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Set membership estimation applied to the localization of small UAS in tight
flight formations

J. Bolting1, S. Fergani2∗

Abstract— This paper proposes a set membership approach
for UAS (unmanned aerial system)localization in a tight flight
formation. A novel set membership estimation strategy based on
the typical hardware available for localization (due to the cost
constraints put on small UAS for civil applications) is developed.
The main idea is as follows: using time-differenced differential
GNSS carrier phase observations, the relative position between
UAS can be tracked with centimeter-level precision, but affected
by an unknown constant meter-level bias due to the initial
coarse position standalone position estimate. Using pseudorange
observations, as well as UWB range observations, the guar-
anteed space containing this position bias is determined using
dense box particle sampling and sequential purging. The carrier
phase trajectory fully captures the dynamics of the UAS motion
and enables precise relative position holding from t = 0 on. The
proposed set membership filter scheme is fully complementary
to and independent of any other algorithm employed to estimate
the relative position.
simulation results of the problem of cooperative relative lo-
calization between UAS on a formation flight benchmark
compared to a standard Extended Kalman Filter illustrate the
benefits arising from the deterministic nature of set membership
filtering. .

I. INTRODUCTION

In the recent years, the proliferation of small unmanned
aircraft systems (UAS) for military applications has also
led to new expansion of the use of the unmanned vehicle in
several civilian domains and markets. According to a new
report of the World Civil Unmanned Aerial Systems Market
Profile & Forecast by the Teal Group, the market for civil,
commercial and consumer drones will expand from 2.8
billion in 2017 to an annual level of more than 11.8 billion
by 2026 a compound growth rate of 15.5 percent.
Recently, a lot of studies have tried to provide pertinent
solution for the control and localization of the uas especially
in tight formation flight (see [1]).
Tight formation flight is an enabling technology for a large
number of range enhancing techniques such as upwash
exploitation, aerial recharging and aerial docking between
UAS. The corresponding major technological challenges lie
in reliably and accurately maintaining relative position in
the wake of another aircraft, while guaranteeing collision
avoidance. Indeed, Localization errors generally have a
greater detrimental effect on formations of small UAS
than larger ones, since admissible guidance errors scale
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with airframe size. A lot of strategies have provided
solutions for this problem. Indeed, COTS consumer grade
GNSS hardware provides relative localization errors in the
centimeter range are possible using readily available RTK
(Real-Time-Kinematics) algorithms,( see e.g. [2]). Also,
Alternative GNSS-independent approaches such as machine
vision have been considered but generally provide less
accuracy, among other reasons owing to attitude estimation
errors of low-cost AHRS (Atitude Head Reference System),
affecting the critical transformation of observations in the
camera frame to the local inertial frame, see e.g. ( [3]).
In this work, set membership localization algorithm is
proposed to give safety guarantees when it comes to
relative positioning between aircraft. Here, the developed
set membership filtering scheme provides both guaranteed
regions and point estimates of the relative position
between UAS. The proposed strategy uses time-differenced
differential GNSS carrier phase observations, the relative
position between UAS can be tracked with centimeter-level
precision , but affected by an unknown constant meter-
level bias due to the initial coarse position standalone
position estimate. Using pseudorange observations, as
well as UWB range observations, the guaranteed space
containing this position bias is determined using dense box
particle sampling and sequential purging. The carrier phase
trajectory fully captures the dynamics of the UAS motion
and enables precise relative position holding from t = 0 on.
It can be employed in a complementary fashion parallel
to possible existing point localization algorithms such as
the Extended Kalman Filter or in a complete independent
way of any other algorithm employed to estimate the
relative position. The resulting bounds could also be used
to detect divergence of other estimation schemes such
as the EKF or to define a guaranteed search region for
GNSS ambiguity resolution. The proposed scheme shares
the advantage of other set membership algorithms that it
does not require assumptions on the statistical distribution
of measurement errors, but only an interval within which
they can be guaranteed to reside, obtainable from long-term
static measurements. Also, this algorithm can readily be
applied to manned aircraft, where safety guarantees are
key to making commercial manned tight formation flight a
reality in the future.

The paper is organized as follow: in Section 1, problem
statmement is presented. Then, in Section 2 the set member-
ship estimation strategy is proved. In Section 3, simulations
performed on a formation flight benchmark compared to a



standard Extended Kalman Filter prove the efficiency of the
proposed solution. Finally, in Section 4. Conclusions and
future works are presented in the last section.

Remark 1: In this work, GNSS relative position tracking
and Differential carrier phase localization are used but will
no be detailed (due to paper length restrictions).

II. PROBLEM STATEMENT

To take into account error of relative position estimates,
not only point estimates of relative position vectors are
required, but rather an outer estimate of the regions that can
be guaranteed to contain the other members of the formation.
We want furthermore this estimate to be useful, i.e. only as
large as necessary and relying only on sensors realistically
available on board a typical small low cost UAS. What is
more, the employed algorithm needs to be compatible with
the still somewhat limited computational resources of todayś
small UAS.

A. Assumptions and constraints

Hardware resources We assume that in view of cost and
mass constraints weighing in particular on small UAS for
civil applications, the set of observations and state estimates
available for localization is limited to: The image stream of
a single camera, fixed in the body frame. Attitude estimates
and observations of angular rates, accelerations and the earthś
magnetic field in the body frame provided by a MEMS based
AHRS. Single-frequency GNSS carrier phase, Doppler and
pseudo range observations. UltraWide Band (UWB) inter-
UAS ranging observations. In the following, a modified
Extended Set Membership Filter (ESMF) compatible with
the assumed limited set sensor hardware is presented.

III. SET MEMBERSHIP LOCALIZATION

Existing localization approaches rely mostly on RTK
(Real-Time-Kinematics) GNSS (Global Navigation Satellite
System) positioning, machine vision or a combination of
both (in [4]). The standard approach of GNSS RTK systems
provides, after ambiguity resolution, estimates of the position
vector between two GNSS receivers with the millimeter-
level accuracy of carrier phase positioning. The drawbacks
of this approach lies within flight safety conditions. First,
before ambiguities are fixed, only probabilistic bounds on the
estimation error of the float solution are available. Second,
once ambiguities are fixed, a small nonzero probability that
the fixed set of ambiguities is not the actual one remains, due
to the statistical nature of the fixing algorithm. For this sake,
new strategies to enhance differential GNSS localization
both on the pseudo range level and for RTK solutions have
been developed, as the very cost effective Ultra Wide Band
(UWB) ranging modules based on time of flight observations.
Then, the machine vision which approaches suffer from
the fundamental limitation that tracked UASs need to be
within the field of view of the tracking UAS for each filter
update, necessitating multiple of gimballed cameras in larger
formations as well as trajectory planning algorithms that take
into account maintaining continuous visual contact.

Also, both technics have been employed in the community
for accurate relative localization of UAS and centimeter level
precision is reported in experimental settings, again employ-
ing an Extended Kalman Filter. Even if it can indeed provide
an ellipsoidal confidence set that is guaranteed to contain the
true state with a selected probability given that its underlying
assumptions of normally distributed, zero mean modeling
errors and measurement errors are met, as is well known,
in reality both error sources can only be approximated by it
and filter consistency needs to be ensured by careful tuning.
What is more, Kalman filters, being based on probabilistic
error models, provide estimates of stochastic state estimation
error bounds. Even given a consistent estimate, probabilistic
bounds can however only guarantee probabilistic collision
avoidance.
Since Guaranteed bounds of estimation errors are however of
crucial importance for flight safety. here, we present a Modi-
fied Extended Set membership filtering that is concerned with
the problem of providing tight estimates of these bounds.

A. notations and definitions

1) Interval notations and definitions: In this work, we
use a general interval matrix notation [x] for the family
of matrices x ∈ Rn×m where xi,j ∈ [xi,j , xi,j ], for
i = 1....n,j = 1..,m. For n > 1,m = 1, [x] is an interval
column vector, for n = 1,m = 1, [x] is an interval scalar.
though, for additive errors used in the paper, the following
enter-range notation for intervals is used as [x] = x + [wx]
where x is the center point of [x] and [wx] = [x] − 1

2 [x;x]
where [x;x] denotes a degenerate interval containing only
the point x. all operations in the expression are interval
operations.

2) Interval extensions: Interval extensions of various ba-
sic operators and functions (+,− 1

2 , exp, log etc.) are known
to be sharp inclusions of the real result sets. When con-
structing interval extensions of more complex functions, care
needs to be taken, as alternative but equivalent formulations
of the same function can lead to different, possibly heavily
conservative result intervals. This fundamental issue appears
when a variable appears more than once in an expression. In
this paper,as a useful exception, for (piecewise) monotonic
functions dependency issues can be circumvented altogether
(in [5]).

3) Ellipsoids - Definitions and Notations: The proposed
ESMF strategy relies on ellipsoidal set approximations. An
ellipsoid in R is given by

Ω(xc, P ) = {x|(x− xc)TP−1(x− xc) ≤ 1} (1)

with x ∈ Rn some point in space, xc ∈ Rn the ellipsoid
center and a positive definite matrix P ∈ Rn×m defining
half axes and orientation.
An alternative representation employed for ellipsoid inter-
sections with a strip (used in this work) is as follow:

Ec(xc, V ) = {x|x = xc+ V w, ‖w‖ ≤ 1} (2)



Useful for analyzing ellipsoid size metrics and displaying
the ellipsoid surface in 3 dimensions. Note that equation
(1) can be decomposed into a diagonal matrix P0 ∈ Rn×n
(corresponding to an axes-aligned ellipsoid) carrying the
squares of the half axes on its diagonal and a matrix Rn×n

performing the rotation to its original attitude

(x− xc)T (RTP0R)−1(x− xc) ≤ 1 (3)

The columns of R are the eigenvectors of P−1, while the
diagonal of P0 can be computed from the eigenvalues of
P−1. For n = 3, R is the DCM (Direction Cosine Matrix)
defined by the half axis unit vectors of the ellipsoid forming
a right-handed Cartesian frame (see [6]).

B. Modified Extended Set Membership Filter

In the spirit of the Extended Kalman Filter, the
Extended Set Membership Filter proposed ( [7]) extends
ellipsoidal set membership filtering to nonlinear systems
by local linearization. Ellipsoidal bounds on the resulting
linearization errors are employed and lumped together
with the propagation error bounds and measurement error
bounds of the nonlinear model. The algorithm is rather
generic as the propagation and update step provide sets
of approximating ellipsoids, each parametrized by a scalar
parameter. While mentioning the existence of closed form
minimum trace solutions, it proposes applying numerical
optimization to determine the parameter corresponding to
the minimum volume ellipsoid in each set. Note that the
utilization of numerical optimization does not preclude
real-time application, since every member of the given sets
is guaranteed to contain the propagated set or intersection
respectively, so optimization can be stopped anytime.
Closed-form solutions are however preferable due to
improved efficiency (especially taking into account the still
somewhat limited embedded computing resources of UAS)
and guaranteed minimization of the selected size criterion.
Then, in ( [8]) the minimum trace solution can directly
be applied to the propagation step. On the other hand,
no minimum trace or minimum volume closed form exist
solutions for the update step in its form given by ( [7]).
In the following we present a modified, fixed time version of
the ESMF, adopting the closed form minimum trace ellipsoid
approximations proposed in ( [8]). First the algorithm in
general terms is provided, followed by specifics for relative
UAS localization.

Remark 2: For the proposed ESMF, we consider in a
first step GNSS (Global Navigation Satellite System) code
phase and carrier phase observations. We then integrate
UWB (Ultra Wide Bande) ranging observations as a first
step to robustify the localization scheme and investigate how
this additional information affects filter performance. In the
following GNSS and inter-UAS ranging observation models
and their respective linearizations are required. For sake of
brevity and due to the article size limitations, Authors will
not present all the details that can be found in literature.

The algorithm extends ellipsoidal set membership filter-
ing to nonlinear systems by local linearization. The gen-
eral idea is to first propagating the guaranteed state set
Ω(x̂k,k,Σk,k) of the preceding filter step k propagated using
the dynamics model and an ellipsoidal bound Ω(0, Qk)
modeling error. This amounts to forming the Minkowski
sum of Ω(x̂k,k,Σk,k) and Ω(0, Qk). This sum generally
not being an ellipsoid, an outer ellipsoidal approximation
Ω(x̂k+1,k,Σk+1,k) is formed minimizing some measure of
size. Then, the intersection of Ω(x̂k+1,k,Σk+1,k) and an
ellipsoidal approximation of the consistent state set is ap-
proximated by a bounding ellipsoid Ω(x̂k+1,k+1,Σk+1,k+1)
minimizing the trace of Σk+1,k+1 (this criterion leads to
better behaved ellipsoids).

1) The algorithm: It is achieved using the following
steps:

• Propagation We add an input term for state propagation
by time differenced carrier phase observations

xk+1,k = f(xk,k) + uk (4)

where xk ∈ Rn an unknown state contained the guar-
anteed set of the ellipsoid.

Σk+1,k = Ak
Σk+1,k

1− βk
ATk +

Qk
βk

(5)

where A = ∂f(xk)
∂x |x=x̂k,k and compute the parameter

βk following [8] to minimize the trace of Σk+1,k

βk =

(
tr(Σ

1/2
k,k (Σ

1/2
k,k )T )1/2 + tr(Q

1/2
k,k (Q

1/2
k,k )T )1/2

tr(Q
1/2
k,k (Q

1/2
k,k )T )1/2

)
(6)

• Update The update step exploits the fact that a closed form
minimum trace solution is possible for the intersection of ellip-
soids and strips (more details about the closed form minimum
trace [8]. Each element of the observation vector with its
corresponding error interval defines a pair of hyperplanes -
a strip - in state space, in turn defining the consistent space
set as all states enclosed by the hyperplanes. By consecutive
intersection of the propagated state ellipsoid with each strip,
an approximation of the minimum trace ellipsoid intersection
is obtained. From the linearized observation equation yk+1,1

...
yk+1,m

 =

 C1

...
Cm

x+

 ωk+1,1

...
ωk+1,m

 (7)

where Ci are the rows of C = ∂h(xk)
∂x
|x=x̂k,k and ωk+1,i ∈

[−Wk+1,i,Wk+1,i]
3 we obtain a set of m pairs of hyperplanes

defining m strips in Rn. The strips are recursively intersected
with the propagated state ellipsoid Ω(x̂k+1,k,Σk+1,k).

• Recursive intersection
Define

M = Σ−1
k+1,k (8)

c0 = x̂k+1,k (9)

For i = 1, . . . ,m
For each element of the observation vector the two



hyperplanes are given by

Plane 1 :
Ci||Ci||−1x = (yk+1,i −Wk+1,i)||Ci||−1

= p+

Plane 2 :
Ci||Ci||−1x = (yk+1,i +Wk+1,i)||Ci||−1

= p−

(10)

with their common unit normal vector Ci||Ci||−1 and the
respective distances to the origin p+, p−1. As required by
the intersection algorithm, we first check for each plane
if it intersects the ellipsoid Ω(x̂k+1,k,Σk+1,k), and if not,
compute a parallel hyperplane that is tangent to the ellipsoid
(see [9]). The resulting tightened hyperplanes being given by

Tightenedplane 1 :
Ci||Ci||−1x = p+t

= (y
′
k+1,i −W k+1,i)||Ci||−1

Tightenedplane 2 :
Ci||Ci||−1x = p−t

= (y
′
k+1,i +W k+1,i)||Ci||−1

(11)
we compute a new tightened observation interval center

y
′
k+1,i = 1

2
(p+t + p−t )||Ci|| (12)

and tightened observation error bounds

W k+1,i = 1
2
(p−t − p+t )||Ci|| (13)

The corresponding tightened strip has the same intersection
with Ω(x̂k+1,k,Σk+1,k) but simplifies the intersection algo-
rithm, see ( [8]). After normalizing with the new error bounds

yk+1,i = W
−1
k+1,iy

′
k+1,i (14)

Ci = W
−1
k+1,iCi (15)

we obtain a strip

S(yk+1,i, Ci) = x : |yk+1,i − Cix| ≤ 1 (16)

in the form required for the intersection algorithm. The
intersection of the ith strip and the intermediate ellipsoid
Ω(ci−1,M

−1
i−1), is then computed as follows (adaption from

[8]):

P = M−1
i−1

δ = yk+1,i − Cici−1

g = CiPC
T
i

γ = CiP
2C

T
i

µ = tr(P )
β1 = 3

g

β2 = g(µ(1−δ2)−γ)+2(gµ−γ(1−δ2))
g2(gµ−γ)

β3 = µ(1−detla2)+γ
g2(gµ−γ)

(17)

If β3 > 0 the intersection does not modify Ω(ci−1,M
−1
i−1),

i.e. both tightened hyperplanes are tangent and

Mi = M−1
i−1

ci = ci−1
(18)

Otherwise the minimum trace ellipsoid bounding the intersec-
tion is computed as

M =
3β2−β2

1
9

N =
9β1β2−27β3−2β3

1
54

θ = acos
(

N

(−M3)1/2

)
q = 2(−M)1/2cos

(
θ
3

)
− β1

3

α∗ = 1
1+q

Mα∗ = α∗Mi−1 + (1− α∗)CiC
T
i

ci = M−1
α∗ [α∗Mi−1ci−1 + (1− α∗)Ciyk+1,i]

δα∗ = cTi−1Mi−1ci−1 + (1− α∗)y2k+1,i − cTi Mα∗ci
Mi = (1− δα∗)−1Mα∗

(19)
After the last intersection

x̂k+1,k+1 = cm
Σk+1,k+1 = Mm

(20)

provide the updated guaranteed state ellipsoid at sample
k + 1.

2) Application to relative localization of UAS: We now
apply the modified ESMF to the problem of cooperative rela-
tive localization between UAS. In a most basic configuration,
each UAS runs a bank of filters, one for each other UAS.
Computational effort could further be reduced by exchanging
set estimates between UAS. In the following we consider the
case of one UAS tracking the relative position of another one.
To initialize the guaranteed state ellipsoid, the maximum
error interval of the differential pseudo range position d̃ρ,0

is computed by interval arithmetic from the least-squares
solution of the GNSS code phase observations often denoted
as pseudo ranges, of UAS i w.r.t. satellite p in units of
distance (using the first order Taylor expansion and interval
inclusion of linearization errors, more details in [7]).

[d̃ρ,0] = (HT
0 H0)−1HT

0 [5rρ0 ] (21)

where 5rρp,i,j are the GNSS code phase observations differ-
ences between between two receivers on board UAS i and
UAS j w.r.t. a reference satellite p. Hp,r =

∂5rρp
∂d |d=0 is the

observation geometry matrix.
The Minimum Volume Ellipsoid (MVE) enclosing this
interval provides then the initial guaranteed state set
Ω(x̂0,0,Σ0,0).
The state comprises the relative position vector between UAS
i and UAS j using the previously introduced algorithm

xk = di,j,k (22)

f(xk) = di,j,k + ∆d̃k + w∆d,k+1 (23)

A = I3 (24)

and observations are double differences of pseudo ranges

yk = 5rρk
= Hp,rdi,j,k + wOrp,k

C = Hp,r

(25)

Note that we use the linearized observation equation here
due to the small linearization error. The propagation error



ellipsoid Ω(0, Qk) is obtained as the MVE of the interval of
carrier phase position propagation errors w∆d,k

(from GNSS
differential code phase observations.
To enhance the result of the UAS, we can use:
• Incomporating the Ultra Wide Bande ranging: Range

observations are integrated into the filter by augmenting
the observation vector to

yk =

[
5rρk
r(i, j)k

]
=

[
Hp,rdi,j,k + wOrp,k
||di,j,k||+ wr,k

] (26)

C =

[
Hp,r

∂r
∂d |d=x̂k,k−1

]
(27)

where r is the relative position of the uas.
• Asynchronous observations If ranging and GNSS ob-

servations are available asynchronously at different time
instants, ranging observations can be incorporated in a
separate update step using

yk = r(i, j)k
= ||di,j,k||+ wr,k

(28)

C = ∂r
∂d |d=x̂k,k−1

(29)

It facilitates an informed judgment of the merits of the pro-
posed set membership filter to compare it to the its stochastic
EKF counterpart, to which we will turn our attention in the
following section.

IV. SIMULATIONS AND EVALUATION OF THE PROPOSED
STRATEGY

To evaluate the proposed localization schemes, we
consider two UAS in close proximity. Each UAS is assumed
to broadcast its carrier phase and code phase observations
as well as to take UWB range measurements. We select a
half circle trajectory of relative positions of the follower
UAS w.r.t. the predecessor, emulating a follower changing
stations inside a formation, a maneuver requiring guaranteed
but not overly conservative relative position estimation error
bounds for safe but fast execution. Recall that for tight
formation flight we want a filter that converges fast to
useful, i.e. not overly conservative outer estimates of a set
that is guaranteed to contain the relative position.
We consider three figures of merit to compare ESMF and
EKF as well as to judge the impact of UWB ranging
observations. First, the trace of the respective ellipsoid
matrices (For the EKF we consider the 3σ level surface
ellipsoid), as it gives a scalar measure of the ellipsoid size
and thus its relative conservativeness. Second, the distance
between the respective ellipsoid center and the relative
position vector, representing the usefulness of the ellipsoid
center as point state estimate. Third, plugging the true
relative position into equation (Eq.1) provides a measure
of distance to the ellipsoid surface indicating whether the
guaranteed state set indeed contains the true state at all times.

GNSS observation errors When comparing the EKF,
based on a normally distributed, i.e. unbounded process and
measurement error model, and the ESMF and BPDMF, based
on interval noise bounds, care has to be taken when it comes
to simulating observation errors, as the assumed distribution
inherently favors one or another filter formulation. While a
simulated normal distribution obviously unduly favors the
EKF, a uniform distribution is even further from realistic.
From inspection of real zero baseline code phase double
difference samples, it appears that the noise profile could
reasonably be approximated by a biased normal distribution.
However, even more realism can be introduced by directly
using noise samples from zero-baseline experiments in simu-
lation, thereby removing the need for assumptions about the
statistical nature of double difference observation errors. This
approach has been adopted here to simulate both differenced
carrier phase as well as differenced code phase observations.
UWB ranging observation errors Our field experiments
with a pair of UWB ranging devices (DecaWave EVK1000)
indicate a range maximum error excluding antenna position
offsets of ωr = 0.5m in unobstructed outdoor conditions.
Larger error bounds reported in [10] are most likely due
to the considered metal-rich industrial indoor environment
that is not representative of the conditions expected within
a formation of UAS made mostly of composite material.
For simulation we draw observation errors from a uniform
distribution.
Satellite constellation A static constellation of 7 satellites
on a sphere corresponding to GPS orbits, constrained by a
minimum elevation of 15% is simulated.
First, the GNSS observations are used. Fig. 1 shows how the
ESMF guaranteed state ellipsoid fulfills its primary property
and at all epochs contains the true relative position. The
ellipsoid contracts drastically over the first few epochs to
a quasi steady state in all three axes with a largest half axes
of about 6 m.

Fig. 1. ESMF, GNSS only: half axes of guaranteed state set, ellipsoid
membership of true state, guaranteed state set at last epoch with pseudo
range positions and ESMF position estimates

The EKF 3σ level set ellipsoid is by one order of magni-
tude more optimistic in Fig. 2 freeing up considerably more
maneuvering space. The ellipsoid contains however from
about epoch 45 on no longer the true relative position in Fig.3
illustrating the fundamental limitation of Kalman filtering for
this application. Note that the EKF estimates an inconsistent



Fig. 2. EKF, GNSS only: half axes of ellipsoid Σ3σ , ellipsoid membership
of true state for Σ3σ at last epoch with pseudo range positions and KF
position estimates

Fig. 3. GNSS only, comparison of ESMF, EKF: norm of center estimation
error, size of guaranteed set (ESMF) or 3σ level set (EKF) respectively as
measured by matrix trace, filter execution time

confidence ellipsoid in spite of differential pseudo range
noise being well approximated by a zero mean normal
distribution, i.e. although operating under rather favorable
conditions. While both the EKF mean state estimate and the
ESMF ellipsoid center approximate the true relative position
with sub-meter accuracy, the EKF provides a smoother
estimate. Note that fluctuations in filter execution times (an
interpreted Matlab implementation running on a 4− corei7
CPU on Windows 7 OS) can be attributed to the non-real-
time execution environment.

Remark 3: Incorporating inter UAS range observations
leads to tighter guaranteed state ellipsoids of the estimation
in Fig. 4. The benefit of incorporating ranging observations

Fig. 4. ESMF, GNSS+UWB ranging

is more clearly illustrated by Fig. 5 displaying the ratio of
the ESMF a posteriori half axes and trace without and with

ranging observations. A reduction in size of by roughly 30%
can be observed compared to the GNSS only case. As a

Fig. 5. ESMF: Ratios of ellipsoid volume and half axes with and without
UWB ranging

first suggestion after these investigations, authors propose
using the superior point estimation accuracy of the EKF for
guidance purposes while relying on the confidence ellipsoid
of the ESMF for guaranteed collision avoidance.

V. CONCLUSION

In this work, we have presented ellipsoidal sets that are
guaranteed to contain the position of an UAS in a formation
flight dispay. The relative positions of other UAS can be
efficiently computed with a modified version of the Extended
Set Membership Filter, relying on low-cost GNSS receiver
and UWB ranging hardware. The performed simulations
suggest that the resulting algorithm is suited for simultane-
ously tracking multiple UAS in real-time due to its moderate
computational cost.
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