorithm in obtaining column k′ will also be denoted by π′ and β′.

IPPS Heuristic for the BOMCTP. When solving S(ε′), the DSSR algo-
rithm constructs a column k′ := (R′k, Ψ

′
k) by taking Ψ ′k to be all the nodes of

W that lie within a radius of ε′ from a node of R′k\{v0}. This is to ensure that
the reduced cost of k′ is minimized. Nevertheless, Ψ ′k does not necessarily need
to include all the nodes of W that can be covered by R′k. Indeed, Ψ ′k can be
chosen to be any subset of W each of which lie within a radius of ε′ from a
node of R′k\{v0} and such that the sum of the profits β′ associated with this
subset exceeds the cost ck. A column defined in this way is hardly returned
by the DSSR algorithm for the current subproblem since it will be dominated
by another column defined by the same route, but covers some more nodes
of W . The IPPS heuristic for the BOMCTP relies on this observation. The
details of how the heuristic works is depicted by Figure 5. A column k′ is
successively modified by removing the node of Ψ ′k that induces the value of σ′k
(that is, which is farthest from the closest node of Rk) in order to create another
column k′′ := (R′′k , Ψ

′′
k ) where σ′′k < σ′k. The reduced cost of k′′ is evaluated

with respect to the same vectors of dual values π′ and β′ which were used by
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(a) Original Column.
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(c) Modified Column 2.
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(d) Modified Column 2 (improved).

Fig. 5: IPPS Heuristic for the BOMCTP.
A column is successively modified by removing the node of W that induces the value of σ in
order to generate several other columns.

the DSSR algorithm in solving S(ε′). This means that if the reduced cost of
k′′ is negative, then it is guaranteed to be relevant for S(ε′). The relevance
of k′′ for another value of ε 6= ε′ is not guaranteed by this heuristic. Initially,
c′′k = c′k as in Figure 5 but if a node vi ∈ R′′k\{v0} does not uniquely cover
at least one node of Ψ ′′k , then it is removed from R′′k in order to have c′′k < c′k
and further minimize the reduced cost as shown in Figure 5 d. The successive
modifications end when no more columns having negative reduced costs can
be obtained. The whole procedure is summarized in Algorithm 4.

Algorithm 4 IPPS Heuristic for the BOMCTP

Input: An original column k′ := (R′k, Ψ
′
k).

1: while k′ has negative reduced cost and Ψ ′k 6= ∅ do
2: Create a column k′′ := (R′′k , Ψ

′′
k ) where R′′k = R′k and Ψ ′′k = Ψ ′k.

3: Remove the node wj ∈ Ψ ′′k that induces the value of σ′′.
4: Recalculate the value of σ′′k .
5: Delete any node vi ∈ R′′k\{v0} that does not uniquely cover (based on the value of

σ′′k ) at least one profitable node of Ψ ′′k .
6: Recalculate the reduced cost of k′′.
7: if k′′ has negative reduced cost then
8: Add k′′ to the RLPM.
9: end if

10: k′ ← k′′.
11: end while
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(c) Improved Column from (b).

Fig. 6: SOGA Heuristic for the BOMCTP.
A new column is constructed from an original column by incorporating dual values corre-
sponding to another subproblem.

SOGA Heuristic for the BOMCTP. Suppose that π′′ and β′′ are the
vectors of dual values corresponding to RMP(ε′′) where ε′′ 6= ε′. Note that
in general π′′ 6= π′ and β′′ 6= β′. The principle of a SOGA heuristic for the
BOMCTP which is demonstrated in Figure 6 is to modify k′ := (R′k, Ψ

′
k)

to obtain another column k′′ := (R′′k , Ψ
′′
k ) by completely reconstructing the

set of nodes that may be covered (Ψ ′′k ). The set Ψ ′′k is constructed by taking
all profitable nodes within a radius of ε′′ from a node of R′′k\{v0}. The profit
associated with covering a node of W depends on β′′ rather than on β′. In other
words, the reduced cost of the modified column k′′ is evaluated with respect to
the dual vectors π′′ and β′′. This means that if the reduced cost of k′′ is negative,
then it is guaranteed to be relevant for S(ε′′) but probably not for S(ε′). After
constructing Ψ ′′k , we compute σ′′k = max{dij : vi ∈ R′′k and wj ∈ Ψ ′′k }. A node
vi ∈ R′′k\{v0} that does not uniquely cover a profitable node of W is removed
from R′′k in order to reduce the length of the route and further minimize the
reduced cost (see Figure 6 c). Finally, all the other non-profitable nodes of
W that lie within a radius of σ′′k from a node of R′′k\{v0} are added to Ψ ′′k .
Algorithm 5 summarizes this heuristic.
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Algorithm 5 SOGA Heuristic for the BOMCTP

Input: An original column k′ := (R′k, Ψ
′
k) and a set of dual variable vectors together with

the corresponding values of ε for which they were computed.
1: if k′ has negative reduced cost and Ψ ′k 6= ∅ then
2: for each vector of dual variables do
3: Create a column k′′ := (R′′k , Ψ

′′
k ) where R′′k = R′k and Ψ ′′k contains all profitable

nodes of W that can be covered (based on the corresponding value of ε) by a node
of R′′k\{v0}.

4: Recalculate the value of σ′′k .
5: Delete any node vi ∈ R′′k\{v0} that does not uniquely cover (based on the value of

σ′′k ) at least one node of Ψ ′′k .
6: Recalculate the reduced cost of k′′.
7: if k′′ has negative reduced cost then
8: Add all non-profitable nodes of W that lie in a radius of σ′′k from a node of

vi ∈ R′′k\{v0} to Ψ ′′k .
9: Add k′′ to the RLPM.

10: end if
11: end for
12: end if

4 Computational Results

We present results from experiments conducted to evaluate the quality of
lower bound sets computed for the BOMCTP when we use a standard ε-
constraint formulation and when we use each of the three strategies based
on the reformulation of a BOCOMMO. In order to better evaluate the lower
bound sets, we compute corresponding upper bound sets. Upper bound sets
can be computed using any known methods (exact, heuristics, metaheuristics)
to search for a set of feasible points that do not dominate one another. In
this work, we use a very simple heuristic to compute an upper bound set after
computing a lower bound set by column generation. The idea is to solve RMP
(the integer program) several times by following the idea of Algorithm 1. That
is, we consider the RMP with the columns it contains after computing a lower
bound set and follow Algorithm 1 by replacing the words “scalarized problem”
with RMP. Although an upper bound set is made up of feasible points, they
do not necessary belong to the nondominated set YN since the RMP may not
contain all relevant columns needed to define YN . Nevertheless, if the columns
in RMP are “good” for MP then we expect that the obtained upper bound set
will be a good approximation of YN .

4.1 Evaluation of Bound Sets

We use two measures presented by [7] in evaluating the quality of the computed
bound sets. The first measure (µ1) is distance based whereas the second measure
(µ2) is area based. Roughly speaking, µ1 represents the worst distance (with
respect to the range of objective values) between a point of the upper bound
set and a point of the lower bound set closest to it. Also, µ2 represents the
fraction of the area that is dominated by the lower bound set but not by the
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Fig. 7: Calculation of Quality Measures.

upper bound set. This is, the area where additional points of YN can be found.
Given a lower bound set L and a corresponding upper bound set U, we let ymax

i

for i ∈ {1, 2} be the maximum value of the ith objective when we consider the
union of L and U. In the same way, we let ymin

i for i ∈ {1, 2} be the minimum
value of the ith objective when we consider the union of L and U. We define the
points ymax := (ymax

1 , ymax
2 ) and ymin := (ymin

1 , ymin
2 ). The distance between

L and U (denoted by d(L,U)) is defined as the maximum of the minimum
distances by which we need to displace a point of U so that it is not dominated
by any point of L. Next, let AL and AU be the areas of the regions in the
rectangle with ymin and ymax at opposite corners that are dominated by L and
U, respectively. The two measures are given by

µ1 :=
d(L,U)

‖ymax − ymin‖2
and µ2 :=

AL −AU

AL
,

where ‖ ·‖2 is the Euclidean norm. Figure 7 gives a visual representation of how
the measures are calculated. These two measures complement each other and
as explained by [7], they can be seen to play a role similar to the optimality
gap in single objective optimization. If a lower bound set and a corresponding
upper bound set are good, then we expect that both µ1 and µ2 will be small
in value. The smaller both values are, the better the quality of the bound sets.

4.2 Description of Instances and Experiments

Random instances similar to those described in the literature [11,13,17] were
used for the experiments. The node sets were obtained by generating |V |+ |W |
points in the [0, 100]× [0, 100] square with the depot restricted to lie in [25, 75]×
[25, 75]. Set T (respectively, V ) is taken to be the first |T | (respectively, |V |)
points and set W is taken as the remaining points. The distance between two
points is calculated as the Euclidean distance between them. Five instances for
every combination of |V | ∈ {30, 40, 50} and |W | ∈ {2|V |, 3|V |} were generated.
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Values of |T | in {1, d0.25 · |V |e, d0.50 · |V |e}, p in {5, 8}, and q =∞ were tested.
All computer codes were written in C/C++ and the linear programs were
solved with ILOG CPLEX 12.4. The tests were run on an Intel(R) Core(TM)2
Duo CPU E7500 @ 2.93GHz computer with a 2 GiB RAM. A Summary of the
results obtained are given in Tables 1 and 2. All the values in the tables are
averages over five instances. In these tables, “standard” refers to a BOMCTP
formulation based on a standard ε-constraint method (by directly adding
constraints of the form Γmax ≤ ε to the formulation). Such a formulation can
be found in [24]. Table 1 gives the quality of the computed bound sets whereas
Table 2 gives the computational times and other characteristics of the column
generation method. Given that column generation is an exact method for an
LMP based on a particular formulation, the same lower bound set is obtained
for a given instance based on the formulation no matter the column search
approach used. For each instance, the number of elements in the lower bound
sets obtained from the “standard” formulation and the reformulation are given
under the columns with headings |L| and |L∗|, respectively. The number of
elements in an upper bound set is given under the columns with headings |U|.
The upper bound sets obtained for each instance are different for the different
formulations as well as the different column search strategies. This is because
each strategy generates different columns when computing a lower bound set.
The columns with headings time, dssr, and cols represent the computational
times (in cpu seconds), the number of times the sub-problem was solved with
the DSSR algorithm and the total number of columns generated, respectively.
Values of the two quality indicators are expressed as percentages under the
columns µ1% and µ2%.

4.3 Summary of Results

It can be seen from Table 1 that the bound sets obtained from the reformulated
model are significantly better than those obtained from a model that uses a
standard ε-constraint approach. This is seen by comparing the values of µ1

and µ2 for PPS, IPPS, and SOGA with their counterparts from “Standard”.
For example, a standard ε-constraint approach obtained the values (µ1% =
4.5, µ2% = 24.8) for the instance p = 5, |T | = 1, |V | = 50, |W | = 150
whereas those for PPS, IPPS, and SOGA were (µ1% = 0.2, µ2% = 0.5),
(µ1% = 0.2, µ2% = 0.7), and (µ1% = 0.2, µ2% = 0.4), respectively. There is not
much difference between the values of µ1% and µ2% for the different search
strategies (PPS, IPPS, and SOGA) based on the reformulated model so no
preference for a particular column search approach can be established from
these values. For both the standard and reformulated models, there is a general
increase in the values of µ1% and µ2% when |V | increases and also when |T |
increases. This trend is expected since increasing the values of |V | and |T |
usually increases the computational effort needed to solve an instance.

From Table 2, we see that computing bound sets based on the standard
model is faster than using the reformulated model. This is not so surprising
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Table 1: Quality of Bound Sets for the BOMCTP.

Standard PPS IPPS SOGA

p |T | |V | |W | |L| |U| µ1% µ2% |L∗| |U| µ1% µ2% |U| µ1% µ2% |U| µ1% µ2%

5 1 30 60 64 29 5.2 26.2 25 26 0.3 0.6 26 0.4 0.6 26 0.4 0.6
5 1 30 90 66 29 6.0 27.6 21 21 0.8 2.3 22 0.9 2.0 22 0.9 2.0
5 1 40 80 58 30 5.5 26.1 26 26 0.3 0.4 27 0.3 0.5 26 0.3 0.5
5 1 40 120 67 37 5.1 25.4 27 28 0.4 1.2 29 0.5 1.1 29 0.5 1.2
5 1 50 100 65 34 4.9 24.7 32 33 0.3 0.7 33 0.2 0.6 33 0.3 0.6
5 1 50 150 67 35 4.5 24.8 30 30 0.2 0.5 30 0.2 0.7 31 0.2 0.4

5 8 30 60 15 9 7.7 54.1 10 9 0.2 5.9 9 0.2 5.7 9 0.1 9.3
5 8 30 90 17 10 11.0 53.3 10 10 2.3 9.6 10 2.3 6.5 10 2.6 6.5
5 10 40 80 15 11 1.4 58.1 10 11 0.8 9.2 11 1.0 9.9 11 1.3 9.6
5 10 40 120 16 13 9.1 61.7 12 12 0.7 7.8 12 0.8 7.8 13 1.1 8.0
5 13 50 100 18 11 16.7 72.9 11 11 0.7 4.5 10 1.1 4.0 10 0.6 3.9
5 13 50 150 19 10 21.6 72.6 8 8 3.3 11.9 8 1.9 10.1 9 3.6 9.8

5 15 30 60 2 6 20.3 54.7 6 5 2.2 18.0 5 2.2 13.7 5 2.2 14.5
5 15 30 90 5 6 40.5 55.7 5 6 1.9 15.7 6 1.4 14.5 6 1.8 15.0
5 20 40 80 6 4 57.3 61.4 5 4 5.5 41.2 4 5.4 40.3 4 4.9 40.0
5 20 40 120 7 5 31.2 62.3 5 5 0.8 38.2 5 0.8 46.4 5 0.8 41.3
5 25 50 100 6 4 24.3 76.8 4 4 18.7 36.3 4 1.1 47.8 4 1.1 51.3
5 25 50 150 9 4 28.9 79.1 3 3 3.0 57.7 3 1.4 41.1 3 1.8 35.9

8 1 30 60 64 29 5.3 26.3 25 26 0.1 0.6 25 0.1 0.5 25 0.1 0.5
8 1 30 90 63 30 6.5 28.2 22 22 0.7 1.4 23 0.8 1.2 22 0.8 1.1
8 1 40 80 58 28 5.6 26.0 27 27 0.1 0.4 27 0.1 0.4 27 0.1 0.4
8 1 40 120 65 35 5.2 25.7 29 30 0.2 0.7 30 0.3 0.7 30 0.3 0.7
8 1 50 100 65 34 4.9 24.7 32 32 0.2 0.7 33 0.2 0.6 33 0.2 0.7
8 1 50 150 64 36 4.7 24.8 30 30 0.3 0.7 30 0.2 0.5 31 0.3 0.5

8 8 30 60 15 10 10.2 65.1 10 10 2.5 8.9 9 1.6 9.8 9 2.5 10.1
8 8 30 90 15 9 28.7 69.5 9 9 2.7 10.7 9 2.7 10.4 10 2.7 10.3
8 10 40 80 14 8 16.6 68.0 8 7 6.9 19.6 9 7.6 26.8 8 7.3 24.6
8 10 40 120 17 11 9.3 73.4 11 11 0.7 7.1 12 1.3 8.8 12 1.1 8.8
8 13 50 100 16 10 35.2 74.2 10 10 3.8 10.9 10 3.8 11.7 10 3.4 10.7
8 13 50 150 17 9 30.1 76.7 8 8 2.4 12.0 8 2.2 10.3 8 2.1 10.0

8 15 30 60 2 6 29.0 65.4 6 5 0.8 26.6 5 1.0 26.2 5 1.5 27.6
8 15 30 90 2 6 35.4 71.1 5 6 2.8 21.5 6 3.2 23.4 6 3.3 23.5
8 20 40 80 2 4 41.2 72.9 4 4 15.4 75.6 4 32.5 74.8 4 15.4 69.3
8 20 40 120 4 6 9.2 73.8 5 5 3.2 50.2 5 3.4 51.7 5 3.8 50.3
8 25 50 100 3 5 34.9 81.3 4 4 2.1 56.1 4 2.2 56.1 4 2.1 56.4
8 25 50 150 4 5 24.3 87.9 3 3 2.5 64.9 3 2.6 71.5 3 3.0 65.7

given the relatively inferior quality of the bound sets obtained from the standard
model when compared to those from the reformulated model (see Table 1). There
is a clear preference between the column search strategies for the reformulated
model. SOGA is clearly the best, followed by IPPS and then PPS. Moreover
this preference becomes more evident for difficult instances. For example, the
computational times for PPS, IPPS and SOGA for the instance p = 8, |T | = 13,
|V | = 50, |W | = 150 are 2226.0, 1938.3, and 1033.4, respectively, whereas those
for the instance p = 8, |T | = 25, |V | = 50, |W | = 150 are 3143.1, 2941.0, and
1731.5, respectively. In addition, SOGA usually needs to solve fewer number of
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Table 2: Computational Times for the BOMCTP.

Standard PPS IPPS SOGA

p |T | |V | |W | time dssr cols time dssr cols time dssr cols time dssr cols

5 1 30 60 7.8 160 358 18.0 185 1198 13.9 124 1809 13.0 112 1229
5 1 30 90 12.8 93 332 15.4 163 1063 14.6 120 1569 12.3 106 1041
5 1 40 80 15.0 72 416 49.5 228 1597 40.5 155 2099 36.7 141 1610
5 1 40 120 16.0 129 435 126.8 330 2571 94.0 201 3388 86.4 174 2348
5 1 50 100 26.0 152 570 205.8 390 3035 153.9 226 3459 154.5 213 2871
5 1 50 150 24.7 137 591 392.5 486 4053 287.0 247 4054 268.1 224 3087

5 8 30 60 6.3 165 808 13.6 145 1155 10.9 90 1478 9.1 72 982
5 8 30 90 15.3 143 837 17.9 139 1118 14.3 100 1348 11.9 64 842
5 10 40 80 18.6 157 969 41.3 191 1600 36.0 138 2105 27.2 83 1229
5 10 40 120 28.2 195 1048 104.2 182 2441 82.9 199 2441 58.2 101 1758
5 13 50 100 42.4 243 1160 148.6 309 2728 123.6 231 3299 87.5 110 2207
5 13 50 150 51.7 286 1395 186.8 264 2342 174.3 228 2755 102.8 87 1826

5 15 30 60 16.8 149 825 22.9 171 1463 17.6 113 2750 11.4 55 1444
5 15 30 90 26.4 153 973 29.5 141 1198 27.0 114 2067 17.7 51 1083
5 20 40 80 35.8 168 1232 93.0 207 1832 75.0 156 3726 46.0 67 2143
5 20 40 120 53.5 192 1568 143.3 236 2136 127.1 198 3369 67.7 67 2445
5 25 50 100 55.5 227 1913 231.3 257 2363 216.0 219 4193 112.6 75 2886
5 25 50 150 68.2 285 2194 264.4 185 1700 259.9 171 2902 146.9 65 2440

8 1 30 60 11.8 245 374 49.8 227 1627 29.7 152 2235 25.5 136 1657
8 1 30 90 14.9 144 357 31.3 215 1552 23.3 142 2010 18.7 122 1284
8 1 40 80 54.0 124 436 113.4 302 2283 103.6 218 2961 86.8 183 2253
8 1 40 120 47.2 154 438 511.2 481 3949 503.9 293 4663 326.6 243 3652
8 1 50 100 96.6 189 618 1343.7 522 4306 1012.5 335 5071 821.2 289 4393
8 1 50 150 86.5 199 566 1525.2 672 5799 1186.2 384 6005 1042.1 306 4782

8 8 30 60 52.1 231 738 53.6 231 2027 44.6 158 2466 31.9 123 1952
8 8 30 90 58.0 195 953 77.7 219 1873 65.2 154 2071 50.7 101 1558
8 10 40 80 81.4 206 1087 213.4 298 2730 202.2 214 3560 149.6 119 2236
8 10 40 120 69.5 237 988 797.0 475 4427 623.5 320 4102 407.7 183 3837
8 13 50 100 123.7 273 1439 1142.5 571 5379 973.4 413 6220 755.8 216 4749
8 13 50 150 110.4 294 1712 2226.0 545 5119 1938.3 446 6060 1033.4 161 3939

8 15 30 60 42.1 259 952 182.9 333 3086 128.7 205 5493 87.5 103 3298
8 15 30 90 60.3 198 1071 380.6 288 2691 283.4 209 4675 213.6 102 2451
8 20 40 80 153.7 281 1209 1715.3 430 4129 1459.5 318 8396 978.6 120 5614
8 20 40 120 118.7 296 1841 3202.5 564 5392 2973.4 455 8532 1568.9 149 6162
8 25 50 100 209.9 317 2058 7861.5 627 6022 6963.5 538 11026 3917.6 165 8249
8 25 50 150 264.9 334 2314 3143.1 374 3623 2941.0 342 6757 1731.5 130 5438

subproblems than both PPS and IPPS as it can be seen from the columns with
headings dssr. This is another very good statistic in favor of SOGA since a
greater percentage of the computational time in a column generation algorithm
is spent on solving the subproblems.
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5 Conclusions

This paper investigates the design of efficient column generation algorithms
for bi-objective combinatorial optimization problems. We proposed a gener-
alized column generation scheme for this class of problems and presented
three specific implementations for the case where one objective is a min-max
objective function (BOCOMMO). Instead of directly adding constraints on
an objective when modeling a BOCOMMO, we rather use a variant of the
ε-constraint method that redefines the set of feasible columns to take the
objective into account. By doing so, we keep the strength of the model at the
expense of having a possibly more difficult problem. The advantages of using
the reformulated model is clearly seen from the quality of the bounds obtained
for the bi-objective multi-vehicle covering tour problem. The results obtained
from computational experiments also show that significant speedups can be
achieved when computing lower bound sets by column generation if the search
for columns is intelligently managed. Given that the time needed to compute
such quality bound sets can be very long, future works are aimed at finding a
good compromise between the quality of bound sets and the computational
time. It is also necessary to develop other specific implementations of the gener-
alized column generation scheme for other classes of bi-objective combinatorial
optimization problems.
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