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1 Introduction

This paper describes an algorithm for the computation of tri-echelon supply chains trans-
portation plans. The problem is inspired from logistic issues appearing in large-scale
restaurant chains. We consider products for which customers have a recurring request
through the time horizon. Suppliers product and ship the commodities to customers by
direct deliveries, or by way of intermediary hubs.

Freight flows in the supply chain are modelled by time-expanded graphs [3]. Unfor-
tunately, realistic instances in terms of network and time horizon yield to graphs with a
huge amount of nodes and arcs. Induced mixed integer linear programs are too large to
be solved in a reasonable amount of time with an industrial solver.

We conceived a resolution heuristic able to produce good solutions despite instances
increasing size. The method is inspired from Boland et al. [1]. The authors focus on
the Service Network Design Problem (SNDP ). It is a comparable freight transportation
problem, reviewed by Crainic [2]. However, the method cannot be applied directly as
our problem differs on key elements. Our heuristic consists in generating a subgraph
containing nodes and arcs required to transit the optimal flow. When generation is over,
we solve a much smaller program induced from the subgraph, and get a not neccesarily
optimal transportation plan.



2 Problem description

The static network D = (N ,A) models our supply chain. The nodes N represents the
actors of the supply chain, partitioned in three sets. The set U represents the suppliers,
V the hubs, and W the restaurants. We consider a set of commodities K. Each supplier
u ∈ U can infinitly provide a subset of products Ku ∈ K. Each restaurant w ∈ W has a
demand dt

wk ≥ 0 of commodity k at time t. Our objective is to determine the minimal
cost transportation plan satisfying all the demands.

There is no temporal dimension in static networks, so we represent the supply chain
by a time-expanded graph DT = (NT ,HT ∪ AT ) derived from D. The set of nodes NT

is obtained duplicating the physical locations of N through the time horizon. The set of
arcs is decomposed into holding arcs HT - connecting two occurences of the same physical
location - and transportation arcs AT . Note that holding arcs only exist for hubs. Each
arc ((i, t), (j, t′)) has a travel time t′ − t, a per-unit-of-flow cost cij ∈ R+∗, a fixed cost
fij ∈ R+∗, and a capacity uij ∈ R.

For each demand dt
wk the destination is known, but the origin is unknown. Indeed,

any supplier u ∈ U such that k ∈ Ku can fulfill the request. The solver must determine
which one is the best option. Thus we have no commodities origin constraints, involving
an unusual complexity level for transportation problems.

Given a time-expanded network DT , we define SCNDP (DT ) to be our Supply Chain
Network Design Problem. Positive integer variables ytt′

ij represent the number of trucks
used on arc ((i, t), (j, t′)). Positive continuous variables xktt′

ij model the flow of commodity
k on arc ((i, t), (j, t′)). Note that xktt′

ij is not defined if k cannot transit on the given arc,
i.e. if i ∈ U and k /∈ Ki. The following is a valid integer programm:
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We seek to minimize the total expenses, i.e. the fixed costs of allocating resources on
transportation arcs and the linear costs of transportation and holding flows. Constraint
(1) is an adapted Kirchhoff constraint, with no imposed origin on commodities. Constraint
(2) ensures that enough trucks are allocated to ship the commodities. Constraints (3)
and (4) are the variable domains.



3 Resolution method

3.1 Dynamic Discrezation Discovery

Dynamic Discretization Discovery (DDD), method by Boland et al., is optimal for the
Service Network Design Problem (SNDP). This problem is comparable to ours, with two
major differences: commodities origins are defined and holding cost are null. The objective
function seeks to minimize transportation costs only.

The DDD method consists in generating an initial subgraph DT under a certain set of
properties. Those conditions respected, the subproblem SNDP (DT ) provides a solution
not necessarily feasible in the full graph. The subgraph contains arcs under-estimating real
travel times, which allow commodities to arrive earlier than feasible in real-life. Therefore
the subgraph offers unrealistic flow consolidations. However, the subproblem necessarily
provides a lower bound to the initial SNDP.

The DDD method solves the subproblem SNDP (DT ) and detects the use of early-
arrival arcs in the solution. In that case, the subgraph is repaired and expanded while
keeping its lower bound propery. The process stops once a lower bound feasible to the full
graph is found, i.e. the optimal solution.

3.2 A heuristic based on two reparation mechanisms

The DDD cannot be used unaltered to our problem, essentially because we consider strictly
positive holding costs and our commodities have no predefined origins.

Considering strictly positive holding costs breaks the optimality property of the DDD,
as we set an example in which the subproblem no longer provide a lower bound to the full
problem. This is because having unrealistic flow consolidations is not sufficient to ensure
finding a better solution than possible. Supressing the commodities origins prevent us
from generating the initial subgraph similarly to the DDD.

We demonstrate the DDD is optimal to the SCNDP with free holding costs, if the sub-
graph contain any supplier occurence (u, t). However we must restrict the set of suppliers
size, as including them all makes the method too slow. We initiate the subgraph with
the suppliers shipping a non-null amount of commodities in the optimal solution of the
SCNDP linear relaxation.

The subgraph generation heuristic is based on two reparation mechanisms. We build
the initial subgraph, with early-arrival arcs and free holding costs only. The first reparation
mechanism is the DDD, it fixes the transportation unfeasibilities. It detects the early-
arrival shippings and refine the subgraph to prevent unfeasible consolidations. The second
reparation mechanism is an holding costs injection, to fix the storage defects. It spots the
free holding arcs used in the subgraph solution, and update the real costs. The method
iterates those mechanisms until no transportation/storage anomaly appears. Note that



the programs solved in this phasis are linear relaxations only, to accelerate the process.
Then, the subgraph remaining early-arrival arcs are supressed and all the holding

costs are updated. We then solve the SCNDP mixed-integer program induced from the
subgraph, and obtain a feasible solution.

4 Results and Discussion

We tested the heuristic on 2 set of instances - representing a total of 90 instances - and
compared it with the solution of the full SCNDP model by Gurobi. The first set is referred
as easy instances and the industrial solver found optimal solutions, within the time limit
of 2 hours. The second set is referred as difficult instances and the industrial solver only
gave suboptimal solutions. The following ratio compares the results:

ratio = Hsol −MILPsol

MILPsol
× 100

A negative ratio states the heuristic outperformed Gurobi, otherwise Gurobi found a better
solution.

N Ratio(%)
10 0.70
20 2.19
30 1.13

N Ratio(%)
80 -0.056
100 -18.75
120 -28.17

Table 1: Performance on easy/difficult instances

To summarize, we agglomerated the instances by the number of nodes of the supply
chain. For easy instances, the average ratio is positive as Gurobi finds optimal solutions,
what the heuristic does not. However, the ratio values are close to 0, indicating the
heuristic solutions are of good quality. The difficult instances table reveals our heuristic
is able to provide better solution than Gurobi in a given computational time. We observe
that this gap becomes larger as the instance complexity increases.
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