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Algorithms for the flexible cyclic jobshop problem

Félix Quinton, Idir Hamaz1, Laurent Houssin1

Abstract—This paper considers the cyclic jobshop
problem in a flexible context. The aim is to find the
minimum cycle time of a periodic schedule. The flex-
ibility feature comes from the ability of the machines
or robots to perform several kinds of tasks. Hence,
the scheduling problem does not only concern starting
time of tasks but also on which machines the tasks will
be performed. We propose an exact method to solve
this problem and two heuristics.

I. INTRODUCTION
In automation systems, a robotic cell for instance,

actions are mainly cyclic. Once an occurrence of each
task is planed and the cycle time is determined, the
schedule is completely defined. Each occurrence is then
performed periodically. Numerous papers consider the
scheduling problem of a robotic cells in a cyclic manner
(Crama [4], Yan [5], Bożejko [6]).

In scheduling theory, cyclic jobshop scheduling and
flexible jobshop scheduling are long studied NP-hard
problems (Hanen [1], Brucker [2], Levner [8]) apart from
each other.

However few papers tackle the flexible cyclic schedul-
ing problem despite the capabilities of robots to perform
several types of task. Because of the highly combinatorial
nature of flexible scheduling problems (Xia [9]), research
focused on genetic algorithm to solve the flexible cyclic
scheduling problem (Jalilvand [10], Bożejko [11]).

This paper is organized as follows : in Section II.
we describe the basic cyclic scheduling problem. Section
III. describes the cyclic jobshop scheduling problem in
which we introduce the notion of robots and resource
constraint. In Section IV. we introduce the flexible cyclic
jobshop problem and the notion of flexibility which
means that a robot can perform several different tasks,
and propose a mathematical model for this problem. In
Section V. we propose two heuristic procedures to tackle
long solving time for large instances. Finally, we present
numerical instances in Section VI.

II. Basic cyclic scheduling problem
The basic cyclic scheduling problem (BCSP) is an

extension of the basic scheduling problem where a sched-
ule of elementary tasks i ∈ T = {1, ..., n} is infinitely
repeated. For each task i ∈ T , we are given its execution
time pi and we denote by ti(k) the starting time of
occurrence k of task i ∈ T .
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Elementary tasks are connected by precedence con-
straints. A precedence constraint (i, j, pi, Hij), where Hij

is called the height of the precedence constraint and
represents the occurrence shift between tasks i and j,
state that :

tj(k +Hij) ≥ pi + ti(k)

Let us denote ti = ti(0), i ∈ T . In this study, we
are interested in periodic schedules, which are such that
there exists a cycle time α satisfying ti(k) = αk + ti.
The objective considered in this study is the minimiza-

tion of the cycle time α which is the time elapsed between
two occurrences of the task.

A BCSP can be represented on a graph where the set of
edges E represent the precedence constraints and vertices
represent elementary tasks. The edges are weighted and
the weight of a given edge represent the execution time
of the task at its origin and the height of the precedence
constraint.

There are two methods to solve the BCSP. The first is
based on graph and consist to find the maximum mean
cycle in the graph.

The second is to use mathematical programming. The
BCSP can be expressed as a linear programming problem
as follows.

minα

s.t.

α ≥ pi, ∀i ∈ T (1a)
tj + αHi,j ≥ ti + pi, ∀(i, j) ∈ E (1b)

ti ≥ 0, ∀i ∈ T (1c)

Constraints (1a) correspond to non-reentrance con-
straints which ensure that two occurrences of the same
elementary task do not overlap. Constraints (1b) set the
precedence constraints.

Example 1: Table I reports the data of a BCSP
instance with 7 elementary tasks. The graph representing
this example is presented in Fig. 2, where the red dotted
edges are ignored. After solving this BCSP, we find an
optimal cycle time of 9.

TABLE I
An exemple for the BCSP

Task 1 2 3 4 5 6 7
Time 5 4 5 5 4 3 5

The solution for the BCSP instance is given in Fig. 1
in the form of a Gantt diagram :



Fig. 1. Solution for the CSP example
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III. Cyclic jobshop scheduling problem
In the cyclic jobshop scheduling problem (CJSP), each

elementary task i ∈ T is assigned to a robot ri ∈ R =
{1, ..., R}, with R < n.

In consequence, the lack of resource induces some
disjunction constraints. For a pair of tasks (i, j) ∈ T 2, i 6=
j such that ri = rj , an occurrence of tasks i and an
occurrence of j, cannot be executed at the same time.
Denote by D = {(i, j)|R(i)∩R(j) 6= ∅} the set of pair of
tasks in disjunction.

More precisely, this disjunction leads to a pair of
constraints : {

tj(k +Kij) ≥ ti(k) + pi

ti(k +Kji) ≥ tj(k) + pj

Where Kij (resp. Kji) is an occurrence shift between
task i and j (resp. j and i), and Kij +Kji = 1 as showed
by Hanen [1]. Note that in this problem the variables are
α, (t)i∈T , and (K)(i,j)∈D.

A job is composed by elementary tasks and precedence
constraints between these tasks.

A feature of the CJSP is the Work In Process (WIP).
It corresponds to the maximum number of occurrences
of a job processed simultaneously.

The CJSP can be resolved using a Branch-and-Bound
procedure (Houssin [8], Hanen[1]) or using mathematical

programming. The CJSP can be represented as a Mixed
Interger Non Linear Programming problem (MINLP) as
follows :

minα

s.t.

α ≥ pi, ∀i ∈ T (2a)
tj + αHi,j ≥ ti + pi, ∀(i, j) ∈ E (2b)

tj + αK(i, j) ≥ ti + pi, ∀(i, j) ∈ D (2c)
K(i, j) +K(j, i) = 1, ∀(i, j) ∈ D (2d)

K(i, j) ∈ Z, ∀(i, j) ∈ D (2e)
ti ≥ 0, ∀i ∈ T (2f)

Constraints (2a) are the non-reentrance constraints
and constraints (2b) are the precedence constraints.
Constraints (2c) are the disjunction constraints defined
above, and constraints (2d) state for the usual CJSP
property previously enunciated.

However, non linear programming is very unpractical.
Consequently, we want to linearize the model. Hanen [1]
proposes to define the variable τ = 1

α and for all i ∈ T ,
the variable ui = ti

α . Then the CJSP can be written as
follows (Hanen [1]):

max τ

s.t.

τ ≤ 1
pi
, ∀i ∈ T (3a)

uj +Hi,j ≥ ui + τpi, ∀(i, j) ∈ E (3b)
uj +K(i, j) ≥ ui + τpi, ∀(i, j) ∈ D (3c)
K(i, j) +K(j, i) = 1, ∀(i, j) ∈ D (3d)

K(i, j) ∈ Z, ∀(i, j) ∈ D (3e)
ui ≥ 0, ∀i ∈ T (3f)

Example 2: in Table II, we have updated Example 1
so that it fits the CJSP with 4 robots. The graph in Fig. 2
shows the problem with only the disjunctive constraints
for robot M3 displayed for cleanliness purposes. Solving
this CJSP, we find an optimal cycle time α = 13.

TABLE II
An exemple for the CJSP

Task 1 2 3 4 5 6 7
Time 5 4 5 5 4 3 5
Robot M1 M1 M3 M1 M2 M4 M3

The solution for this CJSP is given in Fig.3 in the form
of a Gantt diagram :

IV. Flexible jobshop cyclic scheduling
problem

The flexible cyclic jobshop scheduling problem
(FCJSP) is a CJSP where the elementary tasks are



Fig. 2. Associated graph to the CJSP instance described in
example 2

s

1 2 3 4

5 6 7

f

(0, 0)

(0, 0)

(5, 0)

(5, 0)

(5, 0) (4, 0) (5, 0)

(4, 0) (3, 0)

(0, 2)

(5,K
37 )

(5,K
73 )

Fig. 3. Solution for the CJSP example

Time 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M1 1 2 1 4 2 1

M2 5 5 5

M3 7 3 7 3

M4 6 6

α = 13

flexible. This means that for each task i ∈ T , we have a
set R(i) ⊂ R of robots on which task i can be assigned.
In consequence, the assignment of a task i to a robot

r ∈ R(i) is a decision variable. Each assignment of a
task i ∈ T to a robot r ∈ R(i) is associated with a given
execution time pir.
Also, because we do not know a priori on which robot

each task will be assigned, we do not know the set D
of pairs of tasks which are connected by a disjunctive
constraint.

Example 3: in Table III, we have updated Example 2
so that it fits the FCJSP. Each task can be assigned to a
subset of 3 out of 4 robots. Note that the new possibilities
come with a higher execution time.

A. Linear model
In this section, we propose a mixed integer linear

programming (MILP) formulation for the FCJSP. Let
R(i, j) = R(i) ∩ R(j),∀i, j ∈ T the robots available
both for tasks i and j. Recall that E is the set of prece-
dence constraints and that D is the set of disjunctive
constraints.

We also define some decision variables for the assigna-
tion of a task i ∈ T to a robot r ∈ R(i) :

∀i = {1, ..., n},∀r ∈ R(i),

mi,r =
{

1 if task i is assigned to robot r
0 sinon

TABLE III
An exemple for the FCJSP

Task 1 2

Robot M1 M2 M4 M1 M2 M3
Time 5 6 6 4 5 6
Task 3 4

Robot M2 M3 M4 M1 M2 M3
Time 7 5 6 4 7 5
Task 5 6

Robot M1 M2 M3 M1 M3 M4
Time 4 4 5 3 4 2
Task 7

Robot M1 M2 M3
Time 5 7 5

The MILP for the FCJSP can be formulated as :

max τ
s.t.

τ ≤ 1
pi,r

+ (1−mi,r)P1, ∀i ∈ T, ∀r ∈ R(i) (4)

uj +Hi,j ≥ ui + pi,r(τ − (1−mi,r)),
∀(i, j) ∈ E,∀r ∈ R(i) (5)

uj +Ki,j ≥ ui + pi,r(τ − (2−mi,r −mj,r)),
∀(i, j) ∈ E,∀r ∈ R(i, j) (6)∑
r∈r(i)

mi,r = 1, ∀i ∈ T (7)

K(i, j) +K(j, i) = 1, ∀(i, j) ∈ D (8)
K(i, j) ∈ Z, ∀(i, j) ∈ D (9)

ui ≥ 0,∀i ∈ T (10)
mi,r ∈ {0, 1}, ∀i ∈ T∀r ∈ R(i) (11)

Constraints (4) correspond to non-reentrance con-
straints. They ensure that two occurrences of the same
elementary task do not overlap. The P1 term allows us to
deactivate the constraints for which task i is not affected
to robot r. Let us set P1 = 1

min
i∈T ,r∈R(i)

pi,r
.

Constraints (5) set the precedence constraints, i.e.
the order in which tasks have to be executed. Those
constraints must be activated only if task i is assigned to
robot r, because we use the term pi,r. All constraints in
(5) such that mi,r = 0 are dominated by the constraints
in (5) such that mi,r = 1 because pi,r(τ −1) < 0 < pi,rτ ,
and thus are deactivated.

Constraints (6) represents the disjunctive constraints,
ensuring that two tasks are not executed at the same time
period on the same robot. We want those constraints to
be activated only when tasks i and j are assigned to the
same robot r. Let r ∈ R(i, j) a robot on which both tasks
i and j can be executed, then if task i or task j is not
assigned to r, we have τ − (2 −mi,r −mj,r) < 0, which
deactivate the corresponding disjunctive constraint. By



the same mechanism as previously, constraints where
mi,r = 0 or mj,r = 0 are dominated by those where
mi,r = mj,r = 1 and thus are deactivated.

Constraints (7) ensure that every task i ∈ T is assigned
to a robot r ∈ R(i). Constraints (8) are usual constraints
for the CJSP, introduced by Hanen [1].

Example 3.1: We have solved the Example 3. with
our MILP. We have obtained a cycle time α = 10. The
solution is displayed as Gantt diagram in Fig. 4.

Fig. 4. Solution for the FCJSP example

Time 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M1 2 7 2 7 2

M2 5 5 5

M3 3 4 3 4

M4 1 6 1 6 1 6

α = 10

B. Heuristic procedures
The FCJSP is a difficult problem because it is highly

combinatorial. The solving time of the MILP presented
in V. can become very long for large numerical instances.
To tackle this issue, we have developed two heuristic
procedures.

1) Reducing the R(i) sets: a first approach is to reduce
the flexibility of the problem, i.e. the number of robots
in the set R(i),∀i ∈ T . Define RH(i) ⊂ R(i) the set
of robot on which task i ∈ T can be assigned in the
heuristic procedure. The set RH(i) can be fixed as the
set of RH robots with the lowest execution time for task
i, with RH < R. In our numerical experimentation, we
have set RH = 2, which allows us to obtain some good
feasible solutions in a reasonable solving time without
losing flexibility.

Example 3.2: we have solved Example 3 using this
approach. We have obtained a cycle time α = 10, with
a different task to machine assignment. The solution is
displayed in Fig. 5 as a Gantt diagram.

Fig. 5. Solution given by the "reduce R(i)" heuristic for the FCJSP
example

Time 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M1 1 1 7 1 7

M2 5 2 5 2 5 2

M3 3 4 3 4

M4 6 6 6

α = 10

2) Critical circuit heuristic: an other approach is to
allow only a fraction of the tasks to be flexible. In
other words, we chose a subset I ⊂ T of tasks whose
assignment to robot will be a decision variable while
other tasks i ∈ T\I are already assigned.

We define I as the set of tasks composing the critical
circuit of our FCJSP. The critical circuit in an oriented
bi-valuated graph is the circuit minimizing Hc

Lc
(Hanen

[1]), where Lc is the sum of the edge’s length of the circuit
and Hc is the sum of the edge’s height of the circuit.
The heuristic procedure consists in iteratively solving

the reduced problem where only the tasks composing the
critical circuit are flexible until finding twice the same
critical circuit. It can be written as follows :

Step 0. Initialise by solving the CJSP generated
by the previous heuristic with RH = 1.

Step 1. Find the critical circuit using the
Howard algorithm [3].

Step 2. Solve the problem allowing only the
tasks composing the critical circuit
to be flexible.

Step 2.1 Find a critical circuit.
Step 2.2 If the critical circuit has not been

explored already, go to 2.
3) Example 3.3: we have solved Example 3 using the

critical circuit procedure. Once again, we obtained a
cycle time α = 10 with a different task to machine
assignment. The solution is displayed in Fig. 6. in the
form of a Gantt diagramm.

Fig. 6. Solution given by the "critical circuit" heuristic for the
FCJSP example

Time 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M1 1 2 1 2 1 2

M2 5 5 5

M3 3 4 3 4

M4 6 7 6 7

α = 10

V. Numerical experimentation
The following numerical experiments has been con-

duced on randomly generated instances with 15, 20 and
30 tasks and 5 robots. Also, each tasks can be assigned
to 3 to 5 of the robots. We fixed the time limit to 300
seconds for the MILP solving and 60 seconds for the
heuristic procedures. The mean times displayed below
does not account for the instances whose resolution time
exceed the time limit, and the mean gaps does not
account for the instances that have been solved before
the time limit. Note that the gap is defined as UB−τ i

τ i ,
where UB is the best upper bound found by the solver
and τ i is the value of τ in the incumbent solution.



As we can see in Table IV, the MILP is unable to
solve instances larger than 20 tasks and 4 assignment
possibilities for each task.

Also, we can see through Tables V. to VII. that
the "reducing R(i) sets" heuristic procedure proposed in
IV.B.1. with RH = 2 is more efficient than the "critical
circuit" heuristic procedure proposed in IV.B.2. on every
aspect.

On very large instances, we can see in Table VI.
that the "reducing R(i) sets" heuristic procedure is more
efficient than the MILP.

TABLE IV
Numerical results with the MILP

Instance parameters Solving time Gap to Number
(sec) optima of solved

instances
15 tasks | 3 robots 25.09 undefined 10
15 tasks | 4 robots 36.58 11.11% 9
15 tasks | 5 robots 5.13 16.67% 9

20 tasks | 3 robots 111.87 17.29% 8
20 tasks | 4 robots 115.25 13.06% 8
20 tasks | 5 robots time out 23.81% 0

30 tasks | 3 robots time out 32.64% 0
30 tasks | 4 robots time out 123.61% 0
30 tasks | 5 robots time out 121.95% 0

TABLE V
Comparison of the mean solving time for the MILP with

the heuristic procedures

Instance parameters MILP Reduce R(i) Critical
heuristic circuit

heuristic
15 tasks | 3 robots 25.09 3.39 7.05
15 tasks | 4 robots 36.58 5.80 9.56
15 tasks | 5 robots 5.13 0.86 3.20

20 tasks | 3 robots 111.87 54.25 26.51
20 tasks | 4 robots 115.25 27.02 32.01
20 tasks | 5 robots time out 38.11 26.90

30 tasks | 3 robots time out 60.0 60.0
30 tasks | 4 robots time out 60.0 53.80
30 tasks | 5 robots time out 60.0 48.83

TABLE VI
Number of instances where the heuristic solution ≥ the

MILP incumbent

Instance parameters Reduce R(i) Critical circuit
heuristic heuristic

15 tasks | 3 robots 7 3
15 tasks | 4 robots 4 5
15 tasks | 5 robots 10 5

20 tasks | 3 robots 5 2
20 tasks | 4 robots 9 3
20 tasks | 5 robots 10 7

30 tasks | 3 robots 3 3
30 tasks | 4 robots 10 6
30 tasks | 5 robots 10 9

TABLE VII
Mean gap between the heuristic solution and the MILP

incumbent when the MILP incumbent > the heuristic
solution

Instance parameters Reduce R(i) Critical circuit
heuristic heuristic

15 tasks | 3 robots 4.33% 11.39%
15 tasks | 4 robots 7.05% 15.70%
15 tasks | 5 robots undefined 13.95%

20 tasks | 3 robots 4.69% 11.36%
20 tasks | 4 robots 10% 12.61%
20 tasks | 5 robots undefined 22.11%

30 tasks | 3 robots 3.46% 11.11%
30 tasks | 4 robots undefined 10.26%
30 tasks | 5 robots undefined 32.52%

VI. Conclusion
We have proposed a MILP for the FCJSP and two

heuristic procedures that are more efficient for large
instances.

Further work could be to improve our heuristic pro-
cedures and to consider the possibility of a Bender’s or
Danzwig-Wolfe decomposition.
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