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Abstract

This paper proposes an exact method for solving an optimization problem arising in several distri-
bution networks, where customers can be served either directly, using vehicle routes from a central
depot, or through transhipment facilities. The problem consists of optimizing the following inter-
dependent decisions: selecting transhipment facilities, allocating customers to these facilities and
designing vehicle routes emanating from a central depot to minimize the total distribution cost.
This problem is called the Vehicle Routing Problem with Transhipment Facilities (vrptf). The pa-
per describes two integer programming formulations for the vrptf, an edge-flow based formulation
and a Set Partitioning (SP) based formulation. The LP-relaxation of the two formulations are further
strengthened with the addition of different valid inequalities. Moreover, two new route relaxations
that are used by dual ascent heuristics to find near-optimal dual solutions of the LP-relaxation of
the SP model are described. The valid inequalities and the route relaxations are used in a branch-
and-cut-and-price approach to solve the problem to optimality. The proposed method is tested on
a large family of instances, including real-world instances, and the computational results obtained
indicate the effectiveness of the proposed method.

Keywords: transhipment facilities, dual ascent heuristic, column-and-cut generation

1 Introduction

In several distribution networks the shipment to a customer is performed either directly, using vehicle
routes emanating from a central depot, or through intermediate depots or transhipment facilities. In
the latter case, the shipment is first delivered to a transhipment facility by a vehicle route, and then
it is successively delivered to the final customer. Transhipment facilities provide a way to consolidate
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shipments into large vehicle loads, thereby allowing for a reduction of total distribution cost, and
provide the capability to transfer shipments between different vehicles or modes of transportation
(e.g., railroads, aircraft). In some cases, the transhipment facilities can be part of the same company
which owns the central depot, and which makes the final delivery to the customers with its fleet of
vehicles. In other cases, transhipment facilities are owned by a third-party subcontractor, who is
also in charge of performing the final shipment to the customers.

The problem addressed in this paper is motivated by a real application of interest to an Italian
company operating in the production and distribution of non-perishable products. More specifically,
the problem consists of selecting transhipment facilities, allocating customers to these facilities and
designing vehicle routes to minimize the total distribution cost. We call this problem the Vehicle
Routing Problem with Transhipment Facilities (vrptf). In the vrptf, each customer can be served
either directly by a vehicle route or through a facility selected from a set of potential facilities to
which the customer can be assigned. The total load of a vehicle route, computed as the sum of the
customer demands and of the quantities delivered to the facilities, must be less than or equal to
the vehicle capacity. The problem objective is to minimize the total sum of routing and assignment
costs.

1.1 Literature review

The vrptf generalizes the well-known Capacitated Vehicle Routing Problem (cvrp). In the cvrp,
a fleet of identical vehicles located at a central depot has to be optimally routed to supply a set of
customers with known demands. Each vehicle performs at most one route, each customer must be
visited exactly once, and the total demand of the customers visited by a route cannot exceed the
vehicle capacity. The book edited by Toth and Vigo (2014) provides a comprehensive overview of
exact methods for the cvrp and other variants.

As far as the authors know, the vrptf has never been addressed in the literature. Closely related
problems to the vrptf are the Capacitated m-Ring-Star Problem (cmrsp), the Multiple Vehicle
Traveling Purchaser Problem (mvtpp), the Two-Echelon Capacitated Vehicle Routing Problem (2e-
cvrp), and the Location Routing Problem (lrp). The cmrsp, introduced in Baldacci et al. (2007),
arises in the design of urban optical telecommunication networks and it consists of designing a set
of rings that pass through a telephone exchange and through some transition points (also called
steiner nodes) and/or users. Each nonvisited user must be assigned to a visited point or to a user.
The number of users visited and assigned to a ring is bounded by the capacity of the ring. The
objective is to minimize the total routing cost plus the assignment costs. The special case of the
cmrsp arising when the users can be assigned only to steiner nodes, can be solved as a vrptf with
unit demands. The mvtpp described by Riera-Ledesma and Salazar-Gonzáï£·lez (2012) models a
family of routing problems combining stop selection and bus route generation. The problem consists
of choosing a set of bus stops to which users are assigned, and simultaneously designing bus routes
visiting such stops. The total number of users assigned to the stops of a route cannot exceed the seat
capacity of a bus. The objective is to minimize the total length of all routes plus the total assignment
cost. The undirected version of the mvtpp is equivalent to the vrptf with the additional constraint
imposing that the customers can only be assigned to facilities (or bus stops) and cannot be visited by
a route. Both Baldacci et al. (2007) and Riera-Ledesma and Salazar-Gonzáï£·lez (2012) proposed
branch-and-cut approaches for the solution of the cmrsp and mvtpp, respectively. Recently, Riera-
Ledesma and González (2013) also proposed a branch-and-cut-and-price algorithm for the mvtpp.
The 2e-cvrp is a two-level distribution system where the deliveries to customers from a depot
are managed through intermediate capacitated depots, called satellites. The first level consists of
vehicle routes visiting satellites only whereas the second level routes supply all customers. The main
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difference between the vrptf and the 2e-cvrp is that in the vrptf a customer can be either visited
on a route or assigned to a facility, whereas in the 2e-cvrp each customer is visited once by exactly
a second level route. The 2e-cvrp model is particularly useful when the facilities are part of the
same company owing the main depot whereas in the vrptf model the facilities are generally owned
by third-party contractors, which are in charge of delivering to the final customers the quantity
consolidated at the facilities. Exact methods for the 2e-cvrp have been proposed by Jepsen et al.
(2013) and Baldacci et al. (2013). The lrp is a special case of the 2e-cvrp and consists of opening
a set of depots and designing a set of routes for each opened depot so that the total load of the
routes operated from a depot does not exceed its capacity and each customer is visited by exactly
one route. The objective is to minimize the sum of the fixed costs of the opened depots and the costs
of the routes operated from the depots. A recent review of location routing problem variants and
heuristic and exact algorithms can be found in Prodhon and Prins (2014).

Another related problem to the vrptf is the Multi-Vehicle Covering Tour Problem (m-CTP)
introduced by Hachicha et al. (2000). In the m-CTP two sets of locations are given. The first set,
consists of potential locations at which some vehicles may stop, and the second set are locations
not actually on vehicle routes, but within an acceptable distance from a vehicle route. The m-
CTP consists of determining a set of total minimum length vehicle routes on a subset of the first
set of locations, subject to side constraints, such that every location of the second set is within a
prespecified distance from a route. Há et al. (2013) proposed a branch-and-cut for the variant named
the m-CTP-p where an upper bound on the number of vertices per route is given with a parameter p
and the m number of vehicles used is a decision variable. The m-CTP-p is equivalent to the vrptf
with the additional constraint imposing that the customers can only be assigned to facilities and
cannot be visited by a route, and that all assignment costs are equal to zero.

The vrptf does not require any specific synchronization of incoming and outgoing vehicles at the
facilities. In some practical applications, a correct synchronization can be required and in this case
the facilities are generally referred as cross-docking facilities. For an overview of the cross-docking
concept and extensive review of the existing literature the reader is referred to Belle et al. (2012). In
this context, a generic class of vrps that has recently received attention in the literature is the class
of vrps with Multiple Synchronization Constraints (vrpmss). vrpmss exhibit synchronization re-
quirements between the vehicles, concerning spatial, temporal, and load aspects. A review of vrpms
presenting a classification of different types of synchronizations and a discussion about heuristic and
exact algorithms can be found in Drexl (2012).

1.2 Contributions of this paper

This paper addresses a new problem of practical relevance and proposes both heuristic and exact
methods for its solution. More specifically, we introduce a two-index formulation (TI) and we
describe different valid inequalities for it, both by adapting those already proposed for the cmrsp,
and by introducing new ones specific for the vrptf. We also describe lower bounds derived from
a set-partitioning based formulation (SP ) of the problem, and computed using two efficient dual
ascent heuristics that use two new route relaxations, called q-∗route and ng-∗route, respectively.
The proposed methods have been tested on a large family of instances, including both instances
derived from the literature and real-world instances. The computational results show that real-world
instances with up to 142 customers and 18 facilities were solved to optimality and that high quality
solutions were computed for instances with up to 164 customers. In addition, tight lower bounds
were computed, with average percentage deviations equal to 98.7% and 97.4% for real-word and
literature-based instances, respectively.
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This paper is organized as follows. The next section formally introduces the vrptf and presents
formulation TI for which different valid inequalities are described in Section 3. Section 4 presents
formulation SP and lower bounds based on its LP-relaxation; some properties of the LP-relaxation
of SP are also investigated in the section. A bounding method used to compute a lower bound on
the vrptf is described in Section 5. Section 6 describes the exact method used to solve the vrptf
to optimality together with two heuristic algorithms. Section 7 reports computational results, and
concluding remarks are given in Section 8.

2 Problem description and Two-Index (TI) formulation

This section describes the vrptf and presents a edge-flow based formulation to model it.

The vrptf is defined on a mixed graph G = (V,E ∪ A), where V = {0} ∪ V ′ is the node set,
E = {{i, j} : i, j ∈ V, i 6= j} is the edge set, and A is the arc set. Node set V ′ is partitioned into
two subsets: VC = {1, . . . , nC} containing a node for each customer and VF = {nC + 1, . . . , nC +nF}
containing a node for each transhipment facility. Node 0 represents a central depot. Each customer
i ∈ VC requires a supply of qi units from the depot (we assume qi = 0, ∀i ∈ {0} ∪ VF ) that can
be delivered either directly from a vehicle route emanating from the depot or through a facility
selected from a set Fi ⊆ VF of facilities to which customer i can be assigned. Set A represents the
possible assignments between customers and facilities, i.e., A = {(i, j) : i ∈ VC , j ∈ Fi}. Set E is
the set of possible route edges, each edge e = {i, j} ∈ E is associated with a non-negative routing
cost re = r{i,j}, while each arc (i, j) ∈ A is associated with a non-negative assignment cost dij .
Henceforth, if e connects the two nodes i and j then {i, j} and e will be used interchangeably to
denote the same edge.

A route is defined by a pair (R,A′) where R = (0, i1, . . . , ir, 0), r ≥ 1, is a simple cycle in G passing
through the depot, visiting nodes V (R) = {i1, . . . , ir} ⊆ V ′, and A′ ⊆ A are assignments between
customers of VC \ V (R) and nodes of V (R) ∩ VF . Notice that if r = 1 then route R represents the
single-node route R = (0, i1, 0). We say that a customer i is assigned to a route R if it is either
visited by the simple cycle (i.e., i ∈ V (R)) or it is connected to a node of the route representing a
facility (i.e., a node j ∈ V (R)∩VF exists such that (i, j) ∈ A′). The total load of a route is computed
as the sum of the demands of the customers assigned to the route. The route is feasible if its total
load does not exceed the vehicle capacity Q. The cost of a route is equal to the sum of the routing
costs of the edges forming the route plus the sum of the assignment costs of the arcs in A′.

The aim of vrptf is to design a set of routes so that each customer is assigned to exactly one
route, each intermediate facility is visited at most once and the sum of the route costs is minimized.

We will use the following notation throughout. For any S ⊆ V ′, let VC(S) = S ∩ VC and VF (S) =
S ∩ VF denote the set of customers and of facilities in S, respectively. Let Fi(S) = VF (S) ∩ Fi
denote the set of facilities in S associated with customer i ∈ VC . Also for any set S ⊆ V , define
δ(S) = {{i, j} ∈ E : i ∈ S, j /∈ S} (if S = {i}, we simply write δ(i) instead of δ({i})).

Let xe be an integer variable which takes value in {0, 1}, ∀e ∈ E \ {{0, j} : j ∈ V ′} and value in
{0, 1, 2}, ∀e ∈ {{0, j} : j ∈ V ′}. Notice that x{0,j} = 2 when the single-node cycle R = (0, j, 0) is
selected in the solution. For each arc (i, j) ∈ A, let zij be a binary variable which is equal to 1 if and
only if customer i is assigned to node j. Moreover, for each i ∈ V ′, let yi be a binary variable which
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is equal to 1 if and only if node i is on a route. Formulation TI is as follows:

(TI) min
∑
e∈E

rexe +
∑

(i,j)∈A
dijzij (1)

s.t.
∑
e∈δ(i)

xe = 2yi, ∀i ∈ V ′ (2)

yi +
∑
j∈Fi

zij = 1, ∀i ∈ VC (3)

∑
e∈δ(S)

xe ≥
2
Q

 ∑
i∈VC(S)

qiyi +
∑

(i,j)∈A:j∈VF (S)
qizij

 , ∀S ⊆ V ′ : S 6= ∅ (4)

xe ∈ {0, 1}, ∀e ∈ E \ {{0, j} : j ∈ V ′} (5)
xe ∈ {0, 1, 2}, ∀e ∈ {{0, j} : j ∈ V ′} (6)
zij ∈ {0, 1}, ∀(i, j) ∈ A (7)
yi ∈ {0, 1}, ∀i ∈ V ′. (8)

Constraints (2) impose that the degree of each node i ∈ V ′ is 2 if the node is on a route.
Constraints (3) state that a customer i ∈ VC is either on a route or is assigned to one of its fa-
cilities. Inequalities (4) are the fractional route capacity inequalities (FrCC). These constraints,
within the integrality of x, z and w variables, impose that for a given subset S of nodes, at least⌈
(
∑
i∈S qiyi +

∑
(i,j)∈A:j∈S qizij)/Q

⌉
routes are needed to visit the customers assigned to nodes in S.

3 Strengthening the LP-relaxation of formulation TI

A number of valid inequalities can be used to improve the quality of the lower bound obtained from
the LP-relaxation of formulation TI. In this section, we first derive valid inequalities by extending
the results proposed for the cmrsp by Baldacci et al. (2007) to the vrptf. Then, a new class of
valid inequalities specifically devised for the vrptf is introduced. The separation procedures for
different valid inequalities are then described in Section 5.2.

Simple valid inequalities are the following: (i) x{i,j} ≤ yj , i ∈ VC , j ∈ VC , i 6= j; (ii) x{i,j} ≤ yj , i ∈
VF , j ∈ V ′, i 6= j; (iii) x{i,j} + zij ≤ yj , i ∈ VC , j ∈ Fi, (iv) yj ≤

∑
i∈VC :j∈Fi

zij ,∀j ∈ VF . Further, the
following inequalities are also valid.

a) Connectivity inequalities (CI):

∑
e∈δ(S)

xe ≥ 2

yi +
∑

j∈VF (S)∩Fi

zij

 , ∀S ⊆ V ′,∀i ∈ VC(S), S 6= ∅. (9)

b) Multistar inequalities (MI):

∑
e∈δ(S)

xe ≥
2
Q

 ∑
i∈VC(S)

qiyi +
∑

(i,j)∈A:j∈VF (S)
qizij +

∑
i∈VC(S)

∑
j∈S

qix{i,j}

 ,∀S ⊆ V ′, S 6= ∅. (10)

where S = V ′ \ S.
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c) Rounded capacity constraints I (RCI):

∑
e∈δ(S)

xe ≥ 2


∑

i∈S:Fi⊆S
qi/Q

 , ∀S ⊆ V ′, VC(S) 6= ∅. (11)

d) Rounded capacity constraints II (RCII):

∑
e∈δ(S)

xe ≥ 2



 ∑
i∈VC(S)

qiyi +
∑

(i,j)∈A:
j∈VF (S)

qizij

 /Q
 , ∀S ⊆ V ′, S 6= ∅. (12)

Notice that CI inequalities are not dominated by MI inequalities whereas MI inequalities dominate
FrCC inequalities. RCII inequalities (12) are clearly nonlinear. In the next section, we describe
two ways of linearizing inequalities (12). The first linearization extends to the vrptf a similar
linearization proposed for the cmrsp, whereas the second one is new and it is based on mixed
integer optimization.

3.1 Linearized versions of inequalities RCII

A first family of valid inequalities can be obtained using the following lemma, proposed by Baldacci
et al. (2007).

Lemma 1 Let m,n and o be three non-negative integer values with m > o and mod(m, o) 6= 0:⌈
m− n
o

⌉
≥
⌈
m

o

⌉
− n

mod(m, o) . (13)

�

The term
∑
i∈VC(S) qiyi +

∑
(i,j)∈A:j∈VF (S) qizij of RCII inequalities (12) can be rewritten as:

q(VC)−

 ∑
i∈VC(S)

qiyi +
∑

(i,j)∈A:j∈VF (S)

qizij

 (14)

and by using Lemma 1, from expression (14) we obtain the following inequality valid for any S ⊆ V ′,
S 6= ∅: ∑

e∈δ(S)

1
2xe ≥

⌈
q(VC)
Q

⌉
− 1
mod(q(VC), Q)

 ∑
i∈VC(S)

qiyi +
∑

(i,j)∈A:j∈VF (S)

qizij

 , (15)

hereafter called RCII-a inequalities.

The term
∑
i∈VC(S) qiyi +

∑
(i,j)∈A:j∈VF (S) qizij of RCII inequalities (12) can also be rewritten as:

q(VC(S))−

 ∑
(i,j)∈A:

i∈VC(S),j∈VF (S)

qizij −
∑

(i,j)∈A:
i∈VC(S),j∈VF (S)

qizij

 , (16)
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and by using Lemma 1 and by disregarding the term
∑

(i,j)∈A:
i∈VC(S),j∈VF (S)

qizij from (16) we get:

∑
e∈δ(S)

1
2xe ≥

⌈
q(VC(S))

Q

⌉
− 1
mod(q(VC(S)), Q)

∑
(i,j)∈A:

i∈VC(S),j∈VF (S)

qizij , (17)

hereafter called RCII-b inequalities.

Proposition 1 of the e-companion to this paper shows that there is no dominance between inequal-
ities RCII-a and RCII-b.

The following lemma is based on mixed integer optimization. For a number m ∈ R, define
m̂ = m− bmc to be its fractional part.

Lemma 2 Let o ∈ R with ô > 0 and T = {m ∈ R, n ∈ Z : m + n ≥ o,m ≥ 0}. The following
inequality is valid for T :

m+ ô n ≥ ôdoe. (18)

Proof. The proof is provided in the e-companion to this paper. �

Based on the above lemma, a second family of valid inequalities for the vrptf can be obtained
using the following theorem.

Theorem 1 Let αe ≥ 0, ∀e ∈ E, βi ≥ 0, ∀i ∈ V ′ and γij ≥ 0, ∀(i, j) ∈ A and consider the following
inequality valid for formulation TI:∑

e∈E
αexe +

∑
i∈V ′

βiyi +
∑

(i,j)∈A
γijzij ≥ o (19)

where o ∈ R and ô > 0. Then the following inequality:∑
e∈E

ϕo(αe)xe +
∑
i∈V ′

ϕo(βi)yi +
∑

(i,j)∈A
ϕo(γij)zij ≥ doe (20)

where ϕo(m) = bmc + min
{
m̂

ô
, 1
}

, m ∈ R, n ∈ R, ô > 0, is also a valid inequality for formulation
TI.

Proof. The proof is provided in the e-companion to this paper. �

Notice that, inequality (19) can be scaled by a rational number t thus obtaining the following valid
inequality for formulation TI:∑

e∈E
ϕto(tαe)xe +

∑
i∈V ′

ϕto(tβi)yi +
∑

(i,j)∈A
ϕto(tγij)zij ≥ dtoe. (21)

Starting from inequalities (4) and substituting the right-and side according to expressions (14) and
(16) we get: ∑

e∈δ(S)

1
2xe +

∑
i∈VC(S)

qi
Q
yi +

∑
(i,j)∈A:j∈VF (S)

qi
Q
zij ≥

q(VC)
Q

, (22)
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and ∑
e∈δ(S)

1
2xe +

∑
(i,j)∈A:

i∈VC(S),j∈VF (S)

qi
Q
zij −

∑
(i,j)∈A:

i∈VC(S),j∈VF (S)

qi
Q
zij ≥

q(VC(S))
Q

. (23)

First of all, notice that for m,n ∈ R, mod(m,n) = n((m/n) − bm/nc). Then, by setting o = q(VC)
Q

and as ϕo(1
2) = min

{
Q

2mod(q(VC),Q) , 1
}

and ϕo( qi

Q ) = min
{

qi

mod(q(VC),Q) , 1
}

, ∀i ∈ VC , from Theorem 1
and inequality (22) we obtain the following valid inequality:

∑
e∈δ(S)

min
{

Q

2 mod(q(VC), Q) , 1
}
xe ≥

⌈
q(VC)
Q

⌉
−

∑
i∈VC(S)

min
{

qi
mod(q(VC), Q) , 1

}
yi −

∑
(i,j)∈A:j∈VF (S)

min
{

qi
mod(q(VC), Q) , 1

}
zij .

(24)

Also from Theorem 1, by disregarding the negative term of inequality (23) we obtain:

∑
e∈δ(S)

min
{

Q

2 mod(q(VC(S)), Q) , 1
}
xe ≥

⌈
q(VC(S))

Q

⌉
−

∑
(i,j)∈A:

i∈VC(S),j∈VF (S)

min
{

qi
mod(q(VC(S)), Q) , 1

}
zij .

(25)

We call inequalities (24) and (25) RCII-c and RCII-d inequalities, respectively. Inequalities RCII-c
and RCII-d are stronger than the pure integer rounding inequalities obtained from inequalities (22)
and (23). In addition, notice that the coefficients of variables {xe} in both inequalities (24) and (25)
are greater than 0.5 and less than or equal to 1. If qi = 1, ∀i ∈ VC , inequalities RCII-a and RCII-b
dominate inequalities RCII-c and RCII-d. In general, no dominance relations exist among the four
types of inequalities RCII-a, RCII-b, RCII-c and RCII-d.

4 Lower bounds based on a Set-Partitioning (SP) formulation

In this section, we first describe a Set-Partitioning (SP) based formulation for the vrptf. Then, we
investigate lower bounds based on the LP-relaxation of formulation SP . We introduce a theorem that
is used to derive two dual ascent heuristics to find near-optimal dual solutions of the LP-relaxation
of the SP model. Then, we describe how the valid inequalities described for the TI formulation in
the previous sections can be used for strengthening the value of the LP-relaxation of formulation
SP . Finally, we derive some properties of the LP-relaxation of formulation SP .

Let R be the index set of all feasible routes. Given a route ` ∈ R, we denote with R` the sequence
(i1 = 0, i2, . . . , ir = 0) of the nodes visited by the route and with VC(R`) and VF (R`) the sets
VC ∩ V (R`) and VF ∩ V (R`), respectively. In addition, VA(R`) denotes the customers of the route
assigned to facilities in VF (R`). Let ai` be a (0-1) binary coefficient equal to 1 if node i ∈ V (R`),
0 otherwise. In addition, let bji` be a (0-1) binary coefficient equal to 1 if customer i ∈ VA(R`)
is assigned to node j ∈ VF (R`), 0 otherwise. Given a route `, we denote with c` its routing cost
computed as

∑|R`|
h=2 r{ih−1,ih}, and with p` its assignment cost computed as

∑
j∈VF (R`)

∑
i∈VA(R`) b

j
i`dij .

Let ξ`, ` ∈ R, be a (0-1) binary variable equal to 1 if and only if route ` is in the optimal solution.
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Formulation SP is as follows:

(SP ) min
∑
`∈R

(c` + p`)ξ` (26)

s.t.
∑
`∈R

ai`ξ` = 1, ∀i ∈ VC (27)
∑
`∈R

ai`ξ` ≤ 1, ∀i ∈ VF (28)

ξ` ∈ {0, 1}, ∀` ∈ R, (29)

where ai` = ai` +
∑
j∈VF (R`) b

j
i`, i ∈ VC , ` ∈ R. In the formulation, constraints (27) and (28) impose

that each customer is assigned exactly once and each facility is visited at most once, respectively.

We denote by LSP the LP-relaxation of formulation SP and by DSP the dual of LSP . The
variables of DSP are given by the vector u = {u0, u1, . . . , u|VC |, u|VC |+1, . . . , u|V ′|}, where u0 = 0 for
the depot, u1, . . . , u|VC | are associated with constraints (27), and u|VC |+1, . . . , u|V ′|, with constraints
(28). In the following, we denote with qmin = mini∈VC

{qi}. The following theorem holds.

Theorem 2 Let us associate penalties λi ∈ R, ∀i ∈ VC , with constraints (27), and λi ≤ 0, ∀i ∈ VF ,
with constraint (28). Let Ri = {` ∈ R : ai` > 0}. For each i ∈ VC compute:

νi = qi min
`∈Ri

{
(c` + p`)−

∑
j∈VC

aj`λj −
∑
j∈VF

aj`λj∑
j∈VC

aj`qj

}
. (30)

A feasible DSP solution u of cost z(DSP (λ)) is given by the following expressions:

u0 = 0 and ui = νi + λi,∀i ∈ VC , and ui = λi, ∀i ∈ VF . (31)

Proof. The proof is provided in the e-companion to this paper. �

The pricing problem associated with formulation SP is a strongly NP–hard problem, since it
requires finding minimum cost elementary routes over a graph with both positive and negative edge
and arc costs. In the special case where VF = ∅, the pricing problem consists of finding capacitated
elementary cycles, a strongly NP-hard problem (see Poggi and Uchoa 2014).

Therefore, in practice we enlarge the set of routes R to contain also nonnecessarily elementary
routes, i.e., coefficients ai` are general nonnegative integer, thus a node can be visited in a route more
than once and/or a customer can be assigned more than once to facilities of the routes. Although
non-elementary routes are infeasible, this relaxation has the advantage that the pricing subproblem
becomes solvable in pseudo-polynomial time (by dynamic programming). Moreover, Theorem 2
remains valid if the set of routes R is enlarged to contain also nonnecessarily elementary routes.

In Section 5, we introduce two route relaxations called q-∗route and ng-∗route, used by two dual
ascent heuristics based on Theorem 2 to find near-optimal solutions of problem DSP . q-∗route
and ng-∗route relaxations are based on route relaxations already proposed for the cvrp and on the
observation that given a route R` = (i1 = 0, i2, . . . , ir = 0), a lower bound on its cost c` + p` can be
computed as

∑|R`|
h=2 r{ih−1,ih}+

∑
j∈VF (R`) lbj , where lbj ≤

∑
i∈VA(R`) b

j
i`dij . Each value lbj , j ∈ VF (R`),

can be computed as the minimum of the costs of all possible assignments of facility j involving
customers in {i :∈ VC : j ∈ Fi} with a total load q =

∑
i∈VA(R`) b

j
i`qi.

Formulation LSP can be strengthened by adding valid inequalities derived for the TI formulation
as follows. For each ` ∈ R, let coefficients η`e be defined as follows: if ` is a route covering node h
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only, then η`{0,h} = 2 and η`{i,j} = 0, ∀{i, j} ∈ E \{0, h}; if ` is not a single-node route, then η`{i,j} = 1
for each edge {i, j} traversed by route R`, and η`{i,j} = 0 otherwise.

Any feasible solution ξ of SP can be transformed into a feasible TI solution (x, z, w) by setting:

xe =
∑
`∈R

η`eξ`, ∀e ∈ E, (32)

zij =
∑
`∈R

bji`ξ`, ∀(i, j) ∈ A, (33)

yi =
∑
`∈R

ai`ξ` = 1−
∑
j∈Fi

∑
`∈R

bji`ξ`, ∀i ∈ VC , and (34)

yi =
∑
`∈R

ai`ξ`, ∀i ∈ VF . (35)

The following theorem shows that any feasible solution of formulation LSP already satisfies some
valid inequalities derived from formulation TI.

Theorem 3 The LP-relaxation of the SP formulation satisfies both CI and FrCI inequalities, and
a weak form of MI inequalities.

Proof. The proof is provided in the e-companion to this paper. �

5 Bounding procedure

This section presents a method for computing a lower bound on the vrptf which combines in
sequence two dual ascent heuristics (see Section 5.1), and a column-and-cut generation method (see
Section 5.2), all based on formulation LSP .

5.1 Dual ascent heuristics

The dual ascent heuristics are based on Theorem 2 where the set of routes R is enlarged with set
R > containing also nonnecessarily elementary routes (i.e., R > ⊇ R). In particular, two different
route relaxations are used, called q-∗route and ng-∗route, to compute lower bounds LB1 and LB2
on the vrptf, respectively. The two dual ascent heuristics are based on a column generation-like
method, called CG for solving the following problem:

LCG = max
λ
{z(DSP (λ))}. (36)

CG executes a number of macro-iterations to compute a dual solution u of the master problem DSP ,
defined by the route subset R ⊆ R >, and then CG solves problem (36) with a predefined number
Maxit2 of subgradient iterations to modify the penalty vector λ.
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5.1.1 Route relaxation q-∗route

q-∗routes are based on the q-path relaxation proposed by Christofides et al. (1981). We define a
q-∗path as a nonnecessarily elementary partial route in G from depot 0 to node i ∈ V ′ with a load
equal to q. In a q-∗path a node i ∈ V ′ can be visited more than once and a customer i ∈ VC
can be assigned more than once. In the following, we describe a dynamic programming algorithm
for computing q-∗paths, with the restriction that a q-∗path can not contain loops formed by three
consecutive nodes. Let f(q, i) be the cost of the least cost q-∗path from node 0 to node i and let
π(q, i) be the node immediately before i in the least cost path of value f(q, i). Let g(q, i) be the
cost of the least cost q-∗path from node 0 to node i, such that γ(q, i) 6= π(q, i), where γ(q, i) is the
node immediately before i in the least cost path corresponding to g(q, i). For a given value of q,
let h(i, j) be the cost of the least cost q-∗path from 0 to j, with i ∈ V ′ just before j and without
loops. In addition, for each facility k ∈ VF , let lbk(q) be a lower bound on the assignment cost of
any assignment of load q of customers to the facility k. lbk(q), for each k ∈ VF and qmin ≤ q ≤ Q,
can be computed as the optimal solution cost of the following knapsack problem KP (q, k):

(KP (q, k)) lbk(q) = min
∑

i∈VC :k∈Fi

dikχi (37)

s.t.
∑

i∈VC :k∈Fi

qiχi = q (38)

χi ∈ {0, 1}, ∀i ∈ VC : k ∈ Fi. (39)

We assume that lbk(q) =∞ if problem KP (q, k) does not admit a feasible solution for the given pair
q and k. For each q = qmin, . . . , Q and i, j ∈ V ′, i 6= j, compute:

h(i, j) =


{
f(q − qj , i) + r{i,j}, if π(q − qj , i) 6= j
g(q − qj , i) + r{i,j}, otherwise. , j ∈ VC

min
qmin ≤ w ≤ Q

{
f(q − w, i) + r{i,j} + lbj(w), if π(q − w, i) 6= j
g(q − w, i) + r{i,j} + lbj(w), otherwise. , j ∈ VF

(40)

Then, compute: {
f(q, j) = mini∈V ′\{j}{h(i, j)}
π(q, j) = i′

(41)

where i′ is the node producing the above minimum,{
g(q, j) = mini∈V ′\{j,i′}{h(i, j)}
γ(q, j) = i′′

(42)

where i′′ is the node producing the above minimum. The functions are initialized as follows:

• f(qj , j) = r0j , π(qj , j) = 0, j ∈ VC ;

• f(q, j) =∞, π(q, j) = 0, q = 0, . . . , Q ,q 6= qj , j ∈ VC ;

• f(q, j) = r0j + lbj(q), π(q, j) = 0, q = 0, . . . , Q, j ∈ VF ;

• g(q, j) =∞, γ(q, j) = 0, q = 0, . . . , Q, j ∈ V ′.

A q-∗route is obtained from a q-∗path ending in i by adding arc (i, 0).



The VRPTF R. Baldacci, S. U. Ngueveu, R. Wolfler Calvo

5.1.2 Route relaxation ng-∗route

ng-∗routes are based on the route relaxations proposed by Baldacci et al. (2011) for the cvrp. Let
Ni ⊆ V ′ be a set of selected nodes for node i ∈ V ′ (according to some criterion) such that Ni 3 i
and |Ni| ≤ Γ, where Γ is a parameter (e.g., Γ = 5, ∀i ∈ V ′, and Ni contains i and the four nearest
nodes to i).

With a forward path P = (0, i1, . . . , ik) , we associate a set Π(P ) ⊆ V ′ defined as:

Π(P ) = {ir : ir ∈
k⋂

s=r+1
Nis , r = 1, . . . , k − 1} ∪ {ik}. (43)

A forward ng-∗path (NG, q, i) is a non-necessarily elementary partial route P = (0, i1, . . . , ik−1, ik =
i) starting from the depot with a load equal to q, ending at customer i, and such that NG = Π(P ),
and i /∈ Π(P ′), where P ′ = (0, i1, . . . , ik−1). Let f(NG, q, i) be the cost of a least-cost forward ng-
∗path (NG, q, i). The dynamic programming (DP) recursion for computing functions f(NG, q, i) is
defined on a state-space graph H = (E ,Ψ) defined as:

E = {(NG, q, i) : qi ≤ q ≤ Q,∀NG ⊆ Ni s.t. NG 3 i, ∀i ∈ V }
Ψ = {((NG′, q′, j), (NG, q, i)) : ∀(NG′, q′, j) ∈ Ψ−1(NG, q, i), ∀(NG, q, i) ∈ E },

(44)

where Ψ−1(NG, q, i) = {(NG′, q − qi, j) : ∀NG′ ⊆ Nj s.t. NG′ 3 j and NG′ ∩Ni = NG \ {i}, ∀j ∈
V \ {i}}, if i ∈ VC , and Ψ−1(NG, q, i) = {(NG′, q′, j) : 0 ≤ q′ ≤ q − mini∈VC

{qi}, ∀NG′ ⊆
Nj s.t. NG′ 3 j and NG′ ∩Ni = NG \ {i}, ∀j ∈ V \ {i}}, if i ∈ VF .

The DP recursion for computing functions f(NG, q, i), for each state (NG, q, i) ∈ E is as follows:

i) i ∈ VF :f(NG, q, i) = min(NG′,q′,j)∈Ψ−1(NG,q,i){f(NG′, q′, j)+r{j,i}+ lbi(q−q′)}, ∀(NG, q, i) ∈ E ,

ii) i ∈ VC : f(NG, q, i) = min(NG′,q′,j)∈Ψ−1(NG,q,i){f(NG′, q′, j) + r{j,i}}, ∀(NG, q, i) ∈ E ,

where functions lbi(q) are computed as described in Section 5.1.1 and the initialization f({0}, 0, 0) = 0
and f({0}, q, 0) =∞, ∀ 0 < q ≤ Q is required. We define a ng-∗route as a route obtained by adding,
to an ng-∗path (NG, q, i), edge e = {0, i}; the cost of an ng-∗route is equal to the cost of ng-∗path
(NG, q, i) plus re.

5.1.3 Procedure CG

Let R ⊆ R> be a subset of routes satisfying a given route relaxation. Moreover, given a route `, we
denote with q(R`) =

∑
i∈VC(R) qi +

∑
i∈VA(R`) qi its load. Procedure CG works as follows.

Step 1. Initialization. Generate a route set R to initialize the master problem which corresponds to
LSP , where R is replaced with R. We assume that R contains at least one route containing
each customer i ∈ VC . Set LCG = 0 and iter = 1.

Step 2. Find a master dual solution u of cost z. Initializes z = 0 and performs Maxit2 iterations of
the following operations.
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(i) Compute a dual solution u of the master of cost z by means of expressions (30) and (31),
where R is replaced with R and by using the current vector λ. Let R̃ be the index set
of routes producing νi, i ∈ VC , in expressions (30), and let `(i) be the index of the route
in R̃ associated with νi, i ∈ VC . Define a non-necessarily feasible solution ξ of LSP as
ξ` =

∑
i∈VC

ai`
qi

q(R`)ζ
i
`, ` ∈ R̃, by setting ζi`(i) = 1 and ζi` = 0, ∀` ∈ R̃ \ {`(i)}, ∀i ∈ VC .

If z > z, update z = z, ξ = ξ, u = u.
(i) Update the penalty vectors λ as follows. Compute αi =

∑
`∈R̃ ai`ξ`, i ∈ VC , and αi =∑

`∈R̃ ai`ξ`, i ∈ VF . Then, vector λ is modified as follows: λi = λi−εγ(αi−1), i ∈ VC , and
λi = min{0, λi− εγ(αi−1)}, i ∈ VF . where ε is a positive constant and γ = 0.2z∑

i∈V ′ (αi−1)2 .

Step 3. Check if u is a feasible DSP solution. Generate the largest subset N ⊆ R > of routes
having negative reduced cost with respect to the current dual master solution u and such
that |N | ≤ ∆ (∆ is an a priori defined parameter). If N = ∅ and z is greater than LCG,
then LCG = z, u∗ = u, ξ∗ = ξ and λ∗ = λ; otherwise, R = R ∪N is updated.

Step 4. Termination criterion. Set iter = iter + 1. If iter = Maxit1, stop.

Computing lower bound LB1 Lower bound LB1 corresponds to lower bound LCG computed
by procedure CG using q-∗route relaxation. The initial route set R of the master problem contains
a feasible solution generated with the heuristic algorithm described in 6.1. We initialize λ = 0.

Define the modified routing cost r{i,j} = r{i,j}−(1/2)(ui+uj), ∀{i, j} ∈ E (we assume u0 = 0), and
the modified assignment cost dij = dij − ui, ∀(i, j) ∈ A, with respect to the current dual solution u.
The set N is computed as follows. We compute functions lbk(q), f(q, i) and g(q, i) using the modified
routing and assignment costs r{i,j} and dij instead r{i,j} and dij . Let h(i) = minqi≤q≤Q{f(q, i)+r{0,i}},
if ∀i ∈ VC , and h(i) = minqmin≤q≤Q{f(q, i) + r{0,i}}, ∀i ∈ VF . The set N contains any q-∗route
corresponding to h(i) < 0, i ∈ V ′. Set u1 = u∗, λ1 = λ∗, and LB1 = LCG.

Computing lower bound LB2 Lower bound LB2 corresponds to lower bound LCG computed
by procedure CG using ng-∗route relaxation.

We initialize λ = λ1, define r1
{i,j} = r{i,j} − (1/2)(u1

i + u1
j ), ∀{i, j} ∈ E (we assume u1

0 = 0),
d1
ij = dij − u1

i , ∀(i, j) ∈ A, and compute Ni to be the Γ nearest nodes to i according to r1
{i,j}. We

compute functions f(NG, q, i) and lbk(q) using r1
{i,j} and d1

ij instead of r{i,j} and dij , respectively, and
the costs h(i) = min(NG,q,i)∈E {f(NG, q, i)+ r1

{0,i}}, of the least cost ng-∗route visiting i immediately
before arriving at the depot. The initial route set R contains the ng-∗routes corresponding to
h(i) < 0, i ∈ V ′. At each iteration of procedure CG, to generate the set N , we compute functions
f(NG, q, i) and lbk(q) with the modified routing cost r{i,j} = r{i,j}− (1/2)(ui +uj), ∀{i, j} ∈ E, and
the modified assignment cost dij = dij − ui, ∀(i, j) ∈ A, with respect to the current solution u. N
contains every ng-∗route corresponding to h(i) = min(NG,q,i)∈E {f(NG, q, i)+ r{0,i}} < 0, i ∈ V ′. Set
LB2 = LCG.

5.2 Column-and-cut generation method

In this section, we describe a bounding procedure that computes a lower bound on the vrptf as
the cost of an optimal solution of problem LSP obtained from formulation LSP by substituting the
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route set R with the set R> of ng-∗route and by adding valid inequalities derived from a family F
of valid inequalities described for formulation TI.

Any valid inequality t ∈ F can be expressed in general form as∑
e∈E

αtexe +
∑
i∈V ′

βtiyi +
∑

(i,j)∈A
γtijzij ≥ ωt, (45)

and can be transformed into the following valid inequality for formulation SP using equations (32)-
(35), where R is substituted by R>:

∑
`∈R>

(ϕt` + φt` + ψt`)ξ` ≥ ωt, (46)

where ϕt` =
∑
e∈E α

t
eη
`
e, φt` =

∑
i∈V ′ β

t
iai` and, ψt` =

∑
(i,j)∈A γ

t
ijb

j
i`.

The bounding procedure solves problem LSP by using column and cut generation. The initial
master problem is obtained from the computation of lower bound LB2 by replacing the route set R>

with the route set R generated by procedure CG during the computation of LB2. The initial set of
valid inequalities F is set to the empty set. At each iteration (say k), the procedure performs the
following steps.

1. Solve problem LSP . Let ξ and (u,v) be the optimal primal and dual solutions, respectively.
Vector u is given by u = {u0, u1, . . . , u|VC |, u|VC |+1, . . . , u|V ′|}, where u0 = 0 and u1, . . . , u|VC |
are associated with constraints (27), and u|VC |+1, . . . , u|V ′|, with constraints (28). Vector v =
{v1, . . . , v|F |} is associated with the family of valid inequalities F .

2. Generate the largest subset N ⊆ R > of ng-∗route having negative reduced cost with respect
to the current dual master solution (u,v) and such that |N | ≤ ∆ (∆ is an a priori defined
parameter). If N = ∅, the procedure terminates; otherwise a new iteration is made. At iteration
k+ 1, the procedure solves a new master problem LSP by replacing R with R ∪N and the valid
inequalities of F violated by the LSP solution ξ achieved by iteration k.

3. Given the solution vector ξ, compute the corresponding solution vector (x, z,w) by means of
equations (32)-(35) where R is substituted by R. Solve the separation problems associated with
the set of valid inequalities F (see below) and add, if any, violated inequalities to set F .

It can be easily shown that the complexity of the pricing algorithm solved at Step 2 of the above
procedure is not sensitive to the addition of the valid inequalities in F , since the values of the
corresponding dual variables can be translated into subproblem costs. Indeed, at each iteration of
the procedure, to generate the set N , we compute the ng-∗route functions f(NG, q, i) and lbk(q) with
the modified routing cost r{i,j} = r{i,j}−(1/2)(ui+

∑
t∈F βtivt)−(1/2)(uj+

∑
t∈F βtjvt)−

∑
t∈F αt{i,j}vt,

∀{i, j} ∈ E, and the modified assignment cost dij = dij − ui −
∑
t∈F γtijvt, ∀(i, j) ∈ A, with respect

to the current dual solution (u,v). N contains every ng-∗route corresponding to h(i) < 0, i ∈ V ′.

We conducted preliminary experiments to identify a good separation strategy to be used at Step
3. As a result of our experimentation, we decided to use the following inequalities to define the
family set F : CI, MI, RCI, RCII-a, RCII-b, RCII-c, and RCII-d inequalities. For a given solution
(x, z,w), we identified (as far as possible) violated inequalities of above seven types by applying the
corresponding separation procedures as described below.
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5.2.1 Separation procedures

The separation problems of CI, RCII-a and RCII-c inequalities can be reduced to max-flow/min-cut
problems using a standard construction, and therefore solved in polynomial time; we omit the details
for sake of brevity (see Baldacci et al. (2007)). Concerning MI inequalities, the following theorem
holds.

Theorem 4 Let (x, z, y) be a solution of the LP-relaxation of formulation TI and assume that
qi ≤ Q, ∀i ∈ VC , and that xe = 0, e = {i, j} ∈ E \ {{0, h} : h ∈ V ′}, if qi + qj > Q. The separation
problem for MI inequalities (10) is solvable in polynomial time.

Proof. The proof is provided in the e-companion to this paper. �

RCI, RCII-b and RCII-d inequalities are separated using a heuristic separation procedure. The
procedure is a Multistart Local Search that, at each iteration, generates a starting point and evolves
it through a Local Search procedure. We start by generating a set S of 10(n − 1) subsets of V ′
as follows. For the RCI inequalities the first |VC | sets of S are obtained by inserting in each set,
for i = 1, . . . , |VC |, the nodes in Fi. The remaining sets are generated by first computing a random
number m drawn from a uniform distribution in [1, . . . , n − 1], and then by randomly selecting m
different nodes of V ′, again using a uniform distribution. For the RCII-b and RCII-c inequalities all
the sets are randomly generated as above. Each set S ∈ S is then iteratively expanded by adding
one node at each iteration until S = V ′. For a given set S, let θ(S) denote the difference between
the left-hand side and the right-hand side value of the considered inequality (i.e., the inequality can
be rewritten as θ(S) ≥ 0 and the separation problem corresponds to compute arg minS⊆V ′{θ(S)}).
Each set S is expanded by choosing the node i ∈ V ′ \ S such that θ(S ∪ {i}) is minimized

6 Solving the vrptf to Optimality

In this section, we describe the method implemented for solving the vrptf to optimality. We start by
describing two heuristic algorithms that compute primal bounds used to initialize the exact method.
The exact method is a branch-and-cut-and-price (BCP) solution method based on the SCIP (see
Achterberg 2009) BCP solution framework.

6.1 Heuristic algorithms

Primal bounds for the vrptf are computed by means of two different types of heuristic algorithms:
a constructive heuristic and a Lagrangean heuristic.

The basis of the constructive algorithm is a heuristic to solve the cvrp. Given an instance of
vrptf, we define a complete graph G = (V ,E) where the node set V = {0} ∪ VC contains the
depot and the customer nodes. Each edge e ∈ E has a cost given by re. Each customer i ∈ VC
has a demand equal to qi and the capacity of the vehicles is set to Q. Roughly speaking, we solve a
problem obtained from vrptf by disregarding the facility nodes (set VF ) and the connection arcs (set
A). The cvrp instance is solved through an iterative multistart procedure based on a cluster-first,
route-second heuristic procedure. Each iteration consists of three phases: (i) determine a partition
of the customers into a number of subsets each one satisfying the capacity constraint; (ii) for each
set, find the route of a single vehicle that serves all the customers in the set (i.e. we solve an instance
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of a Traveling Salesman Problem (tsp)); (iii) locally optimize the solution obtained at step (ii). The
cvrp solution so far obtained, is then locally optimized by iteratively applying two post-optimization
procedures specifically devised for the vrptf.

The Lagrangean heuristic is based on procedure CG described in Section 5.1.3. Procedure CG is
interwoven with an algorithm that produces a feasible vrptf solution using the route set R̃ (see Step
2 of procedure CG). The route set R̃ is first modified to contain only customers visited at most once.
Then, unrouted customers are inserted in order to obtain a feasible solution. The solution obtained
is further optimized by applying the same post-optimization procedures used by the constructive
algorithm.

A step-by-step description of the heuristics are given in the e-companion to this paper.

6.2 Details of the BCP method

The lower bound at the root node of the enumeration tree is first computed by using the bounding
procedure described in Section 5, then by using the column-and-cut generation method described in
Section 5.2. The master problem at a generic node except the root node is initialized with the set of
valid inequalities F and the set of routes R of the parent node, where set R is further modified by
extracting the largest set of routes satisfying the branching conditions.

To choose a node-selection rule, we first performed some preliminary experiments with different
rules and, based on these results, we decided to adopt the best-first strategy for all the computations
of Section 7. We did not implement primal heuristics but the algorithm was initialized with the
best primal solution found by the two heuristic algorithms described in the previous section that are
executed at the root node. We used the default branching scheme of the SCIP framework, namely the
hybrid branching scheme (see Achterberg and Berthold 2009), that combines ideas from pseudocost
branching (Benichou et al. 1971) and strong branching (Applegate et al. 2007).

7 Computational Results

This section reports on the computational results of the exact method described in this paper and
analyses the effectiveness of the dual ascent heuristics and of the different types of inequalities on
the bounding procedure procedure described in Section 5.

The algorithms were coded in C++ and linked with the SCIP 3.1.1 BCP solution framework (see
Achterberg 2009) using the IBM Cplex 12.6.1 linear programming solver (see IBM CPLEX 2014).
The experiments were performed on an Intel Core 2 Duo at 2.66 GHz personal computer equipped
with 4 Gb of RAM.

The exact method has been tested on real-world instances and on instances derived from lrp in-
stances already proposed in the literature, used to further evaluate the performance of our algorithms.
The same instances have been also used to generate 2e-cvrp instances. The following sections 7.1
and 7.2 briefly describe the real-world and lrp based instances, respectively, and report on the re-
sults obtained by the different algorithms. The complete details of the instances are provided in the
e-companion to this paper.

Based on the results of preliminary experiments to identify good parameter settings for our method,
we decided to use the following settings for our bounding procedure (see Section 5):
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• in computing lower bound LB1: Maxit1 = 50, Maxit2 = 50, ε = 1.5 and ∆ = 50;

• in computing lower bound LB2: Γ = 12, Maxit1 = 100, Maxit2 = 50, ε = 2.0 and ∆ = 50;

• in the column-and-cut-generation method: ∆ = 100 at the root node of the BCP whereas
∆ = 50 for the remaining nodes.

7.1 Results on real-world instances

The data of this set of instances were provided by a major Italian transportation company that
distributes non-perishable products over the whole Italian peninsula. The company operates through
three main distribution areas (North, Centre and South) using three main central depots located in
the provinces of Milan, Rome and Naples.

The three distribution areas operate independently in the corresponding areas to serve customer
orders using an existing set of intermediate facilities. The customer orders are placed into Euro-
pallet and distributed either to the final customers or the intermediate facilities by means of a fleet
of identical capacitated vehicles which are stationed at the different central depots and whose capacity
is expressed in terms of pallets. All the facilities are owned by third-party contractors, that are in
charge of delivering to the final customers the orders consolidated at the facilities.

The company was interested in analyzing different distribution scenarios associated with the three
distribution areas. A total number of 18 instances were provided by the company, six instances per
each area or depot. The following naming convention was adopted to identify the different instances.
The instance name is a string area a×b Qc, where area represents the area (i.e., North, Centre,
South), a represents the number of customers, b corresponds to the number of facilities, and c is the
vehicle capacity.

In Table 1, we report the results obtained by the heuristic algorithms, the bounding procedure
and the BCP method. The columns of the table report the instance name (Name), the cost of the
best solution found by the heuristics and BCP algorithms (z∗), the percentage deviation of the upper
bound computed by the constructive heuristic (%UB1), the percentage deviation of the upper bound
computed by the lagrangean heuristic (%UB2), the percentage deviation of lower bound LB1 (%LB1),
the percentage deviation of lower bound LB2 (%LB2), the total computing time of lower bounds LB1
and LB2 that also includes the time spent for computing UB2 (tDA), the percentage deviation of the
lower bound LB computed at the root-node of the BCP algorithm and the corresponding computing
time (%LB, tLB), the cardinality of the sets F and R associated with lower bound LB (#cuts and
#cols), the total number of nodes of the exact algorithms (#N), the percentage deviation of the best
lower bound achieved by the exact method (%Opt), and the total computing time in seconds spent
by the exact method (tTOT ), that also include the time spent for computing upper bound UB1. The
percentage deviation of value x is computed as 100× x/z∗.
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In order to evaluate the quality of the different lower bounds, we also computed, for each instance,
the value of the lower bound obtained by solving the LP-relaxation of formulation TI strengthened
with the different valid inequalities (using the separation strategy described in Section 5.2). In the
table, column %LBC reports the percentage deviation of the final lower bound obtained whereas
column tC displays the corresponding computing time.

For each instance, Table 1 also reports the following details about the best solution found: the
number of routes in the solution (#r), the number of facilities visited (#f) and the number of
customers assigned to a facility (#c).

For these set of instances, a time limit of 7,200 seconds was imposed to the SCIP framework.

The last row of the table reports averages computed over the different columns. The average
reported under column tTOT is computed over the instances solved to optimality within the imposed
time limit. If a value of 100.0 is reported for column %Opt, then the algorithm terminated with an
optimal solution.

Table 1 shows that 8 out of 18 instances were solved to optimality and that the final lower bound
LB is on average quite tight, being equal to 98.7%. The largest instance solved to optimality involves
142 customers and 18 facilities. On these set of instances, lower bounds LB1 and LB2 have the same
quality and are on average superior to lower bound LBCP , thus showing the effectiveness of our q-
∗route and ng-∗route relaxations. Moreover, the different valid inequalities can substantially increases
the lower bound, as shown by the improvements on instances north-68x7-Q24 and south-54x4-Q34.

The table shows that upper bound UB2 is always better than upper bound UB1 and that the
BCP algorithm can further improve the upper bounds in almost all instances, thus producing high
quality primal solutions also whenever the algorithm terminates without proving the optimality of
the solution found.

It is worth mentioning that the time spent for computing upper bound UB1 is on average equal to
187.4 seconds and that the time spent by the procedure used to compute upper bound UB2 (called
during the computation of lower bound LB2) is on average equal to 226.8 seconds. Therefore, both
UB1 and UB2 can be computed efficiently in practice.

7.2 Results on lrp based instances

This set of instances was derived from 75 lrp instances used in Baldacci et al. (2011) and Contardo
et al. (2013) for solving the lrp and proposed by different authors. We derived two classes of test
instances (A and B) having the same topology of the underlying graph, but with different cost
structures.

We generated a total number of 150 instances, 75 instances per class. The dimensions of the
instances vary from very small instances with 12 customers and two facilities up to large instances
with 150 customers and 20 facilities. The instance name is a string name<a×b>, where name
represents the instance name, a represents the number of customers and b corresponds to the number
of facilities.

For sake of presentation, the instances were grouped into the following three groups accordingly
to the original lrp source:

i) Akca et al. (2009): 12 instances involving 5 facilities, and 30 or 40 customers;
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Table 2: Summary results on Class A instances

%UB1 %UB2 %LB1 %LB2 tDA %LBCP tCP %LB tLB #Opt tT OT

Akca et al. (2009) 100.3 100.6 94.3 96.8 9.9 96.1 4.6 98.5 2.1 10/12 145.3

Prins et al. (2004) 100.2 100.4 93.7 96.0 48.6 94.0 78.6 97.8 14.7 10/24 221.9

Different authors 100.2 101.0 91.9 94.3 297.5 93.7 339.8 96.6 121.3 10/39 213.0

Table 3: Summary results on Class B instances

%UB1 %UB2 %LB1 %LB2 tDA %LBCP tCP %LB tLB #Opt tT OT

Akca et al. (2009) 102.6 101.3 94.6 96.9 5.2 95.6 4.1 98.1 3.7 9/12 274.2

Prins et al. (2004) 101.4 101.0 94.2 95.9 52.8 93.0 76.1 97.2 14.2 7/24 184.0

Different authors 101.1 102.5 92.4 94.2 187.6 93.4 324.1 96.1 141.2 8/39 284.3

ii) Prins et al. (2004): 24 instances involving 20, 50, and 100 customers, 5 or 10 facilities;

iii) Different authors: 39 instances, involving up to 150 customers and 20 facilities.

For this set of instances, a time limit of 3,600 seconds was imposed to the SCIP framework.

Tables 2 and 3 summarize the results obtained on both classes A and B. In the tables, column
#Opt reports for each group of instances the total number of instances solved to optimality within
the imposed time limit.

The meaning of the remaining columns is the same described in the previous section, but in the
tables their values are relative to averages computed over the instances composing the three groups.
The values reported under column tTOT are computed over the instances solved to optimality within
the imposed time limit.

Tables 2 and 3 show that 30 and 24 out of 75 instances were solved to optimality within the
imposed time limit for classes A and B, respectively.

For these instances, lower bound LB2 is on average superior with respect lower bound LB1. As the
feasible solutions associated with these instances are characterized (on average) by a larger number of
customers per route, the ng-∗route relaxation performs in practice better than q-∗route relaxation.
Also for these instances, the different valid inequalities can substantially increase the final lower
bound (see column %LB). Instances of Class B are more difficult with respect to the corresponding
instances of class A. This is due to the different cost structure of class B instances and it is testified
by the worse quality of lower bounds LBCP and of the final lower bound LB. Nonetheless, lower
bounds LB1 and LB2 show the same quality of class A instances.

Concerning the upper bounds, the tables show that both the two upper bounding procedures can
compute good quality solutions. The average computing time of upper bound UB1 (UB2) is equal
to 70.8 and 72.9 seconds (148.0 and 89.5 seconds) for classes A and B, respectively. Therefore, the
computation of LB2 requires a higher computing time with respect to the real-world instances and
this is due to the larger vehicle capacity that characterizes most of the instances in classes A and B.

The detailed results reported in the e-companion to this paper show that instances with up to 100



The VRPTF R. Baldacci, S. U. Ngueveu, R. Wolfler Calvo

Table 4: Effectiveness of the dual ascent heuristics

tLBSP
tLB1

%LB1 %LB2 %LBSP (a) (b) (c) (d) (e) (f)

A Akca et al. (2009) 94.3 96.8 96.9 11.1 6.7 4.9 2.3 0.9 0.7
Prins et al. (2004) 93.7 96.0 96.1 26.3 15.6 12.1 5.3 0.5 0.3
Different authors 91.9 94.3 94.7 263.0 171.2 108.0 53.5 21.4 17.6

B Akca et al. (2009) 94.6 96.9 96.9 13.0 7.9 5.8 2.7 0.9 0.7
Prins et al. (2004) 94.2 95.9 96.0 26.4 17.4 13.2 5.8 0.5 0.4
Different authors 92.4 94.2 94.8 248.3 168.6 116.5 56.9 21.7 18.9

Real-word 98.0 98.1 98.6 18.9 5.0 8.3 4.2 0.3 0.2

93.6 95.5 95.8 129.9 85.2 57.4 28.0 10.3 8.7
(a) without lower bounds LB1 and LB2
(b) with lower bound LB1
(c) with lower bound LB2
(d) with lower bounds LB1 and LB2
(e) route set R initialized with single-customer route
(f) route set R initialized with the solution provided by the constructive heuristic

customers and 10 facilities were solved to optimality.

7.3 Effectiveness of the dual ascent heuristics and valid inequalities

Table 4 reports an analysis of the effectiveness of the dual ascent heuristics when used to initialize the
master problem of problem LSP (see Section 5.2). In order to assess the quality of lower bounds LB1
and LB2, we solved problem LSP without adding valid inequalities, i.e., we computed the optimal
solution cost LBSP of formulation LSP and the LP-relaxation of formulation SP with ng-∗route.
In addition, the Lagrangean heuristic has been disabled during the computation of LB1 and LB2.

The table reports the average percentage deviations of lower bounds LB1, LB2, and LBSP under
columns %LB1, %LB2 and %LBSP , respectively. The table then reports, under heading tLBSP

, the
average total computing times spent in computing lower bound LBSP under the following options: (a)
without computing lower bounds LB1 and LB2 (b) by computing lower bound LB1 (c) by computing
lower bound LB2, and (d) by computing both lower bounds LB1 and LB2. In case (a), the master
problem of LSP is initialized with single-customer routes whereas in case (b), the master problem is
initialized using the dual solution provided by lower bound LB1, that is used to generate an initial
set of ng-∗route. In cases (c) and (d), the master problem is initialized with the route set generated
by procedure CG during the computation of LB2 (as described in 5.2). Moreover, in case (c) the
master problem associated with the computation of LB2, is initialized as for LB1, i.e., using the
solution provided by the constructive heuristic described in Section 6.1.

All values in the table are relative to averages computed over the instances composing the three
groups of classes A and B, and over the real-world instances. The last row of the table reports
averages computed over all instances.

The table shows that the bounding procedure based on the use of both lower bounds LB1 and
LB2 (case (d)) is about five times faster than the standard column generation method (case (a)).
Generally speaking, standard column generation methods are time-consuming as the LP-relaxation
of the master problem is usually highly degenerate and degeneracy implies alternative optimal dual
solutions. Consequently, the generation of new columns and their associated variables may not
change the value of the objective function of the master problem, the master problem may become
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Table 5: Effectiveness of the different type of inequalities on column-and-cut generation procedure

no cuts + CI + MI + RCI + RCII-a + RCII-b + RCII-c + RCII-d
%LB tLB %LB tLB #cuts %LB tLB #cuts %LB tLB #cuts

A Akca et al. (2009) 96.9 2.3 97.9 3.1 7.3 98.5 4.0 200.6 98.5 4.0 169.9
Prins et al. (2004) 96.1 5.3 97.1 10.0 8.3 97.8 17.2 521.5 97.8 18.2 539.8
Different authors 94.7 53.5 95.7 92.1 23.8 96.5 139.3 1083.2 96.6 164.4 1181.3

B Akca et al. (2009) 96.9 2.7 97.4 3.6 13.3 98.0 5.5 655.6 98.1 5.6 763.0
Prins et al. (2004) 96.0 5.8 96.3 10.7 14.6 97.1 16.2 623.8 97.2 17.7 737.0
Different authors 94.8 56.9 95.6 109.0 61.4 96.0 173.3 1385.3 96.1 184.3 1566.1

Real-word 98.6 4.2 98.7 6.6 4.1 98.7 6.9 106.0 98.7 12.9 121.1

95.8 28.0 96.5 50.8 24.9 97.1 78.8 809.2 97.2 88.1 905.2

large, and the overall method may become slow computationally. In case (d), the bounding procedure
starts from a near-optimal dual solution of the LP-relaxation of SP with ng-∗route provided by lower
bound LB2, as shown by the percentage deviations of lower bounds LB2 and LBSP . This allows us
to generate an initial master problem containing the routes having a very small reduced cost that
are likely to be in the optimal LSP solution.

The analysis of cases (b) and (c) shows that it is also computationally convenient to compute LB1
or LB2. In particular, computing LB1 before the computation of LB2 speedup the computation of
LB2 as procedure CG used to compute LB2 takes advantage from the master initialization provided
by the dual solution corresponding to LB1.

Table 4 also reports the computational results obtained when calculating the lower bound LB1
under the following two ways of initializing the corresponding master problem: (i) by using the
heuristic solution provided by the constructive heuristic (case (e)) (ii) by using single-customer routes
(case (f)). The table shows that on average, the difference is slightly marginal. Nevertheless, as in
our implementation the constructive heuristic is executed before computing LB1, it is worthwhile to
initialize the master of LB1 with the solution found by the heuristic.

Table 5 analyses the impact of the valid inequalities on the column-and-cut bounding procedure
described in Section 5.2 at the root node of the BCP method.

The table reports average percentage deviations of the lower bounds obtained by the bounding
procedure under the following cases: (i) without adding valid inequalities (under column heading
“no cuts”) (ii) by adding CI, MI and RCI inequalities (“+ CI + MI + RCI”) (iii) by adding CI,
MI, RCI, RCII-a, and RCII-b inequalities (“+ RCII-a + RCII-b”), and (iv) by adding CI, MI, RCI,
RCII-a, RCII-b, RCII-c, RCII-d inequalities (“+ RCII-c + RCII-d”). The last case corresponds to
the final procedure we adopted in our computational results and, as mentioned in Section 5.2, the se-
quence of separation procedures was defined after conducting preliminary computational experiments
performed to identify a good separation strategy.

For each group, the table reports the average percentage deviations of the lower bounds obtained
and the corresponding average computing times (%LB, tLB), and the average cardinalities of the sets
F associated with the lower bound computation (#cuts). As for Table 4, the Lagrangean heuristic
has been disabled during the computation of LB1 and LB2. In addition, the time tLB also includes
the time spent for computing LB1 and LB2.

As for Table 4, all values in the table are relative to averages computed over the instances composing
the three groups of classes A and B, and over the real-world instances. The last row of the table
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reports averages computed over all instances.

The table shows that the average percentage gaps left by considering in turn the different three
groups of valid inequalities are equal to 3.5, 2.9 and 2.8, respectively. With respect to the “no
cuts” case, a final gap reduction of about 1.4% has been achieved. The contribution given by
inequalities RCII-c and RCII-d is on average equal to 0.1% as shown by the table. During preliminary
computational experiments, we observed that their addition generally results in separating additional
RCI and RCII-b inequalities, which separation procedures are heuristics.

8 Conclusions

In this paper, we considered a vehicle routing problem with transhipment facilities, called the Ve-
hicle Routing Problem with Transhipment Facilities (vrptf), that was motivated by a real-world
application of interest to an Italian company operating in the production and distribution of non-
perishable products. The vrptf consists of selecting transhipment facilities, allocating customers
to these facilities and designing vehicle routes emanating from a central depot to minimize the total
distribution cost. A feature of the problem is that a customer can be either served on a vehicle
route emanating from the central depot or through an intermediate facility, where the demand is
first delivered by a vehicle route, and then it is successively delivered to the final customer.

We proposed two integer programming formulations for the vrptf, a two-index formulation (TI)
and a set-partitioning based formulation (SP ). The formulations were used to derive a bounding
method based on two dual ascent heuristics and a column-and-cut generation procedure. In par-
ticular, we proposed valid inequalities to strengthen the linear relaxations of the two formulations
and two different route relaxations, called q-∗route and ng-∗path, that have the advantage that the
pricing subproblem associated with the linear relaxation of formulation SP can be efficiently solved
(by dynamic programming).

All our findings have been used to develop branch-and-cut-and-price algorithm that has been tested
on a large family of instances, including both real-world instances and instances derived from the
literature.

The implementation solved to optimality different instances from our real-world instances involv-
ing up to 142 customers and 18 facilities. The implementation was also tested on literature-based
instances to better evaluate the limits of the algorithms, and the new approaches can find optimal
solutions on some difficult instances with up to 100 customers and 10 facilities.
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e-companion

9 Proofs of statements

Proposition 1 There are no dominance relations between inequalities RCII-a and RCII-b.

Proof. Consider a vrptf instance with |VC | = 6, |VF | = 1, with VC = {1, 2, 3, 4, 5, 6} and VF = {7}.
In addition, let Q = 10 and q1 = 4, q2 = 3, q3 = 5, q4 = q5 = q6 = 2. First select a set S = {1, 2, 4, 7}
and such that the nodes {1, 2, 4, 7} are visited on a route while customers {3, 5, 6} are assigned to
facility node 7 of S. The right-hand side of inequality (15) becomes d18/10e − 0 = 2, while the
right-hand side of (17) has value d9/10e − 0 = 1 and (15) is stronger than (17). Now consider a set
S = {1, 2, 3, 4, 5} containing five customers all visited on a route. Customer 6 is associated with a
node in V ′\S. The right-hand side of (15) takes value d18/10e−1/4 = 7/4, while the right-hand side
of (17) becomes d16/10e − 0 = 2 and the second inequality is stronger than the first one. Moreover,
note that the FrCC inequalities (4) are dominated by (15), for the first example, and by both (15)
and (17) for the second one. �

Lemma 3 (Lemma 2.) Let o ∈ R with ô > 0 and T = {m ∈ R, n ∈ Z : m + n ≥ o,m ≥ 0}. The
inequality

m+ ôn ≥ ôdoe (18)
is valid for T .

Proof. We have two cases:

(i) n ≥ doe. As m ≥ 0, we have m

ô
≥ 0, hence m

ô
+ n ≥ doe;

(ii) n ≤ boc. As 0 < ô < 1 we have that

boc − n ≥ ô(boc − n). (47)

Since o = boc+ ô and using inequality (47), inequality m+ n ≥ o can be rewritten as:

m ≥ ô+ ô(boc − n). (48)

The right-hand side of inequality (48), can be rewritten as:

ô(1 + boc)− ôn = ôdoe − ôn (49)

thus obtaining m ≥ ôdoe − ôn. �

Theorem 5 Let αe ≥ 0, ∀e ∈ E, βi ≥ 0, ∀i ∈ V ′ and γij ≥ 0, ∀(i, j) ∈ A and consider the following
inequality valid for formulation TI:∑

e∈E
αexe +

∑
i∈V ′

βiyi +
∑

(i,j)∈A
γijzij ≥ o (19)
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where o ∈ R and ô > 0. Then the following inequality:∑
e∈E

ϕo(αe)xe +
∑
i∈V ′

ϕo(βi)yi +
∑

(i,j)∈A
ϕo(γij)zij ≥ doe (20)

where ϕo(m) = bmc + min
{
m̂

ô
, 1
}

, m ∈ R, o ∈ R, ô > 0, is also a valid inequality for formulation
TI.

Proof. Let E1 ⊆ E, E2 = E \E1, V 1 ⊆ V ′, V 2 = V ′ \ V 1 and A1 ⊆ A, A2 = A \A1. Starting from
inequality (19) we can round up the coefficients in E2, V 2 and A2 to obtain:∑

e∈E1

αexe +
∑
i∈V 1

βiyi +
∑

(i,j)∈A1

γijzij +
∑
e∈E2

dαeexe +
∑
i∈V 2

dβieyi +
∑

(i,j)∈A2

dγijezij ≥ o. (50)

Writing αe = bαec + α̂e, ∀e ∈ E1, βi = bβic + β̂i, ∀i ∈ V 1, and γij = bγijc + γ̂ij , ∀(i, j) ∈ A1 and
re-arranging terms, we get:

(
∑
e∈E1

α̂exe +
∑
i∈V 1

β̂iyi +
∑

(i,j)∈A1

γ̂ijzij)+

(
∑
e∈E1

bαecxe +
∑
e∈E2

dαeexe +
∑
i∈V 1

bβicyi +
∑
i∈V 2

dβieyi +
∑

(i,j)∈A1

bγijczij +
∑

(i,j)∈A2

dγijezij) ≥ o.
(51)

The first part of inequality (51) is non-negative, and the second part is integral for all x, w and z
integral. Applying Lemma 2 we get:

1
ô

(
∑
e∈E1

α̂exe +
∑
i∈V 1

β̂iyi +
∑

(i,j)∈A1

γ̂ijzij)+

(
∑
e∈E1

bαecxe +
∑
e∈E2

dαeexe +
∑
i∈V 1

bβicyi+∑
i∈V 2

dβieyi +
∑

(i,j)∈A1

bγijczij +
∑

(i,j)∈A2

dγijezij) ≥ doe.

(52)

The coefficients of variables {xe} in (52) are bαec + α̂e
ô

if e ∈ E1 and dαee if e ∈ E2. Similarly, the

coefficients of variables {yi} in (52) are bβic+ β̂i
ô

if i ∈ V 1 and dβie if i ∈ V 2 and the coefficients of

variables {zij} are bγijc+ γ̂ij
ô

if (i, j) ∈ A1 and dγije if (i, j) ∈ A2.

The best choices of coefficients for the sets E1, V 1 and A1 are E1 = {e ∈ E : α̂e ≤ ô}, V 1 = {i ∈
V ′ : β̂i ≤ ô} and A1 = {(i, j) ∈ A : γ̂ij ≤ ô}, respectively.

By defining ϕo(m) = bmc+ min
{
m̂

ô
, 1
}

, m ∈ R, o ∈ R, ô > 0, inequality (52) becomes inequality
(20).�

Theorem 6 Let us associate penalties λi ∈ R, ∀i ∈ VC , with constraints (27), and λi ≤ 0, ∀i ∈ VF ,
with constraint (28). For each i ∈ VC , define ai` = ai`+

∑
j∈VF (R`) b

j
i`, and let Ri = {` ∈ R : ai` > 0}.

For each i ∈ VC compute:

νi = qi min
`∈Ri

{
(c` + p`)−

∑
j∈VC

aj`λj −
∑
j∈VF

aj`λj∑
j∈VC

aj`qj

}
(30)
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A feasible DSP solution u of cost z(DSP (λ)) is given by the following expressions:

ui = νi + λi,∀i ∈ VC , and ui = λi,∀i ∈ VF . (31)

Proof. Consider a route ` ∈ R. Since ` ∈ Ri, ∀i ∈ VC(R`), from expression (30) we derive:

νi ≤ qi
(c` + p`)−

∑
j∈VC

aj`λj −
∑
j∈VF

aj`λj∑
j∈VC

aj`qj
, ∀i ∈ VC(R`). (53)

Given a route ` ∈ R, from expression (31) we obtain:

∑
i∈VC

ai`ui +
∑
i∈VF

ai`ui ≤
∑
i∈VC

ai`qi
(c` + p`)−

∑
j∈VC

aj`λj −
∑
j∈VF

aj`λj∑
j∈VC

aj`qj
+

∑
i∈VC

ai`λi +
∑
i∈VF

ai`λi.

(54)

Inequality (54) can be written as: ∑
i∈VC

ai`ui +
∑
i∈VF

ai`ui ≤ c` + p`, (55)

that corresponds to the constraint of problem DSP for route `.�

Let E(S) denote the set of edges in G with both end-nodes in S and, given two disjoint vertex sets
S1, S2, let E(S1 : S2) denote the set of edges crossing from S1 to S2 (i.e., E(S1 : S2) = δ(S1)∩δ(S2))
(if S1 = {i}, we simply write E(i : S2) instead of E({i} : S2)).

Theorem 7 The LP-relaxation of the SP formulation satisfies both CI and FrCI inequalities, and
a weak form of MI inequalities.

Proof. Consider a set S ⊆ V ′ with VC(S) 6= ∅ and let T = VC(S) be the set of customers contained
in S. Define the surrogate constraint obtained by adding partitioning constraints (27) corresponding
to customers in T after having multiplied the equation associated with i ∈ T by qi:∑

`∈R

q`(T )ξ` = q(T ), (56)

where q(T ) =
∑
i∈S qi and q`(T ) =

∑
i∈S qiai`. Since q`(T ) ≤ min[Q, q(T )], we have∑
`∈R(T )

ξ` ≥ max[1, q(T )/Q], (57)

where R(T ) = {` ∈ R : ai` = 1 for some i ∈ T}. Given a route ` ∈ R(T ), define q`(T ) as
the total demand of the customers not in T assigned to the route, i.e. q`(T ) = q`(T ), where
T = (VC \ T ) ∩ VC(R`). As q`(T ) + q`(T ) ≤ Q we have:∑

`∈R(T )
Qξ` ≥

∑
`∈R

q`(T )ξ` +
∑
`∈R

q`(T )ξ`. (58)
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From equations (56) and inequalities (58) we derive:

∑
`∈R(T )

ξ` ≥ max

1, 1
Q

q(T ) +
∑
`∈R

q`(T )ξ`

 . (59)

Note that any route ` ∈ R(T ) contains at least two edges, one having an ending node in S and the
other in S. Therefore, we have: ∑

{i,j}∈δ(S)
η`ijξ` ≥ 2ξ`. (60)

Adding inequality (60) for all ` ∈ R(T ) we obtain:∑
`∈R(T )

∑
{i,j}∈δ(S)

η`ijξ` ≥ 2
∑

`∈R(T )
ξ`. (61)

Thus inequalities (59) become

∑
`∈R(T )

ρ`(S)ξ` ≥ 2 max

1, 1
Q

q(T ) +
∑
`∈R

q`(T )ξ`

 , (62)

where ρ`(S) =
∑
{i,j}∈δ(S) η

`
ij . Since

q`(T ) ≥
∑
j∈T

∑
k∈VF (S)

bkj`qj + 1
2
∑
j∈T

qj
∑

{i,h}∈E(S:{j})
η`ih (63)

from (63) we obtain:∑
`∈R(T )

ρ`(S)ξ` ≥ 2 max{1, 1
Q

(q(T ) +
∑
`∈R

(
∑
j∈T

∑
k∈VF (S)

bkj`qj + 1
2
∑
j∈T

qj
∑

{i,h}∈E(S:{j})
η`ih)ξ`)}. (64)

We have:

i) q(T ) =
∑
`∈R q`(T )ξ` =

∑
i∈T qi(

∑
`∈R ai`ξ`) +

∑
i∈T qi(

∑
`∈R

∑
k∈VF (R`) b

k
i`ξ`);

ii)
∑
`∈R

∑
j∈T

∑
k∈VF (S) b

k
j`qjξ` =

∑
j∈T qj(

∑
`∈R

∑
k∈VF (S) b

k
j`ξ`).

Using the equations (32)-(35) linking variables variables ξ with (x, z, w), we derive:

i)
∑
i∈T qi(

∑
`∈R ai`ξ`) =

∑
i∈VC(S) qiyi;

ii)
∑
i∈T qi(

∑
`∈R

∑
k∈VF (R`) b

k
i`ξ`) +

∑
j∈T qj(

∑
`∈R

∑
k∈VF (S) b

k
j`ξ`) ≥

∑
(i,j)∈A:
j∈VF (S)

qizij ;

iii) 1
2
∑
j∈T qj(

∑
`∈R)

∑
{i,h}∈E(S:{j}) η

`
ihξ` = 1

2
∑
i∈VC(S)

∑
j∈S qix{i,j}.

Using the above equations, from (64) we obtain:

∑
e∈δ(S)

xe ≥ 2 max

1, 1
Q

 ∑
i∈VC(S)

qiyi +
∑

(i,j)∈A:j∈VF (S)
qizij + 1

2
∑

i∈VC(S)

∑
j∈S

qix{i,j}

 (65)

�
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Theorem 8 Let (x, z, y) be a solution of the LP-relaxation of formulation TI and assume that
qi ≤ Q, ∀i ∈ VC , and that xe = 0, e = {i, j} ∈ E \ {{0, h} : h ∈ V ′}, if qi + qj > Q. The separation
problem for MI inequalities (10) is solvable in polynomial time.

Proof. Consider the MI inequality for a given set S ⊆ V ′, S 6= ∅:

∑
e∈δ(S)

xe ≥
2
Q

 ∑
i∈VC(S)

qiyi +
∑

(i,j)∈A:j∈VF (S)
qizij +

∑
i∈VC(S)

∑
j∈S

qix{i,j}

 . (66)

We have: ∑
e∈δ(S)

xe =
∑

e∈E(0:S)
xe +

∑
e∈E(S:S)

xe, (67)

and for each i ∈ V ′ (see equation (2)):∑
e∈δ(i)

xe = 2yi = x{0,i} +
∑

e∈E(i:S)
xe +

∑
e∈E(i:S)

xe. (68)

From equation (68), the term
∑
i∈VC(S) qiyi of inequality (66) can be rewritten as follows:

∑
i∈VC(S)

qiyi =
∑

i∈VC(S)

qi
2

x{0,i} +
∑

e∈E(i:S)
xe +

∑
e∈E(i:S)

xe

 . (69)

The MI inequality (66) can be rewritten as:∑
e∈E(0:S)

xe +
∑

e∈E(S:S)

xe ≥
∑

i∈VC(S)

qi
Q
x{0,i} +

∑
i∈VC(S)

∑
e∈E(i:S)

qi
Q
xe+

∑
i∈VC(S)

∑
e∈E(i:S)

qi
Q
xe + 2

Q

∑
(i,j)∈A:
j∈VF (S)

qizij +
∑

i∈VC(S)

∑
j∈S

qi
Q
x{i,j} +

∑
i∈VC(S)

∑
j∈S

qi
Q
x{i,j}.

(70)

We also have: ∑
e∈E(0:S)

xe =
∑

e∈E(0:VC(S))
xe +

∑
e∈E(0:S\VC(S))

xe, (71)

and ∑
e∈E(S:S)

xe =
∑
j∈S

∑
{i,j}∈E(j:VC(S))

x{i,j} +
∑
j∈S

∑
{i,j}∈E(j:(V ′\VC(S))\S)

x{i,j}. (72)

Notice that S \ VC(S) = VF (S) and that (V ′ \ VC(S)) \ S = VF (S). Then, inequality (70) can be
rewritten as:∑

e∈E(0:VC(S))
xe +

∑
e∈E(0:VF (S))

xe +
∑
j∈S

∑
{i,j}∈E(j:VC(S))

x{i,j} +
∑
j∈S

∑
{i,j}∈E(j:VF (S))

x{i,j} ≥

∑
i∈VC(S)

qi
Q
x{0,i} +

∑
i∈VC(S)

∑
e∈E(i:S)

qi
Q
xe +

∑
i∈VC(S)

∑
e∈E(i:S)

qi
Q
xe+

2
Q

∑
(i,j)∈A:
j∈VF (S)

qizij +
∑

i∈VC(S)

∑
j∈S

qi
Q
x{i,j} +

∑
i∈VC(S)

∑
j∈S

qi
Q
x{i,j}.

(73)

Notice that as qi = 0, ∀i ∈ VF , we have:∑
i∈VC(S)

∑
e∈E(i:S)

qi
Q
xe =

∑
i∈S

∑
e∈E(i:S)

qi
Q
xe =

∑
i∈S

∑
e∈E(i:VC(S))

qi
Q
xe +

∑
i∈S

∑
e∈E(i:VF (S))

qi
Q
xe, (74)
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∑
i∈VC(S)

∑
e∈E(i:S)

qi
Q
xe =

∑
i∈S

∑
e∈E(i:S)

qi
Q
xe, (75)

and ∑
i∈VC(S)

∑
j∈S

qi
Q
x{i,j} =

∑
i∈S

∑
j∈S

qi
Q
x{i,j}. (76)

Inequality (73) can be rewritten as:∑
{0,i}∈E(0:VC(S))

(1− qi/Q)x{0,i} +
∑

e∈E(0:VF (S))
xe +

∑
j∈S

∑
{i,j}∈E(j:VC(S))

(1− (qi + qj)/Q)x{i,j}+

∑
j∈S

∑
{i,j}∈E(j:VF (S))

(1− qj/Q)x{i,j} ≥
∑
i∈S

∑
e∈E(i:S)

qi
Q
xe + 2

Q

∑
(i,j)∈A:
j∈VF (S)

qizij +
∑
i∈S

∑
j∈S

qi
Q
x{i,j}.

(77)

Since

∑
i∈S

∑
e∈E(i:S)

qi
Q
xe +

∑
i∈S

∑
j∈S

qi
Q
x{i,j} =

∑
j∈S

 ∑
{j,i}∈δ(j):

j<i

qi
Q
x{j,i} +

∑
{i,j}∈δ(j):

i<j

qi
Q
x{i,j}

 =

∑
j∈V ′

 ∑
{j,i}∈δ(j):

j<i

qi
Q
x{j,i} +

∑
{i,j}∈δ(j):

i<j

qi
Q
x{i,j}

−∑
j∈S

 ∑
{j,i}∈δ(j):

j<i

qi
Q
x{j,i} +

∑
{i,j}∈δ(j):

i<j

qi
Q
x{i,j}

 ,
(78)

and ∑
(i,j)∈A:
j∈VF (S)

qizij = q(VC)−
∑

i∈VC(S)
qiyi −

∑
i∈VC(S)

qiyi −
∑

(i,j)∈A:
j∈VF (S)

qizij =

q(VC)−
∑
i∈VC

qiyi −
∑

(i,j)∈A:
j∈VF (S)

qizij ,
(79)

inequality (77) can be rewritten as:∑
{0,i}∈E(0:VC(S))

(1− qi/Q)x{0,i} +
∑

e∈E(0:VF (S))
xe +

∑
j∈S

∑
{i,j}∈E(j:VC(S))

(1− (qi + qj)/Q)x{i,j}+

∑
j∈S

 ∑
{j,i}∈δ(j):

j<i

qi
Q
x{j,i} +

∑
{i,j}∈δ(j):

i<j

qi
Q
x{i,j}

+
∑
j∈S

∑
{i,j}∈E({j}:VF (S))

(1− qj/Q)x{i,j}+

2
Q

∑
(i,j)∈A:
j∈VF (S)

qizij ≥
∑
j∈V ′

 ∑
{j,i}∈δ(j):

j<i

qi
Q
x{j,i} +

∑
{i,j}∈δ(j):

i<j

qi
Q
x{i,j}

+ 2
Q

(q(VC)−
∑
i∈VC

qiyi).

(80)

Notice that, as qi ≤ Q, ∀i ∈ VC , xe = 0, e = {i, j} ∈ E \ {{0, h} : h ∈ V ′}, if qi + qj > Q, all
the variable coefficients of the above inequality are nonnegative whereas the right-hand-side of the
inequality does not depend on the set S.

The most violated constraint (80) can now be found by computing a minimum s-t cut on an directed
capacitated graph G = (V ,A) with V = V ′ ∪ {s, t} and A = {(i, j), (j, i) : ∀{i, j} ∈ E \ {{0, j} : j ∈
V ′}} ∪ {(s, i) : {0, i} ∈ E} ∪ {(i, t) : i ∈ V ′}. The additional nodes s and t represent source and sink
node, respectively. The arcs capacities are defined as follows:
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• Every arc (s, i), i ∈ VC is associated with a capacity (1− qi/Q)x{0,i};

• Every arc (s, i), i ∈ VF is associated with a capacity x{0,i};

• Every arc (i, j), i ∈ VC , j ∈ V ′ is associated with a capacity (1− (qi + qj)/Q)x{i,j};

• Every arc (i, j), i ∈ VF , j ∈ V ′ is associated with a capacity (1− qj)x{i,j};

• Every arc (j, t), j ∈ VC , is associated with a capacity
∑
{j,i}∈δ(j):

j<i

qi

Qx{j,i} +
∑
{i,j}∈δ(j):

i<j

qi

Qx{i,j};

• Every arc (j, t), j ∈ VF , is associated with a capacity 2
Q

∑
(i,j)∈A:
j∈VF (S)

qizij + (
∑
{j,i}∈δ(j):

j<i

qi

Qx{j,i} +∑
{i,j}∈δ(j):

i<j

qi

Qx{i,j}).

Let (S, V \ S) be the minimum s-t cut of G and assume that t ∈ S. One can see that if the cut
capacity is strictly smaller than right-hand-side of inequality (80) then node set S = S \ {t} defines
the most violated inequality (80). No violated inequality exists if the cut has a capacity greater than
or equal to the value of the right-hand-side of (80). �

10 Details of the heuristic algorithms

10.1 A constructive heuristic

Given an instance of vrptf, we define a complete graph G = (V ,E) where the node set V = {0}∪VC
contains the depot and the customer nodes. Each edge e ∈ E has a cost given by re. Each customer
i ∈ VC has a demand equal to qi and the capacity of the vehicles is set to Q. Let m =

⌈∑
i∈Vc

qi/Q
⌉

be a lower bound on the minimum number of routes required. The details of our implementation of
the three phases are as following.

(i) m “seed” customers are randomly selected to initialize the m routes of the emerging cvrp
solution. The remaining customers are partitioned into m subsets by heuristically solving a
Generalized Assignment Problem (gap) where each bin k is associated with the k-th customer
selected to initialize a route. The assignment cost aik for allocating customer i to bin k is
r0i + αr{i,k} − βr0k, where α, β are nonnegative parameters. The gap is solved heuristically.
If, for a given m, the gap solution is infeasible, we set m = m + 1 and we repeat the above
procedure.

(ii) The route for a subset of customers is determined by solving a tsp on the subgraph induced
by the subset. We apply a 3-opt procedure to a starting tour obtained by generating a random
sequence of the customers.

(iii) The solution obtained at step (ii) is locally optimized using a classical multiroute improvement
procedure consisting of two types of operations: (a) movement of a customer from one route to
another; (b) exchange of two customers belonging to different routes. We try all possible such
operations until no improvement can be obtained. Each route of the modified solution is then
re-optimized with the 3-opt procedure.

Since the initial partitioning and the tsp solutions are based on random choices, we can obtain
different solutions executing the three phases several times. In our implementation we run them 2000
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times: for the first 1000 runs we set α = 1.1 and β = 0.7 (see step (i)), while in the last 1000 runs
we set β = 0, leaving α unchanged.

The cvrp solution so far obtained, is optimized by iteratively applying two re-optimization proce-
dures: procedure Squeeze used by Baldacci et al. (2007) for the cmrsp, and procedure LS-multiple.
The two procedures are repeated in sequence until the current solution can be improved. Proce-
dure Squeeze tries to re-optimize the routing (i.e. the set E) by allowing a few changes in the
customer connections (set A). Procedure LS-multiple is a multiroute improvement procedure based
on customer exchanges among the routes of the current solution.

10.2 A Lagrangean heuristic

Procedure CG is interwoven with a heuristic algorithm that produces a feasible vrptf solution of
cost ẑ using the route sets R̃ (see Step 2 of procedure CG). Given the current DSP (λ) solution,
define vector ξ̃ as follows:

ξ̃` =
∑
i∈VC

ai`
qi

q(R`)
ζi`, ` ∈ R̃, (81)

by setting ζi`(i) = 1 and ζi` = 0, ∀` ∈ R̃ \ {`(i)}, ∀i ∈ VC . Define C(`) = VC(R`) ∪ VA(R`), i.e. C(`)
is the set of customers either visited on the route or assigned to facilities in VF (R`). The heuristic
algorithm performs the following steps.

1. Initialization. Initialize ẑ = 0, SOL = ∅ and δ(i) = 0, and ∀i ∈ V ′.

2. Extract a subset of routes SOL ⊆ R̃. Let `∗ be the route of R̃ where ξ̃`∗ = max{ξ̃` : ` ∈ R̃}.
Remove `∗ from R̃. If δ(i) = 0, for some i ∈ C(`∗), then update SOL = SOL ∪ {`∗}, δ(i) =
δ(i) + ai`, ∀i ∈ C(`∗), and δ(i) = δ(i) + ai`, ∀i ∈ VF (R∗` ). Repeat step 2 until R̃ = ∅.

3. Modify the route set SOL so that δ(i) ≤ 1, ∀i ∈ V ′.

a) Remove from SOL any route ` ∈ SOL such that δ(i) > 1, ∀i ∈ C(`∗), and update δ(i), ∀i ∈ V ′,
accordingly. For each ` ∈ SOL, compute the savings that can be achieved by removing from
route ` every customer i ∈ C(`∗) having δ(i) > 1. Let `∗ ∈ SOL be the route of maximum
saving. Remove from route `∗ every customer i ∈ C(`∗) with δ(i) > 1, and update δ(i). Repeat
step 3.a until δ(i) ≤ 1, for each i ∈ VC .

b) For each ` ∈ SOL, compute the total number α(`) of customers assigned to every facility
i ∈ VF (R∗` ) having δ(i) > 1. Let `∗ be the route having the minimum α(`) value. Remove from
route `∗ every facility i ∈ VF (R`∗) with δ(i) > 1, update δ(i), and δ(j), ∀j ∈ VC , accordingly.
Repeat step 3.b until δ(i) ≤ 1, for each i ∈ VF .

c) For each ` ∈ SOL, remove any facility i ∈ VF (R`) with δ(i) = 1 and without customers
assigned to it, and update δ(i) = δ(i)− 1.

4. Insert unrouted customers. For each unrouted customer i (i.e., δ(i) = 0) perform the following
operations. Compute the minimum extra-cost exc(i, `) for inserting i in route ` ∈ SOL without
considering assignment of i to facilities in VF (R`). We set exc(i, `) =∞ if the total load of the re-
sulting route ` exceeds the vehicle capacity Q. Let `∗ be such that exc(i, `∗) = min`∈SOL[exc(i, `)].
If exc(i, `∗) =∞, then set ẑ =∞ and stop; otherwise, insert customer i in route `∗ in the position
of cost exc(i, `∗) and set δ(i) = 1.

5. Define the vrptf solution ξ. Define ξ` = 1, for each ` ∈ SOL, and ξ` = 0, for each ` ∈ R \SOL.

6. Local optimization. Locally optimize solution ξ by iteratively applying the two re-optimization
procedures Squeeze and LS-multiple used also for the constructive heuristic.
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Figure 1: Real-world instances: North area

11 Details about the instances

11.1 Real-world based instances

A set of six test instances for each area (North, Centre and South) were generated by the company
based on the following settings.

• The set of customers is selected from the customers that are currently served on a daily basis
by using different criteria. The number of customers varies from a minimum of 54 up top a
maximum of 164. The customer demands were computed based on historical data;

• The set of facilities corresponds to the existing set of facilities and can also include new facilities
that the company want evaluate in order to revise the current distribution network. Instances
with 4, 6, 7, 9, 12, 13, and 18 facilities were generated;

• Two types of fleet of vehicles were considered: vehicles with capacity equal to 24 pallets (single-
unit 3 axes type of trucks) and vehicles with capacity equal to 36 pallets (single-trailer 3 axes
type of trucks), respectively;

• The routing cost of a pair of nodes i and j of the network were computed as r{i,j} = c distij
where distij represents the distance in kilometer between nodes i and j computed using a digital
map of the Italian territory, and c is the routing cost per kilometers (currency in expressed in
Euro (e)) associated with the type of vehicle (either single-unit or single-trailer);

• Set {Fi} of facilities to which the customers can be assigned are defined directly by the company
using different criteria. These criteria take into account the customer demand, required level of
service, a priori agreements between the customers and the company, and the distance matrix
[dij ] used to compute the routing costs;

• The distribution from the facilities to the customers is performed by means of a fleet of single-
unit 2 axes type of trucks with a vehicle capacity ranging from 6 to 8 pallets. The distribution
cost from the facilities depends on the type of contract that has been defined between the
company and the third-party contractor and vary from facility to facility. The distribution
cost is a function of the number of pallets associated with the order and the distance between
the customer location and the facility. Therefore the assignment cost matrix is defined by the
company using the current distribution tariff agreed with the third-party companies.
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Figure 2: Real-world instances: Centre area

Figure 3: Real-world instances: South area

A total number of 18 instances were generated, 6 instances per areas or depots. Figures 11.1,
11.1, and 11.1 illustrate the layout of the three distributions ares. In the figure, the three depots are
represented with squares, and rhombus and circles represent facilities and customers, respectively.

11.2 lrp based instances

From each lrp instance we derived a vrptf instance as follows.

i) The set VF of facilities, the set VC of customers (and the associated demands), correspond to
the set of depots and customers of the original lrp instance;

ii) The vehicle capacity Q is equal to the vehicle capacity of the original lrp instance;

iii) The depot coordinates were defined as follows. Let xmin and xmax be the minimum and maximum
x-coordinates among the customers and the facilities x-coordinate, respectively; similarly define
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ymin and ymax. The coordinate (x, y) of the central depot are defined as follows:

x = xmin + b(xmax − xmin)/2c and y = ymin + b(ymax − ymin)/2c. (82)

The routing and connection costs were generated as follows.

Class A. Routing and assignment costs of a pair of nodes i, j are equal to the Euclidean distance
eij , computed according to the TSPLIB EUC 2D standard.

Class B. For each pair of nodes i, j, the routing cost is r{i,j} = bαeijc, while the assignment cost is
dij = b(10− α)eijc, where α = 7.0.

For all the instances, every customer can be assigned to every facility, i.e. Fi = VF , ∀i ∈ VC .

We generated a total number of 150 instances, 75 instances per class. The dimensions of the
instances vary from very small instances with 12 customers and two facilities up to very large instances
with 150 customers and 20 facilities.

12 Details about the computational results on lrp based instances

This section reports the complete details about the computational results on lrp based instances.
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Table 6: Results on Class A: Akca et al. (2009) lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tT OT

cr30x5a-1 621 5 0 0 100.0 100.0 99.4 100.0 2.6 98.8 2.7 100.0 0.1 0 303 1 100.0 8

cr30x5a-2 665 5 1 2 100.2 102.1 90.6 94.0 2.8 97.5 2.5 99.1 3.2 275 2185 23 100.0 20

cr30x5a-3 575 5 1 2 100.7 100.0 90.8 96.5 2.5 98.5 2.2 98.5 1.3 252 1160 93 100.0 29

cr30x5b-1 727 5 1 1 100.0 100.0 96.4 98.5 2.9 99.7 2.9 100.0 1.3 479 959 1 100.0 10

cr30x5b-2 826 6 0 0 100.0 100.6 92.5 93.6 1.5 93.0 3.7 97.6 2.1 78 1609 367 100.0 79

cr30x5b-3 788 7 0 0 100.1 100.0 94.6 96.1 32.5 94.2 2.8 97.6 1.9 94 1096 1335 100.0 1061

cr40x5a-1 738 7 3 8 100.0 100.0 95.5 97.5 19.5 94.9 4.2 97.9 2.5 98 1530 151 100.0 82

cr40x5a-2 786 6 1 1 100.5 101.0 92.7 96.9 5.2 95.8 8.3 98.2 3.8 357 1627 986 99.3 3615

cr40x5a-3 807 6 4 4 101.1 101.5 94.8 98.0 21.4 95.2 5.3 98.5 2.8 405 1212 562 98.8 3631

cr40x5b-1 964 8 0 0 100.0 101.0 95.9 98.1 11.1 95.6 6.0 98.9 1.3 238 646 187 100.0 49

cr40x5b-2 901 8 2 3 100.0 100.1 93.1 95.7 3.3 95.5 7.9 98.1 3.4 372 910 41 100.0 34

cr40x5b-3 887 8 2 5 100.5 100.5 95.2 96.7 13.5 95.0 6.4 98.1 1.5 295 876 378 100.0 81

Table 7: Results on Class A: Prins et al. (2004) lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tT OT

ppw-20-5-0-a 253 5 1 1 100.0 100.0 95.2 96.7 1.5 98.5 1.2 100.0 0.2 11 394 1 100.0 5

ppw-20-5-0-b 211 3 1 2 100.0 100.0 85.3 94.4 7.8 100.0 0.5 97.8 0.6 120 803 17 100.0 12

ppw-20-5-2-a 247 5 1 3 100.0 100.0 90.8 94.5 3.2 95.4 1.3 97.4 0.4 157 711 197 100.0 14

ppw-20-5-2-b 189 3 1 2 100.0 100.0 85.7 93.1 1.6 100.0 0.3 100.0 1.1 181 2212 1 100.0 5

ppw-50-5-0-a 616 12 1 1 100.2 100.2 97.0 98.9 1.6 93.9 14.8 98.9 2.3 224 794 332 100.0 87

ppw-50-5-0-b 400 6 1 2 100.0 102.0 91.8 95.6 6.3 96.8 9.8 96.7 11.9 362 2964 15 96.9 3621

ppw-50-5-2’-a 653 12 0 0 100.5 100.0 95.9 96.1 1.6 95.6 13.4 99.5 2.6 323 827 85 100.0 48

ppw-50-5-2’-b 351 6 0 0 100.3 100.0 91.1 92.9 5.3 99.0 10.6 99.4 6.9 973 2391 204 99.7 3619

ppw-50-5-2-a 587 12 1 2 100.0 100.0 96.7 98.3 1.5 93.6 11.1 98.9 2.1 828 880 949 100.0 126

ppw-50-5-2-b 357 6 0 0 100.0 100.3 92.3 93.4 11.3 96.7 13.3 96.7 6.5 514 2174 61 97.1 3625

ppw-50-5-3-a 586 12 1 3 100.2 100.0 94.8 95.4 20.5 92.2 12.4 95.9 2.0 152 728 20734 97.9 3630

ppw-50-5-3-b 381 6 0 0 100.0 100.0 91.2 94.4 28.3 95.9 8.4 96.8 6.4 493 3335 395 97.4 3644

ppw-100-5-0-a 1158 25 2 2 100.9 100.9 97.7 98.8 3.1 93.8 216.9 99.3 10.6 12 1417 1312 100.0 507

ppw-100-5-0-b 679 11 3 3 100.0 100.0 91.2 95.3 146.6 91.6 115.2 96.7 42.6 2019 5451 7 96.8 3819

ppw-100-5-2-a 1010 24 1 1 100.6 100.4 96.8 97.4 3.1 91.7 193.0 97.5 14.0 640 1672 5639 97.8 3735

ppw-100-5-2-b 569 12 1 1 100.0 100.2 94.8 95.6 99.5 90.0 110.1 96.0 30.8 1040 3019 302 96.2 3783

ppw-100-5-3-a 1068 24 1 1 100.7 100.7 97.1 98.2 29.1 93.6 146.8 98.6 8.8 561 1312 8235 98.9 3686

ppw-100-5-3-b 612 11 0 0 100.0 100.7 92.7 95.6 55.7 93.8 131.5 97.1 27.9 1105 5207 183 97.4 3733

ppw-100-10-0-a 1215 24 1 1 100.1 100.7 97.9 98.7 47.9 89.9 154.4 98.9 11.2 372 1040 2420 100.0 991

ppw-100-10-0-b 693 11 1 1 100.0 101.9 94.2 96.6 208.8 93.2 159.1 97.4 38.3 1006 4232 84 97.6 3869

ppw-100-10-2-a 1030 24 0 0 100.8 100.0 96.2 97.7 134.6 90.6 163.8 97.7 9.9 85 1182 6064 98.2 3853

ppw-100-10-2-b 582 11 0 0 100.0 100.9 93.4 95.7 127.1 91.2 133.3 96.4 54.6 829 4798 30 96.5 3809

ppw-100-10-3-a 1055 24 4 6 100.0 100.3 97.6 98.3 121.6 88.7 142.1 99.3 14.8 30 1327 245 100.0 424

ppw-100-10-3-b 608 11 1 2 100.0 101.6 91.2 92.9 98.7 89.7 123.0 94.6 46.8 919 6930 24 94.8 3773
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Table 8: Results on Class A: different authors lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tT OT

Christ-50x5 514 5 2 2 100.6 103.1 95.7 97.3 58.1 98.2 8.3 99.2 7.9 1086 3231 54 100.0 130

Christ-50x5 B 533 5 1 2 100.2 100.4 92.5 95.9 84.8 96.4 7.9 96.8 7.7 592 4284 175 97.2 3698

Christ-75x10 783 9 3 6 100.0 100.0 93.4 94.6 40.0 93.6 58.2 97.1 28.6 665 6206 22 97.3 3676

Christ-75x10 B 814 9 3 5 100.0 101.8 94.0 95.2 112.9 94.2 46.0 97.5 33.3 1096 6417 235 97.8 3750

Christ-100x10 831 8 0 0 100.0 101.4 92.9 93.8 321.8 94.8 63.6 96.8 126.1 1335 17779 5 96.9 3987

Gaskell-21x5 371 4 1 2 100.0 100.0 97.1 98.7 1.3 98.1 1.3 100.0 0.3 157 534 1 100.0 5

Gaskell-22x5 554 3 3 4 102.0 100.0 82.3 88.6 83.7 97.3 1.0 99.8 46.0 301 3410 5 100.0 145

Gaskell-29x5 503 4 1 1 102.2 100.0 88.3 94.0 119.1 93.7 1.6 98.0 67.1 223 1936 67 100.0 683

Gaskell-32x5-2 427 3 0 0 100.0 100.0 92.4 98.9 459.5 100.0 1.4 100.0 97.3 6 5890 1 100.0 567

Gaskell-32x5 479 4 1 1 100.0 100.0 91.7 95.7 224.3 98.7 2.4 100.0 49.8 330 2149 1 100.0 280

Gaskell-36x5 411 4 1 1 100.2 100.2 96.4 96.7 8.8 99.0 3.7 100.0 1.3 140 1875 1 100.0 17

Min-27x5 3083 4 1 1 100.0 100.0 89.4 95.2 17.1 99.2 1.7 100.0 1.5 364 1357 1 100.0 24

Perl83-12x2 100 2 0 0 100.0 100.0 92.1 99.3 0.8 100.0 0.1 100.0 0.1 25 417 1 100.0 2

Perl83-55x15 453 10 3 3 101.5 101.3 96.8 97.9 38.2 94.6 17.5 99.3 3.5 324 2422 467 100.0 278

Perl83-85x7 618 11 1 1 100.2 101.1 96.9 97.7 36.1 92.7 59.5 98.2 13.0 580 3516 1835 98.8 3736

P111112-100x10 1346 11 0 0 100.0 100.6 92.1 94.5 163.2 92.2 112.2 95.4 46.4 976 7651 196 95.6 3846

P111122-100x20 1252 11 1 2 100.0 102.6 93.8 96.1 453.1 93.3 148.3 98.7 58.2 70 5927 625 98.8 4138

P111212-100x10 1266 10 0 0 100.0 100.6 92.8 95.8 46.8 93.1 118.8 96.8 57.4 1144 4786 5 96.9 3718

P111222-100x20 1338 11 1 1 100.0 100.4 91.5 94.0 379.0 90.8 208.6 96.1 74.5 1542 5446 19 96.1 4053

P112112-100x10 1236 11 3 3 100.0 100.0 89.6 93.2 196.6 93.1 173.0 96.7 134.8 2344 9884 15 96.8 3889

P112122-100x20 1047 10 3 3 100.0 100.0 84.6 86.8 485.6 92.4 278.6 94.2 227.5 2348 16311 3 94.2 4177

P112212-100x10 892 11 2 2 100.4 100.0 89.0 90.6 220.3 88.6 107.2 92.1 83.5 1045 9920 15 92.1 3918

P112222-100x20 1006 10 1 1 100.0 103.0 93.4 94.4 93.4 94.7 170.8 95.7 176.1 1039 7578 8 95.7 3747

P113112-100x10 1158 11 0 0 100.0 102.9 89.5 91.8 319.1 93.8 176.5 94.0 58.5 1295 6782 8 94.2 4007

P113122-100x20 1190 11 4 6 100.0 102.3 87.8 90.3 227.5 92.9 221.0 96.1 163.0 2200 10465 13 96.1 3914

P113212-100x10 1154 10 1 1 100.0 104.9 92.9 93.6 48.9 93.1 125.8 95.2 63.8 927 4778 97 95.3 3717

P113222-100x20 1078 11 0 0 100.0 100.0 90.6 91.8 73.2 94.4 235.0 94.3 101.7 1164 5276 68 94.5 3748

P131112-150x10 1833 16 1 1 100.8 100.0 93.7 95.1 171.8 90.2 669.4 95.6 134.3 1112 7283 37 95.7 3946

P131122-150x20 1769 16 1 1 100.0 100.8 92.5 95.5 579.3 89.8 872.2 95.9 137.6 34 9383 56 95.9 4411

P131212-150x10 1802 16 1 2 100.0 101.2 93.5 96.2 318.2 91.1 500.7 97.1 171.2 2076 9637 18 97.2 4147

P131222-150x20 1802 15 2 2 100.0 100.5 93.2 95.2 600.7 89.8 892.7 95.6 119.4 870 7002 87 95.7 4371

P132112-150x10 1783 16 3 3 100.0 101.0 91.8 95.0 969.1 93.3 1147.1 96.5 286.1 3288 11779 60 96.7 4815

P132122-150x20 1541 15 1 1 100.0 100.1 88.8 90.4 731.2 91.0 1240.3 93.8 429.3 3329 23858 2 93.8 4508

P132212-150x10 1251 16 0 0 100.0 101.0 91.5 92.6 240.4 90.8 766.6 94.3 180.1 2126 11721 13 94.3 4073

P132222-150x20 1184 16 1 1 100.0 100.0 92.7 93.7 513.2 89.9 985.7 95.8 514.0 2487 11655 3 95.8 4368

P133112-150x10 1899 16 2 2 100.0 103.2 92.4 93.8 617.6 93.0 1182.5 94.7 409.5 2545 12407 6 94.8 4434

P133122-150x20 1498 16 2 2 100.0 100.8 92.5 93.4 1061.3 90.8 755.5 94.5 190.7 1966 9534 88 94.6 4908

P133212-150x10 1245 16 1 1 100.0 103.9 93.1 94.1 649.9 93.4 818.1 95.6 108.3 1602 7306 39 95.7 4510

P133222-150x20 1551 16 0 0 100.0 100.1 90.3 91.0 836.0 89.3 1069.9 91.5 321.5 1317 10764 222 91.6 4688



The VRPTF R. Baldacci, S. U. Ngueveu, R. Wolfler Calvo

Table 9: Results on Class B: Akca et al. (2009) lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tT OT

cr30x5a-1 4176 5 2 8 100.0 100.2 98.8 99.2 3.4 97.0 2.6 99.5 1.9 426 770 13 100.0 13

cr30x5a-2 4428 5 1 6 100.6 103.3 89.9 92.8 3.2 96.3 3.2 98.2 5.2 338 1431 50 98.3 3609

cr30x5a-3 3655 5 2 11 101.8 100.5 91.5 96.7 3.2 98.7 2.4 98.2 3.3 633 1610 34 100.0 24

cr30x5b-1 4844 5 1 5 102.4 100.0 94.7 97.1 3.0 97.3 3.0 98.4 5.9 893 1141 22 100.0 26

cr30x5b-2 4931 6 4 13 103.3 102.0 95.9 97.2 4.1 95.2 3.1 98.6 0.9 236 656 100 100.0 28

cr30x5b-3 4626 6 3 15 108.3 100.6 95.4 96.5 1.7 94.5 2.1 96.6 0.4 1 707 3330 98.9 3605

cr40x5a-1 4221 6 4 21 100.0 100.5 95.4 96.8 3.5 94.6 5.1 97.4 3.0 15 2112 90 100.0 50

cr40x5a-2 4804 6 4 17 102.0 101.4 91.6 96.9 4.3 94.6 7.1 97.3 5.4 2647 919 282 98.3 3616

cr40x5a-3 4577 6 4 25 106.9 103.9 94.9 97.4 7.4 96.7 3.7 98.8 10.4 1546 1605 213 100.0 2085

cr40x5b-1 6334 9 3 13 102.5 100.5 94.1 96.3 15.2 92.0 5.4 97.0 2.4 592 993 175 100.0 74

cr40x5b-2 5933 8 3 14 100.6 102.1 95.3 96.8 7.5 93.4 6.3 97.2 2.4 219 930 362 100.0 136

cr40x5b-3 5279 8 3 14 102.7 100.9 97.3 98.6 5.6 97.1 5.1 99.4 3.0 1610 955 45 100.0 33

Table 10: Results on Class B: Prins et al. (2004) lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tT OT

ppw-20-5-0-a 1535 5 2 7 101.2 100.0 95.3 97.0 0.8 95.6 1.4 99.4 0.4 29 342 7 100.0 4

ppw-20-5-0-b 1315 3 1 8 103.3 100.0 93.0 94.4 1.3 99.2 0.6 99.6 7.6 632 3212 5 100.0 13

ppw-20-5-2-a 1488 5 3 11 102.1 100.0 94.8 95.6 2.1 92.4 1.4 97.3 0.4 300 324 133 100.0 11

ppw-20-5-2-b 1085 3 2 11 103.0 100.0 94.7 99.2 1.9 100.0 0.4 100.0 0.2 1 539 1 100.0 4

ppw-50-5-0-a 4159 12 3 12 102.3 100.7 97.5 99.3 1.7 93.5 15.7 99.3 0.9 7 650 645 100.0 96

ppw-50-5-0-b 2638 6 3 15 100.0 104.2 91.0 96.5 17.6 97.0 13.1 97.1 8.5 981 2751 283 97.3 3633

ppw-50-5-2’-a 4522 12 2 9 100.0 100.5 95.2 95.6 19.3 94.7 16.4 98.1 2.0 316 849 1057 100.0 214

ppw-50-5-2’-b 2439 6 1 7 100.9 100.3 90.8 92.5 7.7 97.7 12.1 98.9 9.8 630 2811 847 99.1 3633

ppw-50-5-2-a 3910 12 2 8 101.8 101.0 97.0 98.3 18.5 92.8 11.3 98.3 0.7 342 719 8849 100.0 946

ppw-50-5-2-b 2389 6 2 10 101.1 100.0 90.7 91.8 7.6 93.6 11.2 94.9 12.8 1414 2733 60 95.2 3623

ppw-50-5-3-a 3649 12 4 14 103.8 101.3 95.3 95.7 39.6 93.7 12.8 95.9 0.8 2 673 19638 98.3 3668

ppw-50-5-3-b 2421 6 3 25 100.0 100.6 90.0 93.8 4.1 92.9 5.7 95.7 9.6 1596 3006 199 96.2 3620

ppw-100-5-0-a 8009 25 3 10 101.5 101.1 97.2 98.5 3.1 93.3 210.1 98.7 7.2 11 1262 12954 99.6 3689

ppw-100-5-0-b 4629 11 4 13 100.0 103.7 93.0 95.7 219.0 92.4 116.9 97.3 50.9 3561 4394 38 97.4 3891

ppw-100-5-2-a 6838 24 3 13 104.1 100.0 96.6 97.2 105.8 91.6 169.9 97.3 6.5 645 1672 8072 97.7 3838

ppw-100-5-2-b 3925 11 3 20 100.4 100.0 93.6 94.8 110.1 89.8 133.6 94.9 17.5 657 2893 326 95.1 3793

ppw-100-5-3-a 7184 24 4 15 103.7 102.7 97.0 97.9 18.2 92.0 124.9 98.3 10.2 1291 1617 5523 98.7 3785

ppw-100-5-3-b 4141 11 4 21 100.0 101.5 93.3 95.3 27.3 92.0 133.4 96.1 44.6 3258 5104 50 96.3 3706

ppw-100-10-0-a 7960 24 8 28 101.2 100.0 95.5 96.8 166.0 88.3 109.0 96.8 5.9 2 1030 6269 97.4 3824

ppw-100-10-0-b 4698 26 6 35 100.0 103.6 93.4 95.3 61.8 91.7 164.9 95.6 24.0 274 3132 55 95.8 3721

ppw-100-10-2-a 6883 23 6 24 101.8 100.0 94.9 96.4 115.1 90.8 178.6 96.4 6.5 1 1988 2439 96.6 3831

ppw-100-10-2-b 3984 11 5 22 100.0 100.8 92.5 94.4 95.3 90.1 120.4 94.5 35.3 37 2982 71 94.6 3780

ppw-100-10-3-a 7060 24 9 32 102.3 100.0 95.6 96.4 147.3 87.4 124.5 97.1 10.5 5 1191 3973 97.5 3802

ppw-100-10-3-b 4081 11 6 22 100.0 102.0 92.2 94.1 75.2 90.5 138.9 95.2 68.3 1697 5956 92 95.3 3750
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Table 11: Results on Class B: different authors lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tT OT

Christ-50x5 3157 5 4 24 100.0 105.3 97.5 98.8 7.0 99.1 10.4 99.6 8.8 1410 2341 27 100.0 125

Christ-50x5 B 3238 5 5 21 103.9 103.0 96.5 98.5 6.7 99.0 8.8 99.3 11.1 1137 2467 63 99.7 3619

Christ-75x10 5241 9 5 17 100.0 101.4 92.1 92.9 60.4 90.8 45.9 94.4 42.1 1498 4130 83 94.6 3697

Christ-75x10 B 5394 9 5 18 100.0 102.5 93.5 94.6 50.8 92.2 37.8 96.0 55.8 1375 4226 3 96.0 3687

Christ-100x10 5377 8 5 34 100.0 103.9 92.3 93.8 70.2 93.3 63.8 94.9 91.9 813 9094 19 94.9 3735

Gaskell-21x5 2057 4 3 14 100.6 104.6 96.8 98.4 1.8 98.3 1.0 99.4 0.4 285 555 5 100.0 5

Gaskell-22x5 3097 3 3 14 105.5 100.0 78.4 75.9 86.7 96.4 0.8 99.6 147.4 560 3709 7 100.0 268

Gaskell-29x5 3035 3 2 5 103.9 105.0 91.4 96.2 103.1 93.7 1.6 99.4 177.0 69 3273 24 99.4 3708

Gaskell-32x5-2 2537 3 1 8 101.7 101.7 89.1 97.2 488.0 98.8 2.1 99.4 262.4 305 2208 39 100.0 1320

Gaskell-32x5 2691 4 2 9 105.1 100.0 97.1 99.2 206.7 99.3 1.7 99.5 55.2 24 2038 7 100.0 314

Gaskell-36x5 2355 4 3 24 109.8 100.0 98.7 98.8 1.3 99.8 3.8 100.0 6.8 1699 2661 5 100.0 19

Min-27x5 20229 4 2 10 103.9 102.2 82.6 93.8 4.0 95.1 1.4 96.5 4.9 368 1738 100 96.9 3848

Perl83-12x2 519 2 2 12 101.2 100.0 99.3 99.4 0.5 100.0 1.0 100.0 0.5 32 151 1 100.0 1

Perl83-55x15 2404 10 7 38 104.1 104.0 98.5 99.0 10.5 98.4 24.7 99.5 3.6 157 1867 137 100.0 221

Perl83-85x7 3994 11 6 33 101.3 101.1 97.1 97.9 44.4 95.3 62.8 98.0 17.1 1136 4049 247 98.3 3745

P111112-100x10 8778 11 6 36 100.0 102.3 93.4 95.2 58.8 92.2 90.8 95.8 43.9 325 5618 47 95.9 3737

P111122-100x20 8364 11 8 34 100.0 103.3 91.5 93.3 89.6 91.5 180.7 95.4 93.8 192 5649 26 95.4 3773

P111212-100x10 8371 10 8 47 100.9 100.0 92.4 94.8 33.2 93.4 163.3 95.2 57.4 2925 5442 21 95.3 3704

P111222-100x20 8732 11 8 44 100.0 105.3 91.2 92.8 43.0 92.2 227.5 95.5 121.6 442 8533 26 95.6 3718

P112112-100x10 8367 11 4 10 100.0 100.4 87.9 91.9 283.2 91.0 155.2 94.4 207.0 4431 8546 15 94.5 3976

P112122-100x20 6856 10 4 14 100.0 102.2 87.7 88.9 213.6 90.5 219.2 94.2 361.7 2199 14341 2 94.2 3905

P112212-100x10 6024 11 2 16 100.9 100.0 91.0 93.3 285.9 91.3 124.7 94.3 52.7 613 5383 274 94.4 3983

P112222-100x20 6869 10 3 15 100.0 103.0 94.4 95.3 91.1 95.0 221.4 96.5 301.9 5200 8629 28 96.6 3743

P113112-100x10 7987 10 3 11 100.6 100.0 86.8 89.0 276.6 87.0 116.8 90.3 150.0 4002 5866 18 90.5 3916

P113122-100x20 7573 11 4 18 100.0 105.4 92.3 93.9 90.0 93.5 176.8 96.7 624.9 8229 13890 13 96.8 3774

P113212-100x10 7888 10 2 6 100.0 106.0 94.9 95.6 258.7 94.6 153.7 97.1 62.6 725 5611 218 97.2 3925

P113222-100x20 7418 10 5 16 100.0 103.5 91.6 93.0 61.9 93.6 260.8 95.0 252.4 1191 8197 20 95.1 3733

P131112-150x10 12681 15 8 43 100.6 100.0 91.7 93.1 119.3 88.9 686.9 93.3 74.6 55 8146 61 93.4 3896

P131122-150x20 11881 16 14 68 100.0 102.6 91.2 93.2 163.5 90.0 917.0 94.2 175.2 225 9803 88 94.3 3978

P131212-150x10 12314 16 5 21 100.0 102.1 93.0 95.8 427.6 90.7 443.6 96.3 132.1 441 10244 24 96.4 4256

P131222-150x20 11858 15 10 74 100.0 102.1 93.6 94.7 159.9 89.3 748.6 95.1 118.1 459 7479 125 95.2 3906

P132112-150x10 11952 16 3 14 100.0 103.5 93.9 95.7 629.4 92.5 879.6 96.1 81.3 358 7255 22 96.2 4478

P132122-150x20 10198 15 7 37 100.0 101.3 90.5 91.3 569.3 90.8 1193.7 93.1 221.5 795 14115 42 93.1 4343

P132212-150x10 8683 16 1 9 100.0 101.1 91.9 93.0 577.9 90.8 893.1 93.7 243.7 2658 9313 25 93.7 4411

P132222-150x20 8218 16 3 20 100.0 102.2 92.8 94.0 543.6 91.1 955.8 94.3 201.0 2589 8535 37 94.3 4397

P133112-150x10 13043 16 5 11 100.0 105.3 91.7 93.3 152.4 92.0 1048.9 94.6 496.3 6615 11122 8 94.6 3970

P133122-150x20 10027 16 6 24 100.0 104.5 92.9 94.0 464.2 91.0 886.2 94.9 149.8 1643 8831 116 95.0 4300

P133212-150x10 8707 16 1 7 100.0 104.0 92.7 93.9 225.6 92.5 778.3 95.2 95.7 1548 7539 189 95.3 4088

P133222-150x20 10822 16 4 11 100.0 103.0 89.9 90.8 355.6 88.2 849.5 91.1 303.4 2350 9247 30 91.2 4209


