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Abstract: In this paper, a new project scheduling problem is introduced,
the periodically aggregated resource-constrained project scheduling problem
(PARCPSP), in which the resource usage is considered on average
over aggregated periods of parameterised length, while temporal aspects
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1 Introduction

Several models of renewable resource usages by the activities corresponding to different
levels of aggregation can be found in the scheduling literature. At the most detailed
level, resource units are individualised; an activity requires during all its processing
interval a set of resource units (staff, machine, tool) and each resource unit can be
assigned at each time to a single activity. From the resource point of view, this
allows to define and to track the precise timetable of each individualised resource
unit, e.g., by defining for each employee the precise sequence of activities he or
she has to achieve within the scheduling horizon. Such resources, most often called
machines or disjunctive resources, are widely used in the job shop scheduling literature
(Pinedo, 2016). Individualisation of resources is not always necessary nor desirable or
even possible. Considering resources that are available in large or even continuously
divisible amounts (such as energy or raw material), resource individualisation has no
practical sense. Another example: employees that have similar skills and switch from
one activity to another under processes. To model these two typical cases, the cumulative
resource model defines an aggregated resource as the total number of resource units
simultaneously available, without identifying these units. Each activity requires during
all its processing a predefined number of resource units, and the cumulative resource
constraints check whether, at each time, the total number of units required by the set of
activities in process does not exceed the availability. This model is particularly used in
the project scheduling literature (Schwindt and Zimmermann, 2015).

In the detailed and aggregated resource models aforementioned, both activities and
renewable resources share a common time model. For each activity, the resource units it
consumes are required from its start time point to its end time point. However, for some
practical applications, a detailed time model is required to define a schedule of activities,
whereas the required resources can only be assigned in an aggregated time model.
Typical examples can be found in integrated staff rostering and scheduling problem
(Artigues et al., 2008; Paul and Knust, 2015) where activities have to be scheduled in
a continuous or fine-grain discretised time model and generate a demand in employees
that have to be assigned in full shifts (a few hours). On the continuously divisible
resource side, energy-efficient scheduling problems (Haït and Artigues, 2011; Gahm
et al., 2016) also consider a detailed schedule for the activities (e.g., seconds) while
the energy consumption computation is only performed in time intervals of constant
length (e.g., a few minutes). Furthermore, project planning at the tactical level may also
consider human resource usage on an aggregated basis (e.g., on weeks or months), while
project activities are kept on a more precise time reference.

To encompass the above-described applications in a single model, we define a
problem for which a set of activities linked by precedence constraints has to be
scheduled in a continuous time framework, while resource constraints are checked by
averaging the activity consumption on consecutive intervals of identical length. The
problem can also be defined as a hybrid project scheduling/capacity planning where the
project schedule is established precisely while the capacity is more roughly evaluated
on discrete time periods.

After this introduction (Section 1), the paper is structured as follows. Section 2
contains the definition of the problem together with basic structural properties. A
comparison with other scheduling problems from the literature is provided in Section 3.
A mixed integer linear programming (MILP) formulation is introduced in Section 4. The



adaptation of standard schedule generation schemes (SGS) for the resource-constrained
project scheduling problem (RCPSP) is discussed in Section 5. Section 6 proposes
to embed both MILP and SGS in an iterative solution scheme (ISS). Experiments
and computational results are presented in Section 7. Finally, Section 8 gives some
concluding remarks and future work perspectives.

2 PARCPSP – periodically aggregated resource-constrained project scheduling
problem

The new problem we are about to define is a variant of the extensively studied RCPSP,
in which the demand of activities over aggregated periods is taken into account, to
redefine resource constraints.

2.1 Definition of the PARCPSP and notations

The input of the problem is a project, composed of activities subject to precedence
relations (a predecessor must complete before any of its successors can start). During
their execution, activities consume a number of units on one or several resources, each
defined by its capacity (limited number of units available). Additionally, a uniform
subdivision of the time horizon (i.e., R) into periods of parameterised length ∆ ∈ R>0

is considered; for all ℓ ∈ Z, the ℓth period is the time interval [(ℓ− 1)∆, ℓ∆] (Figure 1).
All the notations are given in Table 1.

Table 1 Notations for the input parameters

A = {1, · · · , n} set of n activities
R = {1, · · · ,m} set of m resources
pi ∈ N processing time of activity i ∈ A
bk ∈ N capacity of resource k ∈ R
ri,k ∈ N demand/request of activity i ∈ A on resource k ∈ R
E ⊂ A×A precedence graph
∆ ∈ R>0 period length

Figure 1 Uniform subdivision of the time horizon

Resources are supposed renewable: once an activity completes, the resource units it
consumed can be reused by other activities immediately. Preemption is not allowed.
Two dummy activities are introduced, with a null processing time and null demands on
resources. They represent the project beginning (index 0, predecessor of all the activities
in A) and the project end (index n+ 1, successor of all the activities in A).



A solution is a vector S = (Si)1≤i≤n ∈ Rn, where Si is the start date of activity
i ∈ A. The start date and the completion date of the project are denoted by S0 =
mini∈A(Si) and Sn+1 = maxi∈A(Si + pi), respectively.

The objective is to schedule activities so that the project makespan is minimised.
Two kinds of constraints are taken into account:

1 For each arc (i1, i2) ∈ E, the start date of activity i2 cannot be lower than the
completion date of activity i1 (precedence constraints).

2 For each resource k ∈ R, in each period ℓ ∈ Z, the sum of the average requests of
the activities cannot exceed the capacity of the resource (periodically aggregated
resource constraints).

Let di,ℓ(S) ∈ [0,∆] denote the execution duration of activity i ∈ A in period ℓ ∈ Z
depending on solution S, i.e., di,ℓ(S) is the length of the intersection of two intervals:
the execution interval of activity i, and period ℓ (Figure 2).

di,ℓ(S) = |[Si, Si + pi] ∩ [(ℓ− 1)∆, ℓ∆]|
= max

(
0 , min

(
Si + pi, ℓ∆

)
−max

(
Si, (ℓ− 1)∆

))
One can note that, given a solution S, the expression of the average request of activity
i ∈ A on resource k ∈ R over period ℓ ∈ Z is ri,k

di,ℓ(S)
∆ .

Therefore, the PARCPSP(∆) can be formulated as follows:

Minimise Sn+1 − S0 (1)
subject to Si2 − Si1 ≥ pi1 ∀(i1, i2) ∈ E (2)∑

i∈A
ri,k

di,ℓ(S)

∆
≤ bk ∀k ∈ R , ∀ℓ ∈ Z (3)

Note that activities may start at any time within a period. In other words, the PARCPSP
permits to tackle start and completion events in a precise way, as well as precedence
constraints, while the resource consumption is evaluated on average over (aggregated)
periods.

Figure 2 Evaluation of the execution duration in aggregated periods



Figure 3 Necessary and sufficient resource feasibility condition depending on the period,
(a) first case: pi ≥ 2∆ (b) second case: pi < 2∆ length

(a)

(b)

We suppose that the project instance respects the following conditions, so that feasible
schedules exist, independently of the value of the period length ∆.

• The precedence graph E is acyclic.

• The demand of activity i ∈ A on resource k ∈ R is not greater than its capacity:
ri,k ≤ bk

Indeed, for the PARCPSP(∆), the last condition is sufficient but generally not
necessary. Let S ∈ Rn a feasible solution. For each activity i ∈ A, let ℓi ∈ Z the index
of the period that contains Si, i.e., such that Si ∈ [(ℓi − 1)∆, ℓi∆).

• If pi ≥ 2∆, then the period ℓi + 1 is fully included in the execution interval, i.e.,
[(ℓi − 1)∆, ℓi∆] ⊂ [Si, Si + pi] [see Figure 3(a)]. So, di,ℓi+1(S) = ∆. Since
di,ℓ(S)

ri,k
∆ ≤ bk holds in every period ℓ: ri,k ≥ bk.

• If pi < 2∆, then the execution interval [Si, Si + pi] intersects at most two
periods: ℓi (always) and ℓi + 1 (possibly). The least restrictive configuration is
such that the execution interval is split equally over these two consecutive periods
[see Figure 3(b)]. In that case, di,ℓ(S) = pi

2 in both periods ℓi and ℓi + 1, zero
otherwise. Since di,ℓ(S)

ri,k
∆ ≤ bk holds in every period ℓ: ri,k ≥ bk

∆
pi/2

.

As a result, a necessary and sufficient resource feasible condition is:

ri,k ≤ bk ·max
(
1 , 2∆

pi

)



Note that, apart from the period length ∆, the input of the RCPSP is the same as the
input of the PARCPSP.

Figure 4 Evaluation of activity demands on resources (see online version for colours)
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Figure 5 Impact of translation on the feasibility of a schedule, (a) instance (b) infeasible
solution (c) feasible solution (see online version for colours)
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Let At(S) ⊆ A denote the set of activities in progress at t ∈ R depending on solution
S.

At(S) =
{
i ∈ A

∣∣ t ∈ [Si, Si + pi)
}

A possible formulation for the RCPSP is:

Minimise Sn+1 − S0 (4)
subject to Si2 − Si1 ≥ pi1 ∀(i1, i2) ∈ E (5)∑

i∈At(S)

ri,k ≤ bk ∀k ∈ R , ∀t ∈ R (6)



The RCPSP consists in minimising the project makespan (1) under precedence
constraints (2) and resource constraints (3) (at each instant). The only difference between
the PARCPSP(∆) and the RCPSP lies in the definition of the resource constraints, that
are handled on average or instantaneously, respectively (Figure 4).

Figure 6 Impact of the period length on the feasibility of a schedule, (a) instance (b) solution
(c) feasible (optimal) solution when ∆ = 2 (d) feasible (non-optimal) solution when
∆ = 3 (e) infeasible solution when ∆ = 5 (see online version for colours)
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2.2 Properties

Proposition 1: For all ∆ ∈ R>0 , the PARCPSP(∆) is a relaxation of the RCPSP.

Proof: Let ∆ ∈ R>0. Let S ∈ Rn a feasible solution for the RCPSP: S satisfies both
precedence constraints and resource constraints (at each instant).
For all i ∈ A, for all t ∈ R, let αi,t(S) = 1 if i ∈ At(S), 0 otherwise. Since At(S) ={
i ∈ A

∣∣ αi,t(S) = 1
}
, the resource constraints from the RCPSP can be rewritten as:

∑
i∈A

ri,kαi,t(S) ≤ bk ∀k ∈ R , ∀t ∈ R

Moreover, di,ℓ(S) can be expressed directly from αi,t(S) :

di,ℓ(S) =

∫ ℓ∆

(ℓ−1)∆

αi,t(S) dt ∀i ∈ A , ∀ℓ ∈ Z

Therefore:∑
i∈A

ri,kdi,ℓ(S) =

∫ ℓ∆

(ℓ−1)∆

(∑
i∈A

ri,kαi,t(S)

)
dt ≤ bk∆ ∀k ∈ R , ∀ℓ ∈ Z

Since S also satisfies the aggregated resource constraints (in each period), it is also a
feasible solution for the PARCPSP(∆). �

Before continuing, let us recall some properties that characterise solutions of the
standard RCPSP [for more details, the reader is kindly referred to Artigues et al. (2008)
and Schwindt and Zimmermann (2015)].
• Translating a solution S ∈ Rn, i.e., defining a new solution S′ ∈ Rn such that the

difference S′
i − Si is the same for all i ∈ {1, · · · , n}, has no impact on its

feasibility.

• Non-negative integer solutions (∀i ∈ A, Si ∈ N) are dominant, i.e., it always
exists an optimal integer solution.

In the case of the PARCPSP, because the resource profile is established for each
aggregated period from the average requests of activities, such solution classes are no
more dominant. Moreover, depending on the project data, the set of feasible schedules
may be enlarged (strictly), even with aggregated period of unit length (∆ = 1). These
observations are formalised in the next properties.

Proposition 2: In the case of the PARCPSP(∆) (for all ∆ ∈ R>0), translating a solution
may have an impact on its feasibility.

Proposition 3: In the case of the PARCPSP(∆) (for all ∆ ∈ R>0), integer solutions are
not dominant.

Proposition 4: The PARCPSP(1) is still a relaxation of the RCPSP (even with unit
periods, i.e., ∆ = 1).



Proof: An example that illustrates Propositions 2 to 4 is given in Figure 5.
In the case of the RCPSP, it is not possible to process both activities in parallel. When
there is no idle time between the two activities, the minimum makespan (equal to 2) is
reached.

In the case of the PARCPSP(1), a solution such that both activities are processed in
parallel may or may not be feasible, depending on how the execution intervals intersect
the aggregated periods. Hence, the minimum makespan is 1 (reachable only with
non-integer start dates). �

Proposition 5: In the general case, reducing the value of the parameter ∆ does not
define a relaxation closer to the RCPSP. Formally, given ∆1 ∈ R>0 and ∆2 ∈ R>0 such
that ∆1 < ∆2, the PARCPSP(∆2) is generally not a relaxation of the PARCPSP(∆1).

Proof: A counter-example is presented in Figure 6. The feasibility of the schedule
S = (0, 1, 4) depends on the period length ∆ :

• S is feasible for the PARCPSP(2) (indeed, it is even optimal).

• S is feasible for the PARCPSP(3) (but it is not optimal; the schedule
S′ = (1, 1, 3), for which the average request is the same as S in all periods, is
optimal).

• S is not feasible for the PARCPSP(5). �

3 Literature review

Among project scheduling models at the tactical level, well-suited for the management
of aggregated data, an additional concept is often taken into account, the intensity of an
activity, that allows a flexible resource usage. On the one hand, in each period, the lower
the intensity, the less resource units are required. On the other hand, the completion of
an activity is determined by the sum of the intensities. Therefore, for each activity, the
number of periods intersected also has to be decided.

For instance, in the rough cut capacity planning (RCCP), introduced by Hans (2001),
activity start and completion events can occur at any time (not only at period bounds).
The methodology implemented consists of a branch-and-price, with the generation of
feasible project plans indicating in which periods activities may be processed, while the
determination of the intensities in each period in order to respect the capacity constraints
is managed in the master problem. However, only activity intensities per period are
considered, while two precedence-related activities may be executed in the same period;
the model does not prevent overlaps, thus potentially leading to infeasible schedules
with respect to precedence constraints. Gademann and Schutten (2005) have proposed
linear programming based heuristics to solve this problem. Mestry et al. (2011) use a
similar approach as Hans’ for job-shop production in a make-to-order context.

One possibility to ensure that precedence constraints are always satisfied, is to
over-constrain the RCCP, by enforcing that, if an activity i completes its execution in
period ℓ, then all its successors may start only from the next period ℓ+ 1 on. This
leads to the definition of another problem, first introduced by Kis (2005), entitled
the resource-constrained project scheduling problem with variable-intensity activities



(RCPSVP). Kis (2005) proposes several MILP formulations together with a polyhedral
study for the the generation of valid inequalities deduced from predecessor-successor
relations incorporated into a branch-and-cut approach.

Nonetheless, it is possible to overcome the precedence issue without
over-constraining the RCCP, i.e., allowing that a predecessor and a successor
respectively complete and start in the same period, with no overlap. This has been
achieved by Haït and Baydoun (2012) who proposed a MILP formulation based
on a mixed time representation, introducing for each activity continuous variables
representing the start and completion dates, independently of the subdivision of the
planning horizon into periods. The main difficulty lies in linking the continuous time
variables with discrete time variables linked to periods, which is solved by reinterpreting
some of the temporal relations defined in Allen’s interval algebra, an abstraction of all
the possible relative positioning of two time windows (Allen, 1981).

In the chemical engineering field, researchers have investigated the respective merits
of continuous-time and discrete-time models for process scheduling (Floudas and Lin,
2004). However, the literature is not rich in mixed-time models. Energy problems
provide a good framework to develop such models: energy cost varies on a discrete way
while the activities may start or finish at any time. Castro et al. (2009, 2011) propose a
formulation where continuous-time events are located within fixed time intervals defined
by global time points. Finally, Silvente et al. (2015) propose a mixed time model for
task scheduling within an energy grid.

The problem considered in this paper, namely the PARCPSP, can be seen as a special
case of the RCCP, where the intensity of an activity is fixed, i.e., its resource usage in
a period is determined by the execution time in this period. In particular, this implies
that no preemption is possible, since the intensity in an intersected period cannot be
null. The MILP formulation described in the next section is inspired from the one of
Haït and Baydoun (2012). Here, since the processing times are deterministic, additional
relations can be deduced to link the binary variables that identify the period in which
an activity starts/completes.

4 Mixed integer linear problem formulation based on a mixed-time
representation

4.1 Decision variables: a mixed-time representation

The implementation requires a finite number of periods L ∈ N. Let us consider the
set of consecutive periods L = {1, · · · , L}. In a similar fashion, standard time-indexed
models for the RCPSP [see e.g., Schwindt and Zimmermann (2015), Artigues et al.
(2008)] make use of an extra parameter H ∈ N, the time horizon, i.e., an upper bound
on the shortest project duration (the objective function), that represents the number of
unit periods considered. In the case of the PARCPSP(∆), L can be set to

⌈
H
∆

⌉
.

The decision variables are listed in Table 2. Two temporal representations coexist:
a continuous time representation (Si variables) and a discrete time representation (zsi,ℓ
and zfi,ℓ variables) as shown in Figure 7. These two representations are needed to
compute the value of di,ℓ variables, required in aggregated resource constraints.



Table 2 Description of the decision variables

Si ∈ [0, L∆] start date of activity i ∈ A ∪ {0, n+ 1}
zsi,ℓ ∈ {0, 1} step binary variable equal to 1 iff activity i ∈ A

starts in period ℓ ∈ L or before
zfi,ℓ ∈ {0, 1} step binary variable equal to 1 iff activity i ∈ A

finishes in period ℓ ∈ L or before
di,ℓ ∈ [0,∆] execution duration of activity i ∈ A in period ℓ ∈ L (introduced previously)

Figure 7 Link between all decision variables (mixed time representation)

1 2 3 4 5 6 7 8 9 10 11

0
1

0
1

Figure 8 Two possible configurations on the number of periods intersected (definition of πi),
(a) number of periods intersected minimal (πi = 0) (b) number of periods
intersected maximal (πi = 1)

(a) (b)



4.2 Objective and constraints (initial formulation)

The MILP formulation for the PARCPSP(∆) is given hereafter.

Minimise Sn+1 − S0 (1)
subject to Si2 − Si1 ≥ pi1 ∀(i1, i2) ∈ E (2)

n∑
i=1

ri,kdi,ℓ ≤ bk∆ ∀k ∈ R , ∀ℓ ∈ L (3)

Si ≥ ℓ∆(1− zsi,ℓ) ∀i ∈ A , ∀ℓ ∈ L (4)
Si ≤ L∆− (L− ℓ)∆zsi,ℓ ∀i ∈ A , ∀ℓ ∈ L (5)
Si + pi ≥ ℓ∆(1− zfi,ℓ) ∀i ∈ A , ∀ℓ ∈ L (6)
Si + pi ≤ L∆− (L− ℓ)∆zfi,ℓ ∀i ∈ A , ∀ℓ ∈ L (7)

di,ℓ ≥ 0 ∀i ∈ A , ∀ℓ ∈ L (8)
di,ℓ ≤ ∆(zsi,ℓ − zfi,ℓ−1) ∀i ∈ A , ∀ℓ ∈ L (9)
di,ℓ ≥ ∆(zsi,ℓ−1 − zfi,ℓ) ∀i ∈ A , ∀ℓ ∈ L (10)
di,ℓ ≥ Si + pi − (ℓ− 1)∆−∆(1− zsi,ℓ−1)

− (L− ℓ+ 1)∆(1− zfi,ℓ) ∀i ∈ A , ∀ℓ ∈ L (11)
di,ℓ ≥ ℓ∆− Si −∆zfi,ℓ − ℓ∆zsi,ℓ−1 ∀i ∈ A , ∀ℓ ∈ L (12)
L∑

ℓ=1

di,ℓ = pi ∀i ∈ A (13)

zsi,ℓ−1 ≤ zsi,ℓ ∀i ∈ A , ∀ℓ ∈ L (14)
zfi,ℓ−1 ≤ zfi,ℓ ∀i ∈ A , ∀ℓ ∈ L (15)

zsi,ℓ ∈ {0, 1} ∀i ∈ A , ∀ℓ ∈ L (16)
zfi,ℓ ∈ {0, 1} ∀i ∈ A , ∀ℓ ∈ L (17)

The objective (1) and the two first constraints (2) and (3) match the definition of the
PARCPSP: minimise the project duration under precedence constraints and periodically
aggregated resource constraints.

Constraints (4) and (5) [respectively (6) and (7)] ensure the coherence of the two
temporal representations: zsi,ℓ (respectively zfi,ℓ) step occurs in the period that contains
the start date Si (respectively the completion date Si + pi) for each activity i ∈ A.

The next constraints enable the computation of di,ℓ values. Constraints (8) and (9)
state that di,ℓ ∈ [0,∆]. Constraints (9) set di,ℓ to 0 in periods ℓ that either precede
or follow the execution interval (i.e., (Si, Si + pi) ∩ ((ℓ− 1)∆, ℓ∆) = ∅). Constraints
(10) set di,ℓ to ∆ in periods ℓ that are fully included in the execution interval (i.e.,
[(ℓ− 1)∆, ℓ∆] ⊆ [Si, Si + pi]). Constraints (11) provide a lower bound on the value of
di,ℓ in the period ℓ that contains the completion date (i.e., Si + pi ∈ [(ℓ− 1)∆, ℓ∆]).
Constraints (12) provide a lower bound on the value of di,ℓ in the period ℓ that contains



the start date (i.e., Si ∈ [(ℓ− 1)∆, ℓ∆]). Constraints (13) ensure that activity i ∈ A is
processed during exactly pi time units.

Constraints (14) and (15) enforce an increasing step behaviour on binary variables;
their integrity is stated in constraints (16) and (17).

Remark: Both expressions zsi,ℓ and zfi,ℓ have to be replaced with 0 if ℓ < 1 and with
1 if ℓ > L, since activities cannot start before t = 0 (beginning of the first period 1)
nor complete after t = L∆ (end of the last period L). In other words, binary variables
linked to out-of-scope periods do not need to be created; however, their value can be
used in the model.

4.3 Improvements of the formulation

4.3.1 Lower and upper bounds on start dates

For each activity i ∈ A, it is possible to compute an earliest start date ESi and a latest
start date LSi during a preprocessing phase [typically obtained by computing longest
paths in the precedence graph, or by propagation algorithms, see e.g., Artigues et al.
(2008)], that can be then incorporated directly in the model.

ESi ≤ Si ≤ LSi ∀i ∈ A (18)

Moreover, the fact that the length of all the periods is equal to ∆ induce symmetries:
the feasibility of a solution is not affected by a translation of x∆ for all x ∈ Z. This
phenomenon can be avoided by enforcing the project to start in the first period. This
can be achieved with a single constraint:

S0 ≤ ∆ (19)

4.3.2 Taking into account the number of periods intersected

Indeed, constraints (17) (integrity of zfi,ℓ variables) can be replaced with the following
constraints.

0 ≤ zfi,ℓ ≤ 1 ∀i ∈ A , ∀ℓ ∈ L (17′)

zsi,ℓ ≥ zfi,ℓ+⌈ pi
∆ ⌉−1 ∀i ∈ A , ∀ℓ ∈ L (20)

zsi,ℓ ≤ zfi,ℓ+⌈ pi
∆ ⌉ ∀i ∈ A , ∀ℓ ∈ L (21)

πi ∈ {0, 1} ∀i ∈ A (22)

zsi,ℓ ≤ zfi,ℓ+⌈ pi
∆ ⌉−1 + πi ∀i ∈ A , ∀ℓ ∈ L (23)

zsi,ℓ ≥ zfi,ℓ+⌈ pi
∆ ⌉ + πi − 1 ∀i ∈ A , ∀ℓ ∈ L (24)

Note that zfi,ℓ variables are now implemented as continuous variables, after
constraints (17’). This permits to considerably reduce the number of binary variables
subject to an explicit integrity constraint (about twice as less with a large number of



periods L). The additional constraints ensure that zfi,ℓ variables always take an integer
value.

Since the subdivision of the time horizon is uniform, and the processing times are
deterministic, only two possible configurations exist for the execution interval of any
activity i ∈ A in any solution S.

1 [Si, Si + pi] intersects at least
⌈
pi

∆

⌉
periods [constraints (20)].

2 [Si, Si + pi] intersects at most
⌈
pi

∆

⌉
+ 1 periods [constraints (21)].

Thus, it is possible to introduce, for each activity i ∈ A, one binary variable πi

[constraints (22)] that describes which configuration among the two aforementioned
ones applies (see also Figure 8).

1 πi = 0 iff [Si, Si + pi] intersects exactly
⌈
pi

∆

⌉
periods [constraints (23)].

2 πi = 1 iff [Si, Si + pi] intersects exactly
⌈
pi

∆

⌉
+ 1 periods [constraints (24)].

5 Adaptation of SGS

For the RCPSP, standard algorithms enable to generate a solution from a priority list,
i.e., a permutation σ of activities, such that ‘σ(j) = i’ means ‘activity i ∈ A is at
position j ∈ {1, · · · , n}’, that is a linear extension of the partial order defined by E
(precedence relations):

∀(i1, i2) ∈ E σ−1(i1) < σ−1(i2)

We propose an adaptation of two standard SGS to the PARCPSP: the serial schedule
generation scheme (SSGS), that consists in scheduling successively each activity as early
as possible, and the parallel schedule generation scheme (PSGS), that consists in filling
successively each unit period as much as possible [for a detailed presentation, see e.g.,
Artigues et al. (2008)].

In the case of the RCPSP, optimal implementations are based on start/completion
events. However, in the case of the PARCPSP, the temporal approach is completely
modified: an evaluation of the average resource usage per aggregated period is required.
This is why some concepts have to be discussed, before entering the details of the
adapted SGS.

5.1 Underlying concepts

5.1.1 Resource feasibility test for an activity at a given date

Let us suppose activities in set A′ ⊂ A have already been scheduled, i.e., for all i′ ∈ A′,
start dates Si′ (and so execution durations di′,ℓ(S), ℓ ∈ Z) have been fixed previously.

Let i ∈ A\A′ the next activity to schedule (A′ is supposed to contain all the
predecessors of i).



Figure 9 Example – serial schedule generation scheme, (a) instance (b) solution generated by
the SSGS (see online version for colours)
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Given a candidate start date t ∈ R for activity i (not lower than the latest completion
time among predecessors of i, i.e., t respects precedence constraints), can i effectively
start at t (i.e., are resource constraints satisfied)?

Clearly, the answer depends on the resource availability in the periods intersected
by the candidate execution interval [t, t+ pi].

Let di,ℓ(A′) denote the maximum value of di,ℓ(S) for activity i to be scheduled
in period ℓ ∈ Z, depending on activities already scheduled in A′. Let Li(t) denote the
set of consecutive periods intersected by the candidate execution interval, i.e., Li(t) ={
ℓ ∈ Z

∣∣ [(ℓ− 1)∆, ℓ∆] ∩ [t, t+ pi] ̸= ∅
}
.

Activity i can effectively start at t ⇔ ∀ℓ ∈ Li(t) di,ℓ(S) ≤ di,ℓ(A′)

5.1.2 Computation of the maximum execution duration

According to the aggregated resource constraints, and considering only activities in
A′ ∪ {i}:∑

i′∈A′

ri′,kdi′,ℓ(S) + ri,kdi,ℓ(S) ≤ bk∆ ∀k ∈ R



Therefore:

di,ℓ(A′) = min
(
∆ , min

k∈R | ri,k>0

(
bk∆−

∑
i′∈A′ ri′,kdi′,ℓ(S)

ri,k

))

5.2 SGS algorithms

The pseudo-codes of the adapted SSGS and the adapted PSGS are given in Algorithm 1
and Algorithm 2, respectively.

Algorithm 1 Adaptation of the SSGS

/* Refer to the underlying concepts for the test done at line 13 and the notation di ,�(A ′). */

/* Γ�i is the set of the predecessors of activity i ∈A : Γ�i = {
i� ∈A | (i�, i ) ∈ E

}
*/

1 A ′ ←� /* Set of activities scheduled */

2 for j = 1 to n do
3 i ←σ( j ) /* Activity i is at position j */

4 tmin ← maxi�∈Γ�i (Si� +pi� ) /* Greatest completion date among predecessors */

5 �← max(1,1+� tmin
Δ �)

6 Si ← max(tmin,�Δ−di ,�(A ′))

7 if Si = �Δ then /* di ,�(A ′) = 0 : activity i cannot start in period � */

8 repeat
9 �← �+1

10 Si ← �Δ−di ,�(A ′)
11 until Si < �Δ /* di ,�(A ′) > 0 : activity i can possibly start in period � */

12 end if
13 while Activity i cannot effectively start at Si do
14 repeat
15 �← �+1

16 Si ← �Δ−di ,�(A ′)
17 until Si < �Δ /* di ,�(A ′) > 0 : activity i can possibly start in period � */

18 end while

19 if pi 	 �Δ−Si then /* Only one aggregated period intersected */

20 Si ← max(tmin,(�−1)Δ) /* Left shift */

21 end if

22 A ′ ←A ′ ∪ {i } /* Update of the set of activities scheduled */

23 end for

Algorithm 1: Adaptation of the Serial Schedule Generation Scheme
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Algorithm 2 Adaptation of the PSGS

/* Refer to the underlying concepts for the test done at line 11 and the notation di ,�(A ′). */

/* Γ�i is the set of the predecessors of activity i ∈A : Γ�i = {
i� ∈A | (i�, i ) ∈ E

}
*/

1 A ′ ←� /* Set of activities scheduled */

2 �← 1 /* Index of the first aggregated period considered */

3 while A ′ �=A do
4 i∗ ← 0 /* Convention; means “no activity found” */

5 t∗ ← �Δ /* Candidate start date for activity i∗ */

6 for j = 1 to n do
7 i ←σ( j ) /* Activity i is at position j */

8 if i �∈A ′ and Γ�
i ⊆A ′ then

/* Activity i has not already been scheduled */

/* All the predecessors of activity i have been scheduled */

9 tmin ← maxi�∈Γ�i (Si� +pi� ) /* Greatest completion date among predecessors */

10 t ← max(tmin,�Δ−di ,�(A ′))

11 if t < t∗ and Activity i can effectively start at t then
12 i∗ ← i
13 t∗ ← t
14 t∗min ← tmin

15 end if
16 end if
17 end for

18 if i∗ = 0 then /* No activity found */

19 �← �+1 /* Move to the next aggregated period */

20 else
21 if pi 
 �Δ− t∗ then /* Only one aggregated period intersected */

22 Si∗ ← max(t∗min,(�−1)Δ) /* Left shift */

23 else
24 Si∗ ← t∗
25 end if

26 A ′ ←A ′ ∪ {i∗} /* Update of the set of activities scheduled */

27 end if
28 end while

Algorithm 2: Adaptation of the Parallel Schedule Generation Scheme
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5.3 Example

An example application of the SSGS is proposed in Figure 9. The project instance is
composed of n = 4 activities and m = 2 resources. The priority list σ considered is the
identity.

1 The first activity has a positive demand only on the first resource. Starting from
t = 0, its execution interval intersects only the first aggregated period; by
definition, its average request is equal to r1,1

d1,1

∆ = 2× 2
3 = 4

3 .



2 The second activity has a positive demand only on the second resource; so, it can
also start at t = 0. This time, two aggregated periods are intersected.

3 The third activity must start after the first activity. The precedence constraint is
dominant here: the activity can start at t = 2 (note that, in the first aggregated
period, the sum of the average requests on the first resource remains strictly lower
than the capacity).

4 The fourth activity must also start after the first activity. However, this time, the
aggregated resource constraint on the second resource prevents the activity from
starting right after its predecessor; indeed, it cannot start before the middle of the
second aggregated period, at t = 4.5.

6 Iterative solution scheme

Generally speaking, the different methodologies from the literature can be classified
into two categories: on the one hand, exact methods, for instance based on MILP
formulations, and on the other hand heuristic, generally building an initial schedule and
then transforming it until no better schedule is generated or after a fixed number of
iterations. Here, we propose an original approach, at the frontier of these two families.

The number of aggregated periods considered in the implementation is L =
⌈
H
∆

⌉
.

Therefore, the size of the MILP (both the number of binary variables and constraints)
is inversely proportional to the period length ∆: the smaller ∆, the more computational
time needed to solve to optimality.

In order to speed up the resolution process for a PARCPSP problem defined with a
small period length, the MILP and the SGSs can be embedded in an ISS. The main idea
is to solve successively several PARCPSP problems, while decreasing progressively the
period length.

Let ∆F ∈ R∗
+ the period length of the final problem to solve, namely, the

PARCPSP(∆F ). An ISS can be set up in the following way. Let ∆0,∆1, · · · ,∆F a
list of period lengths, sorted in descending order.

1 Solve the PARCPSP(∆0) using the MILP.

2 For each ∆ ∈ {∆1, · · · ,∆F } in descending order:

a Generate a pool of feasible solutions for the PARCPSP(∆), by repairing
solutions obtained from the previous resolutions of problems PARCPSP(∆′)
with ∆′ > ∆.
The repair process is composed of two steps.

1 Transform the solution to repair S into a priority list σ, such that:

∀(j1, j2) ∈ {1, · · · , n}2 j1 ≤ j2 ⇒ Sσ(j1) ≤ Sσ(j2)

2 Apply an SGS onto σ that returns the repaired solution S′.

More solutions can be added in the pool by considering more priority lists,
obtained by applying a SWAP operator restricted to consecutive activities.
More precisely, given a position j ∈ {1, · · · , n− 1} and a priority list σ, let
i1 ← σ(j) and i2 ← σ(j + 1); unless (i1, i2) ∈ E, the SWAP operator



exchanges the two activities (σ(j)← i2 and σ(j + 1)← i1) with a
probability ρ.

b Solve the PARCPSP(∆) using the MILP, providing generated solutions from
the pool as hints (upper bounds) to the solver (warm start).
Contrarily to what is stated in Morin et al. (2016), it is indeed not possible to
maintain a non-decreasing lower bound throughout the process
(a counterexample is provided in Proposition 5).

The efficiency of this approach is determined by two parameters: the number of
iterations and the reduction of the period length between successive iterations. The
smaller ∆, the less reduction should be applied, in order to propagate pertinent
information.

7 Experiments and results

7.1 Experiments description

Three different methods have been tested to solve a problem PARCPSP(∆).

1 The first method [M1] consists in applying both SSGS and PSGS on a large
number of priority lists.

2 The second method [M2] consists in solving the MILP; the solver is given the
solutions obtained from [M1] as hints (MIP warm start).

3 The third method [M3] consists in setting up an ISS as described in Section 6.
Several PARCPSP problems are considered; from one iteration to another, the
period length decreases, and the initial solution pool is updated through a repair
process.

The methods have been tested in the following conditions:

• The J30 instances from the PSPLIB (Kolisch and Sprecher, 1996) have been used:
480 projects with 30 activities and 4 resources each.

• The maximal number of priority lists considered has been set to 1,000; the initial
priority list is the identity (activities are numbered in such a way that this is
always a valid priority list) that is then modified using the SWAP operator
(parameter ρ set to 20%).

• The solver used for the resolution of the MILP is CPLEX 12.6.2 (IBM).

• A timeout of 3,600 seconds has been set for each MILP resolution.

7.2 Results analysis

A first series of experimental results aiming at comparing the three methods are
available in Table 3. For all the methods, the gap to the best upper bound found, as
well as the computational time, are reported. For both [M1] and [M2], the number of
optimal solutions is also indicated.

It is important to mention that, for [M3], the results are cumulative, i.e., for the
r-th row:



• The problem solved is the PARCPSP(∆r) (the value of ∆r can be read in the
leftmost column).

• The ISS is built with r iterations: the values of period lengths are
∆1,∆2, · · · ,∆r (previous rows).

• The results in Table 3 take into account the execution of all the iterations.

Table 3 Experimental results

∆
[M1] [M2] [M3]

Gap UB Time Gap UB Time # Opt Gap UB Time # Opt
(%) (s) (%) (s) (/480) (%) (s) (/480)

10 17.23 < 1 0 75 480 0 75 480
8 14.16 < 1 0 89 480 0 117 480
6 12.01 < 1 0.46 138 475 0 151 475
5 9.69 < 1 1.16 154 458 0 169 460
4 8.55 < 1 1.83 207 450 0 186 452
4.5 7.49 < 1 2.17 223 443 0 195 447
3 6.98 < 1 2.49 231 442 0 208 444
2.75 6.3 < 1 2.92 241 437 0 223 441
2.5 6.07 < 1 3.27 250 435 0 241 439
2.25 5.72 < 1 4.12 277 433 0 283 436
2 5.29 < 1 3.88 296 431 0 320 436
1.8 4.96 < 1 4.35 339 428 0 381 435
1.6 4.61 < 1 3.28 372 427 0 447 435
1.4 4.29 < 1 3.55 421 426 0 532 434
1.3 3.84 < 1 3.41 463 423 0 599 434
1.2 3.5 < 1 2.99 488 421 0 657 433
1.1 3.27 < 1 3.11 517 418 0 724 432
1 3.07 < 1 3.03 535 417 0 795 429

In terms of gap to the best upper bound, the best solutions are always found by
[M3]. The gap of [M1] is quite large, especially for large values of ∆. This can
be explained by the fact that the solutions built by both SGS systematically start at
t = 0 ; nonetheless, there is no guarantee at least one such solution be optimal (cf.,
proof of Propositions 2 to 4 for example). In terms of computational time, the SGS
are very fast. Moreover, [M3] is sometimes faster than [M2] (for ∆ from 4.5 to 2.5).
[M3] also establishes the optimality for more instances, but the number of additional
optimal solutions found decreases with ∆. This shows that the ISS can permit to
reduce the computational time, even though it is much more complex, since several
MILP are solved successively. Nonetheless, despite Proposition 5, the data generated
by the repair process and propagated throughout the process is useful, until a certain
point; unfortunately, when ∆ becomes too small, this information becomes less and less
helpful for the MILP resolution.



Table 4 Impact of instance indicators
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One can note that the smaller ∆, the less reduction is applied. Other strategies have been
tested (e.g., linear reduction), but seem less efficient to provide pertinent information
between iterations and so reduce the overall computational time.

We now provide additional insight on the performance of the best method [M3] on
48 selected instances from the J30 set w.r.t. the different values of ∆ and the instance
characteristics. In the PSPLIB, each instance is generated according to three indicators.
The network complexity gives an indication on the density of the precedence graph. On
the 48 instances, there are 16 instances with NC = 1.50 (small density), 16 instances
with NC = 1.80 (medium density) and 16 instances with NC = 2.10 (high density). The
resource factor gives the number of resources used by an activity from one resource
(RF = 0.25) to four resources (RF = 1.00). Finally the Resource Strength measures the
tightness of the resource constraints. For RS = 1.00, the earliest precedence-feasible
schedule is always globally feasible (no resource constraints). For RS = 0.75, RS =
0.70, RS = 0.50 and RS = 0.20 the resource contraints are more and more tightened in
the sense that less and less activities can be scheduled in parallel as their requirement
is higher and higher compared to the resource availabilities. Table 4 provides for each
value of ∆ and for each set of instances having the same indicator, the number of
optima found, the average gap at the end of the branch-and-bound and the average CPU
time (limited here to 1800s). It appears that the CPU time and the gap increase asNC
decreases, RF increases and RS decreases. This is inline with the previously established
results for the RCPSP indicating the instances with a lower precedence graph density, a
higher number of required resources and tighter resource constraints are harder to solve.
Note that this is true for any value of ∆ whereas for the larger value of ∆ the effect is
mitigated as the instances become globally easier to solve. However the instances with
RS = 0.2 are still hard with only 9 out of 12 instances solved with an average CPU
time of 602s.

Table 5 Average gap (%) below the optimal RCPSP makespan

∆=1 ∆=2 ∆=3 ∆=4 ∆=5

All (48) 2.31 3.83 4.62 5.09 6.02
NC = 1.50 (16) 2.44 4.22 4.98 5.22 5.24
NC = 1.80 (16) 1.95 3.23 4.16 4.77 7.29
NC = 2.10 (16) 2.51 4.02 4.72 5.26 5.38
RF = 1.00 (12) 1.46 2.28 2.76 2.99 4.66
RF = 0.75 (12) 1.77 2.50 3.06 3.57 5.45
RF = 0.50 (12) 3.31 5.91 6.97 7.67 8.00
RF = 0.25 (12) 2.39 4.01 4.98 5.34 5.69
RS = 1.00 (12) 0.00 0.00 0.00 0.00 0.00
RS = 0.70 (12) 0.75 0.82 0.82 0.82 0.82
RS = 0.50 (12) 3.58 5.16 5.74 6.10 6.39
RS = 0.20 (12) 6.75 13.27 17.15 19.38 20.47

According to the same indicators, it is also relevant to evaluate the gain in makespan
that can be obtained by aggregating the resource constraints compared to the standard
RCPSP model. In practical applications where the PARCPSP model applies (Artigues
et al., 2008; Paul and Knust, 2015; Haït and Artigues, 2011; Gahm et al., 2016), this will
quantify the potential improvement over the standard RCPSP model. Table 5 provides



the gap below the optimal RCPSP makesan on the same 48 instances only when the
optimal solution has been provably found by [M3]. It is worth remarking that the gap is
already significant for ∆ = 1 except for the (almost) resource-unconstrained instances
RS = 1.00 and RS = 0.70. Indeed for the RS = 0.20 instances, the gap goes up to 6.75%
while it stays around 2% for other instances. The average over all instances shows
that the gap increases in average almost by the same amount ∆ is increased. The only
indicator that has a visible impact on this gap is the RS indicator where the increase
as ∆ increases is spectacular for the hardest RS = 0.20 instances. This underlines the
expected result that when resource constrained are tighter, averaging the consumption
on (even small) periods is highly beneficiary for the makespan.

8 Conclusions and perspectives

In this paper, a new problem, the PARCPSP, has been introduced, that permits to tackle
temporal aspects in an exact way, while the resource usage is considered on average
over aggregated periods. Although it appears to be a relaxation of the RCPSP, the
structure of the two problems are quite different (e.g., multiple factors of alteration
of the feasibility of a schedule, no dominance rule). Both exact and heuristic methods
have been proposed to solve the problem, via the definition of a MILP based on a
mixed time representation, and the adaptation of standard SGS. Finally, an ISS has been
presented, that enables to reduce the resolution time. The impact of the standard instance
complexity indicators (network complexity, resource factor and resource strength) have
been studied on the number of times optimality can be proved, on the average optimality
gap and on the CPU times. This reveals that on theses indicators the PARCPSP share
the same properties with the RCPSP, namely that low NC, high RF and low RS yield
hard instances. However, increasing ∆ significantly mitigates this behaviour. Finally the
study of the gap, when optimality could be proved, with the optimal RCPSP makespan
shows that on the selected instances the makespan is about (1 + ∆)% lower for the
PARCPSP than for the RCPSP. This improvement is much larger on the hard instances
with low resource strength, which underlines the benefit of switching if possible to the
PARCPSP model when resources are scarse.

Among future research guidelines, reinforcing the link between the continuous and
discrete temporal variables in the MILP, that constitutes the model kernel, represents a
daunting challenge. This could lead to significant computational results improvements.

It would also be interesting to extend the ISS to solve the RCPSP. On the one
hand, the optimum gap between the RCPSP and the PARCPSP(1) may be large. On the
other hand, the lower the period length, the more the number of periods; continuing
decreasing the period length below one does not seem to be a reasonable option.
Therefore, other alternatives should be investigated. For instance, generating cutting
plane inequalities, valid for the RCPSP, into the PARCPSP model (thus defining an
intermediate relaxation), could be an interesting strategy.

For further research, we will consider applications where a part of the resources are
of aggregated type and a part of the resources are of detailed type, like in the employee
timetabling and job shop scheduling problem considered in Artigues et al. (2008), where
human resources are modelled as periodically aggregated resources, while machines are
standard disjunctive resources. Multi-project problems and arbitrary subdivisions of the
time horizon are also appealing research directions.
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