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Abstract. The Covering Tour Problem finds application in distribution
network design. It includes two types of vertices: the covering ones and
the ones to be covered. This problem is about identifying a lowest-cost
Hamiltonian cycle over a subset of the covering vertices in such a way
that every element not of this type is covered. In this case, a vertex
is considered covered when it is located within a given distance from a
vertex in the tour. This paper presents a solution procedure based on a
Selector operator that allows to convert a giant tour into an optimal CTP
solution. This operator is embedded in an adaptive large neighborhood
search. The method is competitive as shown by the quality of results
evaluated using the output of a state-of-the-art exact algorithm.
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1 Introduction

This study aims at solving a tour location problem (TLP), namely the Covering
Tour Problem (CTP) through a new splitting operator, Selector, embedded into
an Adaptive Large Neighborhood Search (ALNS) metaheuristic. The overall goal
of TLPs is to construct an optimal tour through a subset of the vertices of a
network, subject to a set of constraints. They differ from classical vehicle routing
problems since the assumption shared by problems of the TSP and VRP family
is that all vertices of the network should be served, something which is not valid
in many real applications. In TLPs, the visits are optional. The new Selector
operator finds a minimum-cost tour (subject to a given sequence) which passes
through a subset of vertices and meets side constraints. In the case of the CTP,
every vertex not in the elementary cycle must lie within a prespecified radius
from at least one vertex in the cycle.

The CTP is a generalization of the Traveling Salesman Problem (TSP) and
it can be formally described as follows. Let G = (N,E) be an undirected graph,
where N = V ∪W represents the vertex set and E = {(vi, vj)|vi, vj ∈ N, i < j}
is the edge set. V is the subset of n vertices that can be visited at most once,
T ⊆ V is the subset of vertices that must be visited exactly once, while W is



the subset of vertices that must be covered. Vertex v0 ∈ T is the depot. Let
dij be the distance associated with edge (i, j) ∈ E, and D = (dij) the distance
matrix that satisfies the triangle inequality. The solution of the CTP is to find a
minimum-length elementary cycle in V such that each vertex wi ∈W is covered
by the cycle, and also all vertices in T are found in the cycle. A vertex wi ∈W is
covered if there exists at least one vertex vj ∈ V in the cycle for which dij 6 c,
where c is known as the covering distance. Figure 1 shows a feasible CTP tour
for an instance where |V | = 8, |T | = 2 and |W | = 17, and exemplifies how vertex
vA ∈ V covers vertices {w1, w2, w3}.

A very closely related problem is the Covering Salesman Problem (CSP)
where the aim is to identify a minimum-length tour visiting a subset of the
vertices in N and covering all the vertices not on the tour. When the subset of
vertices that must be on the tour is empty, T = ∅, the CTP reduces to a CSP,
and when T consists of the entire vertex subset, T = V , the CTP reduces to
the TSP. Therefore, it is NP-hard. The CTP can be formulated, with suitable
definitions, as a Generalized Traveling Salesman Problem (GTSP) where vertices
are clustered and the aim is to identify a minimum-length cycle which visits at
least a vertex of each cluster, as explained by Fischetti et al. (1997).
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Fig. 1. Example of CTP tour

Despite its practical importance, the CTP has not been widely studied. It
is introduced and formulated in Current and Schilling (1989) as the Covering
Salesman Problem (CSP), where they also describe some real world routing
problems that can be modelled by the CTP, such as the design of bimodal
distribution systems. For instance, cities in the tour are served by air, while the
ones not in the tour are served by trucks which originate at their nearest city on
the air route. Another application explained is the routing of rural health care
delivery teams in developing countries where medical services are only delivered
to a subset of villages, but individuals living in villages not in the route are able
to reach the medical team at the nearest stop. In the formerly cited work, and
in Current and Schilling (1994) the problem is treated as a bicriterion routing
problem: the length of the tour and the number of vertices included in it.



In the literature, only one exact method, a branch-and-cut algorithm by
Gendreau et al. (1997), has been presented so far to solve the CTP. Hodgson et al.
(1998) successfully applied this exact method to the routing of a mobile medical
facility in Ghana. Jozefowiez et al. (2007) also propose a bi-objective treatment
of the problem: minimization of the tour length and minimization of the covering
distance, and develop a two-phase cooperative strategy that combines a multi-
objective evolutionary algorithm with the branch-and-cut algorithm of Gendreau
et al. (1997). Salari and Naji-Azimi (2012) combine heuristic search and integer
linear programming techniques to solve the CSP.

Other heuristic algorithms have also been studied. The ones proposed by
Current and Schilling (1989) and Gendreau et al. (1997) are based upon solution
procedures for the Set Covering Problem (SCP) and the TSP. Motta et al. (2001)
have proposed a GRASP metaheuristic to solve a generalized version of the
CTP where the tour may also include vertices of set W , while Baldacci et al.
(2005) have presented three scatter-search heuristic algorithms for the CTP. In
addition, Golden et al. (2012) developed a generalized version of the CSP, which
they named the Generalized Covering Salesman Problem (GCSP), and defined
three variants of it for which they proposed two local search heuristics.

The contribution of this study is the development of a new operator that
optimally splits a giant tour into visited and not-visited vertices. In other words,
it selects the vertices of a given giant tour that comprise the optimal solution
for the CTP. A second contribution is the proposal of a state-of-the-art meta-
heuristic for solving the CTP.

The remainder of this paper is structured as follows. Section 2 presents the
Selector operator, while in Section 3 we describe our implementation of an ALNS-
based metaheuristic that incorporates the Selector operator. Computational re-
sults are presented in Section 4, and conclusions are reported in Section 5.

2 Selector Operator

Our solution method is based on the route first–cluster second approach proposed
by Beasley (1983). The first phase, routing also called ordering, is handled by
the ALNS metaheuristic, while the second phase, clustering also called splitting,
is handled by our new operator. When solving the CTP, the Selector operator
splits a giant tour (GT), which is a permutation of all n vertices that can be in
the tour, into subsequences of visited and not-visited vertices in a similar way
as the Split operator segments a GT into feasible vehicle routes when applied
to solve the Capacitated Vehicle Routing Problem (CVRP) as proposed by Prins
(2004). Splitting the GT entails solving a shortest-path problem. However, in
the case of the CTP, the covered vertices act as a constraining resource and the
problem to be solved then becomes an Elementary Shortest Path Problem with
Resource Constraints (ESPPRC) (see Feillet et al. 2004).

In Section 2.1, Beasley’s approach is explained. Section 2.2 presents the
method used by our Selector operator to solve the ESPPRC in general terms,
whereas Section 2.3 demonstrates its specific algorithmic implementation.



2.1 Split Method

The split method was firstly presented by Beasley (1983) as the second phase
of a route first–cluster second heuristic to solve the CVRP. Relaxing vehicle
capacity and maximum route length, the first phase solves a TSP to form a GT
that determines the order in which the customers are to be visited. The second
phase constructs an auxiliary cost network and then applies a shortest-path
algorithm to obtain an optimal partition of the GT into least-cost, capacity-
feasible, vehicle routes. This shortest path can be computed using Bellman-
Ford’s algorithm for directed, acyclic graphs. Beasley provided no computational
results for his proposal, and the method neither outperformed more traditional
CVRP heuristics nor was it given adequate recognition (see Laporte and Semet
2002). However, when Beasley’s seminal method was efficiently implemented
within a genetic algorithm (GA) (Prins 2004), it proved to be the first GA able
to compete with the best methods available at that time for the solution of the
CVRP, i.e. tabu search heuristics. It is since known as the basic Split procedure,
and other versions of it have been developed to tackle additional constraints
as presented in Prins et al. (2009). In the last decade, the route first–cluster
second approach has led to successful constructive heuristics and metaheuristics
for routing problems as explained in Prins et al. (2014) where a more general
name, order–first split–second, is given to the methodology, and an analysis of
70 articles involving splitting procedures is made.

2.2 Resource-Constrained Shortest Path Problem

The ESPPRC requires the computation of an elementary shortest path in a
network such that the overall resource usage does not exceed the limits; re-
sources are used when visiting vertices or traversing arcs. Hence, record of used
resources should be kept. Such problems are NP-hard (Feillet et al. 2004). The
standard approach to solve an ESPPRC is dynamic programming (DP) and has
pseudopolynomial complexity.

The ESPPRC for the CTP can be solved quickly enough in practice by
adapting Desrochers’ algorithm (1988), a multi-label version taking resource
constraints into consideration of the Bellman-Ford algorithm, which is a label-
correcting approach where labels on a vertex are repeatedly extended to its
successors. The basic principle of Desrochers’ algorithm is to associate with each
partial path a label indicating the cost of the path and its consumption of re-
sources, and to eliminate unnecessary labels as the search progresses. Through-
out the search, then, every vertex receives labels, and these labels are iteratively
extended toward every possible successor vertex until no new labels are created.

Every label representing a feasible path can be understood as a vector
V = (ζ|r1, r2, . . . , rk) that memorizes the path cost ζ and the resource consump-
tions ri that enable to know if a partial path can still be extended. The effective-
ness of the DP algorithm outlined relies upon the feasibility of pruning labels that
cannot lead to an optimal solution. For this purpose, suitable dominance tests
are always performed when labels are extended, so that the algorithm records
only non-dominated labels.



2.3 Selector Algorithm Proposed

Auxiliary Graph. Selector works on a directed, acyclic graph M = (V ′, A),
where V ′ represents the position in the giant tour of the n vertices that can be vis-
ited in the original graph, i.e., the representation ofGT = (GT0, GT1, . . . , GTn−1)
in V ′ implies vi = GTi. Thus, in the following, when refering to vertex vi we im-
ply the vertex located in position i in GT . Figure 2 shows an example for n = 6
and depicts only some of the possible arcs. An arc (i, j) ∈ A | j > i+ 2 models
a subpath that visits only vertices vi and vj . Such arc exists only if it is feasible
to skip the points located between vertices vi and vj . For instance, arc (v1, v4)
in Fig. 2 indicates a subpath that visits vertex v1, skips v2 and v3, and ends at
vertex v4. This arc will be kept if no wi ∈W remains uncovered despite skipping
vertices v2 and v3. This means that the subset {v1, v4, v5} covers all wi ∈W . The
algorithm creates a vector of size n to represent M , and this vector maintains
the labels (subpaths) generated to reach each vertex vi, i ∈ {1, 2, . . . , n − 1}.
The weight of an arc is equal to the Euclidean distance, dij , between the vertex
located in position i and the one in position j in GT .

An optimal solution for a given GT indicates a minimum-cost path σ from
0 to n − 1 in M . This result can be seen as the splitting of the giant tour into
visited and not-visited vertices. Finding σ has pseudopolynomial complexity.

0 1 2 3 4 5

Fig. 2. Auxiliary graph M representing optional visits for vertices 0 and 1.

Labels and Their Control. Starting from v0, a vertex in M may be reached
through different permutations of visited and not-visited predecessors and each
with a different cost and a different coverage of the vertices in W . In practice,
this information is stored in labels. As a result, several labels might exist at each
vertex. A label λj stored in vertex vi ∈ M\{v0} represents a path that starts
at the depot and ends at vertex vi. It contains five fields λij = (ζ, ω[k], vi, π, ν)
which are useful for the decision making at different stages of the algorithm. ζ
memorizes the cost (sum of the arc weights) of the path represented, ω[k] is a
vector in which location i either stores the number of vertices in V that can still
cover vertex wi ∈W or stores a flag indicating vertex wi is covered, vi keeps the
last visited vertex (site where label is stored), π stores the path from the depot
to vertex vi, and ν keeps the number of vertices already covered.

The dominance rule applied to control label proliferation is as follows. Let
Λi = {λi1, λi2, . . . , λik} be the set of labels associated with vertex vi ∈ M\{v0},



and Ωj the set of vertices covered by label λj . A label λ1 ∈ Λi dominates λ2 ∈ Λi,
with λ1 6= λ2, if ζ1 ≤ ζ2 and Ω2 ⊆ Ω1.

A look ahead mechanism also allows to reduce the number of labels created.
If when extending a label it is found that a vertex vi ∈ V \T must be visited in
the future because it is the only one that can cover a set Γ ⊂W , then mark all
the vertices wi ∈ Γ as covered. The result of this look ahead is that it is known
then there is no need to visit any vertex vj ∈ V \T that only usefully covers
vertices in Γ ⊂W , and as a consequence, less labels are produced.

On the other hand, the following feasibility rule is used. Let Ω̄j denote the
subset of vertices of W that are not covered by the subpath represented by label
λj . A vertex vi ∈ V \T can only be skipped if for each wi ∈ Ω̄j , there still
remain vertices ahead that can cover it. The number of such vertices is kept
through field ω[k]. Thus, when the decision to skip a node is evaluated, for each
wi ∈ Ω̄j , feasible labels yield w[i] > 0. Such value indicates that no vertex is left
uncovered, so it is feasible to skip vertex vi ∈ V \T . For computational efficiency,
a matrix relating the coverage of the vertices wi ∈ W by the vertices vi ∈ V is
precomputed and kept at hand.

Other way to control label proliferation in this algorithm is the computation
and updating of an upper bound as it will be explained in the ensuing section.

Algorithm 1 : Selector

Input: giant tour GT , distance matrix D, set T
Output: optimal tour of visited vertices, S, and cost value of tour, c(S)
1: L∗ ←search upper bound {See Algorithm 2}
{build an initial set of labels}

2: while ( ∃ arc(v0, vi) ) do
3: Λi ← Λi ∪ {L} {L is the label being treated}
4: Extend Horizontally(L) {see Algorithm 3}
5: i← i+ 1
6: end while
{extend labels created}

7: while ( ∃ an Λi ) do
8: L← mini∈N{λj} {find label of lowest cost}
9: Extend Skipping(L) {see Algorithm 4}

10: end while

Finding the Shortest Path. Algorithm 1 illustrates the core procedure of
Selector. It executes three main steps: (i) search for an initial feasible solution or
upper bound (UB), (ii) build an initial set of labels, and (iii) extend the created
labels. In the explanations that follow the term horizontal extension means to
iteratively visit in M the adjacent successor vertex until a complete feasible
solution is built or any other of the stopping criteria is met (see Algorithm 3).
The worst-case time complexity of the horizontal extension process is O(n).



As mentioned, besides the feasibility and dominance rules, the upper bound
is helpful to limit the creation of labels, and it is computed as follows (refer to
Algorithm 2). For every vertex vi ∈ M for which arc (v0, vi) exists, it builds
arc (vi, vi+1) and from this point continues the construction with a horizontal
extension. Next, it constructs the arc to the next successor, arc (vi, vi+2), and
proceeds with the same horizontal extension, and so on. The process stops when
arc (vi, vi+k) can no longer be constructed, and restarts with the creation for
the next vertex of arc (v0, vi+1). In this first step, every built path is compared
and the best one is kept, no labels are stored in order to execute it fast. The
worst-case time complexity of the search is O(n3).

The second step, the generation of an initial set of labels, iteratively con-
structs arc (v0, vi) followed by a horizontal extension. However, at each step
(at every vertex) a non-dominated label documenting the subpath is stored. The
process repeats as long as it is possible to construct arc (v0, vi). The worst-case
time complexity of this step is O(n2).

Finally, the created labels are extended (see Algorithm 4). This means that
from the last visited vertex stored in the label, vlast, it tries to reach successor
vlast+2 and from this point does a horizontal extension storing non-dominated
labels at every step. The process repeats as long as arc (vlast, vlast+k) exists. The
label chosen for extension is always the one that documents the shortest path
and the execution of Algorithm 4 continues until there are no labels to extend.
The worst-case time complexity of this extension is O(n2). Nevertheless, it might
be executed for several thousands of labels in large instances.

As can be observed in Algorithm 3, at every step of the label extension the
following conditions are verified: (a) the vertex to be included is not redundant,
(b) ζsubpath < ζbest, (c) UBcurrent < UBbest, and (d) label is not dominated. Any
vertex that turns out to be redundant is simply skipped and the construction
continues, no labels are kept for not-visited vertices. If the cost of the path
being built is worse than the cost of the best known solution, the search in that
trajectory is abandoned. The initial upper bound built at the onset is updated
throughout the search to improve the limits for the creation of labels.

A distinctive and important characteristic of our operator is that aside from
the constraints mentioned in the definition of the problem, it does not impose
any further restrictions on the selected vertices of V \T such as adjacency, for
example. This operator is capable of discarding any vertex vi ∈ V \T at any
point in the tour.

3 Adaptive Large Neighborhood Search (ALNS)

In our methodology, the overall task of the ALNS metaheuristic is to build
suboptimal giant tours from which efficient CTP solutions are extracted. This
is, according to Beasley’s method (1983), the ordering phase, and the splitting
phase is performed by the Selector operator embedded into this heuristic. ALNS,
a local search framework which uses several competing destroy and repair meth-
ods and chooses amongst them using statistics gathered during the search, com-



Algorithm 2 : Search Upper Bound

Input: giant tour GT , distance matrix D, set T
Output: feasible tour of visited vertices, S, and cost value of tour, c(S)
1: i← 1
2: while ( ∃ arc(v0, vi) ) do
3: k ← i
4: while ( ∃ arc (vi, vk+1) ) do
5: Extend Horizontally(L) {see Algorithm 3}
6: k ← k + 1
7: end while
8: i← i+ 1
9: end while

Algorithm 3 : Extend Horizontally(L)

Input: label to be extended, L
Output: labels derived from L
{only nondominated labels that can be extended are kept}

1: for (j = lastV isitedNode+ 1 to j 6 n) do
2: clientsCovered← clientsCovered+ coverage of j
3: if ( node is not redundant ) then
4: cost of L← cost of L+ cost of visiting j
5: if ( cost of L < cost of L∗ ) then
6: if ( clientsCovered 6= clients ) then
7: if ( L not dominated ) then
8: Λi ← Λi ∪ {L}
9: end if

10: else
11: L∗ ← L
12: return
13: end if
14: else
15: return
16: end if
17: end if
18: end for

Algorithm 4 : Extend Skipping(L)

Input: label to be extended, L
Output: labels derived from L
1: i← lastV isitedNode
2: k ← 2
3: while ( ∃ arc (vi, vi+k) ) do
4: Extend Horizontally(L)
5: k ← k + 1
6: end while



petes strongly with genetic algorithms (GA) in vehicle routing. However, the
efficiency of GAs relies on sophisticated local search methods and population
management techniques, while in ALNS neighborhoods are searched by simple
and fast heuristics. ALNS has provided good solutions for a wide variety of VRPs
as shown in Pisinger and Ropke (2010) and Ribeiro and Laporte (2011).

The three backbones of our implementation are (i) removal operators,
(ii) insertion operators and (iii) metaheuristic that defines the criteria to accept
a new solution. Three removal and three insertion heuristics were implemented.
In the following, the word facility indicates a vertex that belongs to the giant
tour, and lower-case Greek letters indicate user-controlled parameters.

3.1 Removal Operators

Shaw Removal Heuristic (SRH). Originally proposed by Shaw (1997), its
general idea is to remove facilities that exhibit similitude, characteristic com-
puted by a relatedness measure R(i, j). For this implementation, the similarity
between two facilities is measured by R(i, j) = dij , where dij is the Euclidian
distance between facilities i and j. This relatedness measure is used to remove fa-
cilities in the same way as described by Shaw (1998). In order to avoid the sorting
of facilities required at each iteration, a nearest facility matrix is precomputed
and kept at hand. The worst-case time complexity of the SRH is O(n2).

Worst Removal Heuristic (WRH). Ropke and Pisinger (2006) propose a
heuristic that randomly removes facilities with a high cost in the current solution
X and tries to insert them in better positions. It iterates recalculating the costs
until it has removed the indicated number of facilities. The removal, though
random, is user-controlled by parameter ρ. The worst-case time complexity of
the WRH is O(n2).

Random Removal Heuristic (RRH). This procedure simply selects γ facil-
ities at random and removes them from the current solution X. Though it tends
to generate a poor set of removed members, it is useful to diversify the search.
The worst-case time complexity of the RRH is O(n).

How Many to Remove. The number of facilities removed, γ, from the current
solution X is key to the ALNS performance. When few elements are removed,
the heuristic has a higher probability of being trapped in one suboptimal area
of the search space. On the other hand, when too many are removed, it is al-
most like starting from scratch and the insertion heuristics cannot build a good
solution from such situation. In addition, the larger the number removed, the
larger the execution time of both insertion and removing heuristics. We choose
γ randomly between a lower and upper limit. The lower limit is fixed at a value
given according to the number of vertices in set V , 20% to 25% of its size, while
the upper limit is fine-tuned with parameter ε. This parameter indicates the
maximum percentage of elements removed from the complete solution size.



3.2 Insertion Operators

Best Greedy Heuristic (BGH). This simple construction heuristic performs
at most γ iterations as it inserts one facility into solution X in each iteration.
The minimum cost position value is computed for all facilities waiting insertion,
set F , and the one with the minimum global cost position is chosen. This process
is repeated until F = ∅. The worst-case time complexity of the BGH is O(n2).

First Greedy Heuristic (FGH). This heuristic works similarly to the pre-
vious one. However, instead of inserting the facility having the minimum global
cost position, it inserts the one sitting in the first position. That is to say, it
respects the order of the facilities in F . After the first facility has been inserted,
the minimum cost position for each is recalculated and the process repeats until
all facilities in set F have been inserted.

Ropke and Pisinger(2006) add a noise term to the objective function during
the insertion phase of the BGH and regret-k heuristics in order to randomize
them and avoid always making the move that seems best locally. In our imple-
mentation, the FGH is used mainly to introduce this noise into the insertion
process as done by Ribeiro and Laporte(2011). This heuristic obviously runs
faster than the BGH.

Regret-k Heuristic (RKH). This heuristic tries to improve the myopic be-
haviour of the greedy heuristics by incorporating a kind of look ahead informa-
tion when selecting the facility to insert, as done by Ropke and Pisinger(2006)
and Pisinger and Ropke(2007). Let ∆f1

i denote the change in objective value
incurred by inserting facility i at its minimum cost position, and ∆f2

i denote
the change by inserting it at its second best position. The regret value is defined
in terms of the former values as c∗i = ∆f2

i −∆f1
i . In each iteration, the regret

heuristic chooses to insert the facility i that maximizes maxi∈F {c∗i }, and such
facility is inserted at its minimum cost position. Ties are broken by selecting
the facility with lowest cost insertion. This is a time-consuming operator but
unnecessary computations were avoided when computing ∆fni . The worst-case
time complexity of the RKH is O(n3).

Choosing a Removal and an Insertion Heuristic. In order to select a
heuristic, weights are assigned to them and a roulette wheel selection principle is
applied. The removal heuristic is selected independently of the insertion heuristic
and vice versa. Initially, all heuristics are equally likely.

Adaptive Weight Adjustment. Based on its performance, the probability
of choosing a heuristic changes. To enable this change, a score is kept for each
and it is updated at each iteration. Our implementation keeps track of visited
solutions using a hash table. A hash key is assigned to every solution and this key
is stored in the table. We followed the scheme of scores and updating procedure
of probability weights proposed by Ropke and Pisinger (2006).



Table 1. Values of the ALNS parameters after experimental tuning.

Parameter Meaning Value

γ number of facilities removed at each ALNS iteration [5, 30]
(instance size dependent)

ς segment size for updating probabilities in number of ALNS iterations 50

τ reaction factor that controls the rate of change of the weight adjustment 0.3

δ avoids determinism in the SRH 6

ρ avoids determinism in the WRH 2

σ1 score for finding a new global best solution 50

σ2 score for finding a new solution that is better than the current one 20

σ3 score for finding a new non-improving solution that is accepted 5

β cooling factor used by simulated annealing 0.99999

ε fixes the upper limit of facilities removed at each iteration 0.3

3.3 General Framework with Simulated Annealing

Algorithm 5 depicts the ALNS process implemented with simulated annealing
(SA) as the outer metaheuristic that guides the search. We followed the SA
scheme suggested by Pisinger and Ropke (2007). The algorithm works on two
items: the giant tour, GT , constructed by the ALNS heuristics, and S, the solu-
tion covering tour computed by Selector when applied to GT . The cost of GT
is labelled l, while the cost value for solution S is identified as c. The variable
GTcurrent indicates the solution obtained at the beginning of an iteration, and
the variable GTnew is the temporary solution obtained during the iteration. For
the sake of clarity, the updating processes for scores, hash keys and probabilities
are not shown.

The 2-opt procedure is used to rapidly improve the length of the starting GT
and avoid a long, random, initial walk. In addition, the acceptance of GTnew is
controlled by the cost value of solution S. The latter is because experimentation
showed that improvements on the length of the giant tour do not necessarily lead
to improvements on the length of the tour computed by Selector. However, in the
long run, the length of the CTP tour benefits from improvements on the length of
the GT. An important consequence of this finding is that execution of Selector to
optimality at each ALNS iteration is of low benefit. The upper bound computed
by Algorithm 2 can serve as a probe to determine if the complete process is
worth executing. This derives in important time savings.

4 Computational Results

The results obtained by our metaheuristic are compared against the optimal
solutions computed by the branch-and-cut algorithm of Gendreau et al. (1997).
The exact algorithm is written in Python 2.7 and uses 5.6 Gurobi callbacks.
Library Python-Igraph 0.7.0 helps to solve graph problems occurring in the valid
cut separation. The heuristic algorithms are coded in C++ and the benchmark



Algorithm 5 : The General Framework of the ALNS with Simulated Annealing

Input: Giant tour GT , distance matrix D
Output: Sbest and c(Sbest)
1: 2-opt(GT0)
2: compute l0(GT0)
3: initialize, to the same value, probability P t

r for each removal operator r ∈ R, and
likewise probability P t

i for each insertion operator i ∈ I.
4: t← l0, {set initial temperature, variable used in probability function}
5: lcurrent ← l0
6: GTcurrent ← GT0

7: UBbest ←Search Upper Bound(GT0) {see Algorithm 2}
8: c(Sbest)← c(Scurrent)←Selector(GT0) {see Algorithm 1}
9: i← 1 {iteration counter}

10: repeat
11: select a removal operator r ∈ R with probability P t

r {roulette wheel}
12: obtain GT−new by applying r to GTcurrent

13: select an insertion operator i ∈ I with probability P t
i

14: obtain GTnew by applying i to GT−new
15: UBcurrent ←Search Upper Bound(GTnew)
16: if ( UBcurrent < UBbest ) then
17: c(Snew)←Selector(GTnew)
18: UBbest ← UBcurrent

19: else
20: c(Snew)← UBcurrent

21: end if
{decide acceptance of new solution}

22: if ( c(Snew) < c(Scurrent) ) then
23: c(Scurrent)← c(Snew)
24: GTcurrent ← GTnew

25: else
26: p← e−

c(Snew)−c(Scurrent)
t

27: generate a random number n ∈ [0, 1]
{new solution might be accepted with a computed probability even it is worse}

28: if ( n < p ) then
29: c(Scurrent)← c(Snew)
30: GTcurrent ← GTnew

31: end if
32: end if
33: if ( c(Snew) < c(Sbest) ) then
34: c(Sbest)← c(Snew)
35: Sbest ← Snew

36: end if
37: t← β · t {cooling rate set to be very slow}
38: if ( segment size = ς ) then
39: update probabilities using the adaptive weight adjustment procedure
40: end if
41: i← i+ 1
42: until ( defined number of iterations is met )



was done on a computer with 8 GiB of memory, processor Intel Core i7-4770
CPU@3.40GHz, and Linux OS type 64 bits.

Since test problems for the CTP are not found in the literature, we created
data sets based on 9 Euclidean TSPLIB instances (Reinelt 1991) whose sizes
range from 100 to 200 vertices. Sets of vertices of |V ∪W | ∈ {100, 150, 200} were
created using kroX100 (X ∈ {A,B, . . . ,E}), kroX150 and kroX200 (X ∈ {A,B})
respectively. T and V are defined by taking the first |T | and |V | − |T | points,
respectively, while W is defined by the remaining points. Tests were run for
|V | ∈ {25, 50, 75, 100}. |T | = 1, only the depot is compulsory, which is the worst
case regarding the number of labels created.

The costs {ζij} are treated as integer values equal to bdij + .5c, where dij
is the Euclidean distance between points i and j (Reinelt 1991). The value of c
is resolved using c = max

(
maxvk∈V \T minwl∈W {ζl,k},maxwl∈W {ζl,k(l)}

)
, where

k(l) indicates the second nearest vertex vk ∈ V \ T . Computing this value in
such way ensures that each vertex vi ∈ V \T covers at least one vertex wi ∈W ,
and each vertex wi ∈ W is covered by at least two different vertices vi ∈ V \ T
as explained in Gendreau et al. (1997).

Several independent executions were done to test our randomized heuristic.
Each instance was run 30 times with a different seed each time and for 30,000 it-
erations. To define an efficient parameter set, we used a ceteris paribus approach
based on sets of three or four values for each parameter. The resulting set is
listed in Table 1. On the other hand, both the optimal values and the quality of
the solutions computed by the heuristic can be observed in Table 2 where the
first three columns document the instance information, the next three report
the findings of the exact method, and the last five those of the approximate ap-
proach. Columns UB and Opt show the time in seconds needed to reach an upper
bound and the optimal value respectively. Column θ indicates the deviation of
the heuristic solution from the optimum value in percentage, and t corresponds
to the total run time in seconds. These two figures are average values over the 30
runs. Column Found indicates how many times the heuristic found the optimum
value in the set of runs. Column Best Gap shows how close (in percentage) the
heuristic came to the optimum value, and the last one, labeled SN−1, exhibits
the corrected sample standard deviation.

On the whole, the heuristic is very accurate and its performance is highly
satisfactory, since for 96% of the instances it was capable of finding the optimum
value rapidly. In the few cases where the optimum was not reached, the minimum
value computed was less than 1% away from the optimal solution value. In
addition, the average deviation is typically within 1% of optimality. Also, it
repeatedly found the optimum value for 63% of the instances. In general, given
an instance, this number worsens as |V | increases. Results are reported for 30,000
iterations. However, observing the evolution of the search, we could see that
optimal solutions were identified for approximately 75% of the instances as early
as in the first 1,000 iterations. Furthermore, in general, the spread around the
optimum of the values computed is very moderate. We can, thus, state that it
is a heuristic capable of identifying very good solutions quite quickly.



Table 2. Performance of heuristic compared to the branch-and-cut algorithm.

Instance |V | |W | Optimum UB(s) Opt(s) θ(%) t(s) Found
Best

SN−1Based on Gap(%)

kroA100 25 75 7985 0.17 0.17 2.36 0.42 14 0 272.51
kroA100 50 50 8608 22.20 44.95 0.21 0.95 11 0 23.06

kroB100 25 75 6449 0.21 0.27 0.16 0.50 24 0 22.79
kroB100 50 50 8043 1.18 21.54 0.70 1.25 1 0 60.20

kroC100 25 75 6161 0.01 0.01 0 0.81 30 0 0
kroC100 50 50 7942 0.81 0.81 0 2.27 30 0 0

kroD100 25 75 6651 0.24 0.38 0 0.31 30 0 0
kroD100 50 50 8411 3.75 4.33 0.02 1.13 27 0 4.64

kroE100 25 75 7417 0.26 0.27 0.02 0.42 29 0 8.71
kroE100 50 50 8493 1.10 1.11 0 1.00 30 0 0

kroA150 25 125 8050 0.13 0.13 1.43 0.54 3 0 131.72
kroA150 50 100 9623 118.80 121.58 0.37 1.16 2 0 38.56
kroA150 75 75 9971 1569.38 2884.34 0.60 2.93 0 0.59 59.81

kroB150 25 125 6165 0.01 0.01 0 1.50 30 0 0
kroB150 50 100 7818 1.16 1.16 0.02 2.32 29 0 7.23
kroB150 75 75 7434 13.34 38.24 0.01 4.32 26 0 2.16

kroA200 25 175 6165 0.01 0.01 0 1.63 30 0 0
kroA200 50 150 8273 0.46 0.49 0 5.09 30 0 0
kroA200 75 125 8499 141.97 266.19 0 6.31 30 0 0
kroA200 100 100 8355 4110.87 4789.22 0 14.21 30 0 0

kroB200 25 175 6450 0.15 0.15 0.18 1.17 23 0 24.62
kroB200 50 150 8171 2.69 3.46 0.78 2.6 3 0 77.29
kroB200 75 125 10007 0.65 0.65 1.42 4.5 5 0 166.52
kroB200 100 100 9988 17.20 17.68 1.73 11.60 5 0 202.63

5 Conclusions

This paper presents a study on a novel resolution method for a difficult com-
binatorial optimization problem which finds application in network design and
vehicle routing. Its key feature is the Selector operator that optimally splits an
initial sequence of facilities into subsequences of visited and not-visited vertices.
We have proposed an approximate method capable of obtaining very high qual-
ity solutions in very short periods of time. It is a simple, easy to implement
heuristic and its core, the Selector operator, is new and creative in its own right.
Given the practical relevance of the CTP, we will look into other heuristic mech-
anisms to solve large-scale instances. We believe the approach developed in this
work can be translated or adapted to solve related TLPs like the Orienteering
Problem, also known as the Selective TSP, and the Prize Collecting TSP.
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