Félix Quinton

Idir Hamaz

Laurent Houssin

Algorithms for the flexible cyclic jobshop problem

This paper considers the cyclic jobshop problem in a flexible context. The aim is to find the minimum cycle time of a periodic schedule. The flexibility feature comes from the ability of the machines or robots to perform several kinds of tasks. Hence, the scheduling problem does not only concern starting time of tasks but also on which machines the tasks will be performed. We propose an exact method to solve this problem and two heuristics.

I. INTRODUCTION

In automation systems, a robotic cell for instance, actions are mainly cyclic. Once an occurrence of each task is planed and the cycle time is determined, the schedule is completely defined. Each occurrence is then performed periodically. Numerous papers consider the scheduling problem of a robotic cells in a cyclic manner (Crama [4], Yan [START_REF] Yan | An algorithm for optimal cyclic scheduling in a robotic cell with flexible processing times[END_REF], Bożejko [START_REF] Bożejko | Cyclic scheduling of a robotic cell[END_REF]).

In scheduling theory, cyclic jobshop scheduling and flexible jobshop scheduling are long studied NP-hard problems (Hanen [START_REF] Hanen | Study of a NP-hard cyclic scheduling problem: The recurrent jobshop[END_REF], Brucker [START_REF] Brucker | jobshop Problems with Flexible Machines[END_REF], Levner [START_REF] Levner | Complexity of cyclic scheduling problems: A state-of-the-art survey[END_REF]) apart from each other.

However few papers tackle the flexible cyclic scheduling problem despite the capabilities of robots to perform several types of task. Because of the highly combinatorial nature of flexible scheduling problems (Xia [START_REF] Xia | An effective hybrid optimization approach for multi-objective flexible jobshop scheduling problems[END_REF]), research focused on genetic algorithm to solve the flexible cyclic scheduling problem (Jalilvand [START_REF] Jalilvand-Nejad | A mathematical model and genetic algorithm to cyclic flexible job shop scheduling problem[END_REF], Bożejko [START_REF] Bożejko | A fine-grained parallel algorithm for the cyclic flexible job shop problem[END_REF]).

This paper is organized as follows : in Section II. we describe the basic cyclic scheduling problem. Section III. describes the cyclic jobshop scheduling problem in which we introduce the notion of robots and resource constraint. In Section IV. we introduce the flexible cyclic jobshop problem and the notion of flexibility which means that a robot can perform several different tasks, and propose a mathematical model for this problem. In Section V. we propose two heuristic procedures to tackle long solving time for large instances. Finally, we present numerical instances in Section VI.

II. Basic cyclic scheduling problem

The basic cyclic scheduling problem (BCSP) is an extension of the basic scheduling problem where a schedule of elementary tasks i ∈ T = {1, ..., n} is infinitely repeated. For each task i ∈ T , we are given its execution time p i and we denote by t i (k) the starting time of occurrence k of task i ∈ T .

I. Hamaz and L. Houssin are with CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France laurent.houssin@laas.fr Elementary tasks are connected by precedence constraints. A precedence constraint (i, j, p i , H ij), where H ij is called the height of the precedence constraint and represents the occurrence shift between tasks i and j, state that :

t j (k + H ij) ≥ p i + t i (k)
Let us denote t i = t i (0), i ∈ T . In this study, we are interested in periodic schedules, which are such that there exists a cycle time α satisfying t i (k) = αk + t i .

The objective considered in this study is the minimization of the cycle time α which is the time elapsed between two occurrences of the task.

A BCSP can be represented on a graph where the set of edges E represent the precedence constraints and vertices represent elementary tasks. The edges are weighted and the weight of a given edge represent the execution time of the task at its origin and the height of the precedence constraint.

There are two methods to solve the BCSP. The first is based on graph and consist to find the maximum mean cycle in the graph.

The second is to use mathematical programming. The BCSP can be expressed as a linear programming problem as follows. min α

s.t. α ≥ p i , ∀i ∈ T (1a) t j + αH i,j ≥ t i + p i , ∀(i, j) ∈ E (1b) t i ≥ 0, ∀i ∈ T (1c)
Constraints (1a) correspond to non-reentrance constraints which ensure that two occurrences of the same elementary task do not overlap. Constraints (1b) set the precedence constraints.

Example 1: Table I reports the data of a BCSP instance with 7 elementary tasks. The graph representing this example is presented in Fig. 2, where the red dotted edges are ignored. After solving this BCSP, we find an optimal cycle time of 9. The solution for the BCSP instance is given in Fig. 1 in the form of a Gantt diagram : III. Cyclic jobshop scheduling problem In the cyclic jobshop scheduling problem (CJSP), each elementary task i ∈ T is assigned to a robot r i ∈ R = {1, ..., R}, with R < n.

In consequence, the lack of resource induces some disjunction constraints. For a pair of tasks (i, j) ∈ T 2 , i = j such that r i = r j , an occurrence of tasks i and an occurrence of j, cannot be executed at the same time. Denote by D = {(i, j)|R(i) ∩ R(j) = ∅} the set of pair of tasks in disjunction.

More precisely, this disjunction leads to a pair of constraints :

t j (k + K ij) ≥ t i (k) + p i t i (k + K ji) ≥ t j (k) + p j
Where K ij (resp. K ji) is an occurrence shift between task i and j (resp. j and i), and K ij + K ji = 1 as showed by Hanen [START_REF] Hanen | Study of a NP-hard cyclic scheduling problem: The recurrent jobshop[END_REF]. Note that in this problem the variables are α, (t) i∈T , and (K) (i,j)∈D .

A job is composed by elementary tasks and precedence constraints between these tasks.

A feature of the CJSP is the Work In Process (WIP). It corresponds to the maximum number of occurrences of a job processed simultaneously.

The CJSP can be resolved using a Branch-and-Bound procedure (Houssin [START_REF] Levner | Complexity of cyclic scheduling problems: A state-of-the-art survey[END_REF], Hanen [START_REF] Hanen | Study of a NP-hard cyclic scheduling problem: The recurrent jobshop[END_REF]) or using mathematical programming. The CJSP can be represented as a Mixed Interger Non Linear Programming problem (MINLP) as follows :

min α s.t. α ≥ p i , ∀i ∈ T (2a) t j + αH i,j ≥ t i + p i , ∀(i, j) ∈ E (2b) t j + αK(i, j) ≥ t i + p i , ∀(i, j) ∈ D (2c) K(i, j) + K(j, i) = 1, ∀(i, j) ∈ D (2d) K(i, j) ∈ Z, ∀(i, j) ∈ D (2e) t i ≥ 0, ∀i ∈ T (2f)
Constraints (2a) are the non-reentrance constraints and constraints (2b) are the precedence constraints. Constraints (2c) are the disjunction constraints defined above, and constraints (2d) state for the usual CJSP property previously enunciated.

However, non linear programming is very unpractical. Consequently, we want to linearize the model. Hanen [START_REF] Hanen | Study of a NP-hard cyclic scheduling problem: The recurrent jobshop[END_REF] proposes to define the variable τ = 1 α and for all i ∈ T , the variable u i = ti α . Then the CJSP can be written as follows (Hanen [1]):

max τ s.t. τ ≤ 1 p i , ∀i ∈ T (3a) u j + H i,j ≥ u i + τ p i , ∀(i, j) ∈ E (3b) u j + K(i, j) ≥ u i + τ p i , ∀(i, j) ∈ D (3c) K(i, j) + K(j, i) = 1, ∀(i, j) ∈ D (3d) K(i, j) ∈ Z, ∀(i, j) ∈ D (3e) u i ≥ 0, ∀i ∈ T (3f)
Example 2: in Table II, we have updated Example 1 so that it fits the CJSP with 4 robots. The graph in Fig. 2 shows the problem with only the disjunctive constraints for robot M 3 displayed for cleanliness purposes. Solving this CJSP, we find an optimal cycle time α = 13.

M 1 M 3 M 1 M 2 M 4 M 3
The solution for this CJSP is given in Fig. 3 flexible. This means that for each task i ∈ T , we have a set R(i) ⊂ R of robots on which task i can be assigned.

In consequence, the assignment of a task i to a robot r ∈ R(i) is a decision variable. Each assignment of a task i ∈ T to a robot r ∈ R(i) is associated with a given execution time p ir .

Also, because we do not know a priori on which robot each task will be assigned, we do not know the set D of pairs of tasks which are connected by a disjunctive constraint.

Example 3: in Table III, we have updated Example 2 so that it fits the FCJSP. Each task can be assigned to a subset of 3 out of 4 robots. Note that the new possibilities come with a higher execution time.

A. Linear model

In this section, we propose a mixed integer linear programming (MILP) formulation for the FCJSP. Let R(i, j) = R(i) ∩ R(j), ∀i, j ∈ T the robots available both for tasks i and j. Recall that E is the set of precedence constraints and that D is the set of disjunctive constraints.

We also define some decision variables for the assignation of a task i ∈ T to a robot r ∈ R(i) :

∀i = {1, ..., n}, ∀r ∈ R(i), m i,r =
1 if task i is assigned to robot r 0 sinon The MILP for the FCJSP can be formulated as :

max τ s.t. τ ≤ 1 p i,r + (1 -m i,r)P 1 , ∀i ∈ T, ∀r ∈ R(i) (4) u j + H i,j ≥ u i + p i,r (τ -(1 -m i,r)), ∀(i, j) ∈ E, ∀r ∈ R(i) (5)
u j + K i,j ≥ u i + p i,r (τ -(2 -m i,r -m j,r)), ∀(i, j) ∈ E, ∀r ∈ R(i, j) (6)
r∈r(i) m i,r = 1, ∀i ∈ T (7) K(i, j) + K(j, i) = 1, ∀(i, j) ∈ D (8) K(i, j) ∈ Z, ∀(i, j) ∈ D (9
)
u i ≥ 0, ∀i ∈ T (10
)
m i,r ∈ {0, 1}, ∀i ∈ T ∀r ∈ R(i) (11)
Constraints (4) correspond to non-reentrance constraints. They ensure that two occurrences of the same elementary task do not overlap. The P 1 term allows us to deactivate the constraints for which task i is not affected to robot r. Let us set P 1 = 1 min i∈T ,r∈R(i) pi,r . Constraints (5) set the precedence constraints, i.e. the order in which tasks have to be executed. Those constraints must be activated only if task i is assigned to robot r, because we use the term p i,r . All constraints in [START_REF] Yan | An algorithm for optimal cyclic scheduling in a robotic cell with flexible processing times[END_REF] such that m i,r = 0 are dominated by the constraints in [START_REF] Yan | An algorithm for optimal cyclic scheduling in a robotic cell with flexible processing times[END_REF] such that m i,r = 1 because p i,r (τ -1) < 0 < p i,r τ , and thus are deactivated.

Constraints (6) represents the disjunctive constraints, ensuring that two tasks are not executed at the same time period on the same robot. We want those constraints to be activated only when tasks i and j are assigned to the same robot r. Let r ∈ R(i, j) a robot on which both tasks i and j can be executed, then if task i or task j is not assigned to r, we have τ -(2 -m i,r -m j,r) < 0, which deactivate the corresponding disjunctive constraint. By the same mechanism as previously, constraints where m i,r = 0 or m j,r = 0 are dominated by those where m i,r = m j,r = 1 and thus are deactivated.

Constraints [START_REF] Fink | A new procedure for the cyclic job shop problem[END_REF] ensure that every task i ∈ T is assigned to a robot r ∈ R(i). Constraints (8) are usual constraints for the CJSP, introduced by Hanen [START_REF] Hanen | Study of a NP-hard cyclic scheduling problem: The recurrent jobshop[END_REF].

Example 3.1: We have solved the Example 3. with our MILP. We have obtained a cycle time α = 10. The solution is displayed as Gantt diagram in Fig. 4.

B. Heuristic procedures

The FCJSP is a difficult problem because it is highly combinatorial. The solving time of the MILP presented in V. can become very long for large numerical instances. To tackle this issue, we have developed two heuristic procedures.

1) Reducing the R(i) sets: a first approach is to reduce the flexibility of the problem, i.e. the number of robots in the set R(i), ∀i ∈ T . Define R H (i) ⊂ R(i) the set of robot on which task i ∈ T can be assigned in the heuristic procedure. The set R H (i) can be fixed as the set of R H robots with the lowest execution time for task i, with R H < R. In our numerical experimentation, we have set R H = 2, which allows us to obtain some good feasible solutions in a reasonable solving time without losing flexibility.

Example 3.2: we have solved Example 3 using this approach. We have obtained a cycle time α = 10, with a different task to machine assignment. The solution is displayed in Fig. 5 as a Gantt diagram. 2) Critical circuit heuristic: an other approach is to allow only a fraction of the tasks to be flexible. In other words, we chose a subset I ⊂ T of tasks whose assignment to robot will be a decision variable while other tasks i ∈ T \I are already assigned.

We define I as the set of tasks composing the critical circuit of our FCJSP. The critical circuit in an oriented bi-valuated graph is the circuit minimizing Hc Lc (Hanen [START_REF] Hanen | Study of a NP-hard cyclic scheduling problem: The recurrent jobshop[END_REF]), where L c is the sum of the edge's length of the circuit and H c is the sum of the edge's height of the circuit.

The heuristic procedure consists in iteratively solving the reduced problem where only the tasks composing the critical circuit are flexible until finding twice the same critical circuit. It can be written as follows :

Step 0.

Initialise by solving the CJSP generated by the previous heuristic with R H = 1.

Step 1.

Find the critical circuit using the Howard algorithm [START_REF] Gaubert | Methods and applications of (max,+) linear algebra[END_REF].

Step 2.

Solve the problem allowing only the tasks composing the critical circuit to be flexible.

Step 2.1 Find a critical circuit.

Step 2.2 If the critical circuit has not been explored already, go to 2. 3) Example 3.3: we have solved Example 3 using the critical circuit procedure. Once again, we obtained a cycle time α = 10 with a different task to machine assignment. The solution is displayed in Fig. 6. in the form of a Gantt diagramm. V. Numerical experimentation The following numerical experiments has been conduced on randomly generated instances with 15, 20 and 30 tasks and 5 robots. Also, each tasks can be assigned to 3 to 5 of the robots. We fixed the time limit to 300 seconds for the MILP solving and 60 seconds for the heuristic procedures. The mean times displayed below does not account for the instances whose resolution time exceed the time limit, and the mean gaps does not account for the instances that have been solved before the time limit. Note that the gap is defined as UB-τ i τ i , where UB is the best upper bound found by the solver and τ i is the value of τ in the incumbent solution.

As we can see in Table IV, the MILP is unable to solve instances larger than 20 tasks and 4 assignment possibilities for each task.

Also, we can see through Tables V. to VII. that the "reducing R(i) sets" heuristic procedure proposed in IV.B.1. with R H = 2 is more efficient than the "critical circuit" heuristic procedure proposed in IV.B.2. on every aspect.

On very large instances, we can see in Table VI. that the "reducing R(i) sets" heuristic procedure is more efficient than the MILP.

VI. Conclusion

We have proposed a MILP for the FCJSP and two heuristic procedures that are more efficient for large instances.

Further work could be to improve our heuristic procedures and to consider the possibility of a Bender's or Danzwig-Wolfe decomposition.

Fig. 1 .

 1 Fig. 1. Solution for the CSP example

 in the form of a Gantt diagram : IV. Flexible jobshop cyclic scheduling problem The flexible cyclic jobshop scheduling problem (FCJSP) is a CJSP where the elementary tasks are

Fig. 2 .Fig. 3 .

 23 Fig. 2.Associated graph to the CJSP instance described in example 2

Fig. 4 .

 4 Fig. 4. Solution for the FCJSP example

Fig. 5 .

 5 Fig.5. Solution given by the "reduce R(i)" heuristic for the FCJSP example

Time

Fig. 6 .

 6 Fig. 6. Solution given by the "critical circuit" heuristic for the FCJSP example Time 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

TABLE VII

 VII Mean gap between the heuristic solution and the MILP incumbent when the MILP incumbent > the heuristic solution

	Instance parameters	Reduce R(i)	Critical circuit
		heuristic	heuristic
	15 tasks | 3 robots	4.33%	11.39%
	15 tasks | 4 robots	7.05%	15.70%
	15 tasks | 5 robots	undefined	13.95%
	20 tasks | 3 robots	4.69%	11.36%
	20 tasks | 4 robots	10%	12.61%
	20 tasks | 5 robots	undefined	22.11%
	30 tasks | 3 robots	3.46%	11.11%
	30 tasks | 4 robots	undefined	10.26%
	30 tasks | 5 robots	undefined	32.52%