
HAL Id: hal-01885138
https://laas.hal.science/hal-01885138

Submitted on 1 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-level Isolation for Android Applications
Guillaume Averlant

To cite this version:
Guillaume Averlant. Multi-level Isolation for Android Applications. IEEE 28th International Sympo-
sium on Software Reliability Engineering: Workshops (ISSREW 2017), Oct 2017, Toulouse, France.
4p., �10.1109/ISSREW.2017.61�. �hal-01885138�

https://laas.hal.science/hal-01885138
https://hal.archives-ouvertes.fr


Multi-level isolation for Android applications
Guillaume Averlant

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
Email: firstname.lastname@laas.fr

Abstract—Android is one of the most popular operating
systems on mobile devices, and its usage is not going to decrease
anytime soon. Although Android security has already been widely
studied in the literature, its quick evolution scheme and emerging
usages call for the continuation of this common effort.

In particular, mobile devices are now commonly used in differ-
ent contexts, like in a bring-your-own device (BYOD) environment
where personal and business data are held on the same device.
However, small and medium companies cannot afford the costs of
a dedicated software solution allowing personal and professional
data to securely coexist on employees devices.

In this paper, we present a preliminary solution to address this
need of isolation by leveraging hardware virtualization extensions
found in current mobile processors. This solution targets chipset
manufacturers and provides security and privacy protections for
standard Android end users.

INTRODUCTION

Android is one of the most popular operating systems on
mobile devices, and its usage is not expected to decrease
in the near future. Although Android security has already
been studied in the literature, the continuous evolution of its
implementation and of processors technologies and the new
emerging usages call for the continuation of this common
effort to address open challenges, e.g., as regards the need
to ensure the proper isolation of the execution of multiple
applications with different security requirements.

In particular, mobile devices are now commonly used in
different contexts, like in a bring-your-own device (BYOD)
environment where personal and business data are held on the
same device. However, small and medium companies cannot
afford the costs of a dedicated software solution allowing per-
sonal and professional data to securely coexist on employees
devices.

Even for personal usage, an isolation layer could be em-
ployed to segregate the data from different contexts between
each other. For example, one may want to isolate its banking
application from the rest of the system.

However strong isolation may not be the optimal solution,
because the resulting usability restrictions may not be ac-
ceptable for the end users. In this purpose, we envision a
controlled permeability between isolation layers. For example,
this permeability can be used to retrieve contact information
from an isolated application; or even to allow an isolated
application to provide its services to other applications.

With the evolution of mobile processors, technologies like
virtualization that were reserved to their desktop/server coun-
terparts are now available for mobile applications. These
new technologies offer opportunities to design new isolation
solutions or complement existing ones.

One possible solution could be to rely on the hypervisor
to provide isolation at application level. Nevertheless, due to
the semantic gap, this solution is not recommended. Instead,
we promote the use of a multi-level isolation solution, imple-
mented in different parts of the Android ecosystem.

In this paper, we present a preliminary solution to address
this need of isolation by leveraging hardware virtualization
extensions that are now available in current mobile processors.
This solution targets chipset manufacturers and provides se-
curity and privacy protections for standard Android end users.
The paper is organized as follows. Section I introduces the
Android software ecosystem. Then, Section II discusses the
state of the art. Finally, Section III outlines the proposed
solution.

I. THE ANDROID ECOSYSTEM

The techniques used to provide an isolated environment for
Android applications can be implemented at several levels in
the Android ecosystem stack. In order to analyze the different
solutions provided in the literature, we first introduce the
Android environment.

Android OS, developed by Google, is mainly composed by
a framework layer on top of a customized Linux kernel. This
layer, named Android Application Framework (AAF), drives
the execution of Android application 1. It consists of multiple
parts [1]:

• A set of APIs provided to applications.
• An application management system.
• A permission management system [2].
• An Inter-Components Communication system [3].
APIs provided to Android applications are available in two

forms: the Java API and the Android NDK. The latter provides
an API mapping for parts of applications written in native
language, as well as a custom libc named bionic.

The application management system handles applications
installation, update and removal. Moreover, it checks applica-
tion signatures when they are installed and updated in order
to ensure their integrity.

The permission management system ensures that each ap-
plication satisfies the set of permissions allowed by the end
user. These permissions are either defined in the application
manifest and accepted at install time, or requested at runtime.

The Inter-Components Communication system enables the
communication between different applications or system ser-
vices. These communications are mediated by a custom Inter-

1Written in Java or native-code languages such as C and C++



Process Communication (IPC) system: a kernel component
named Binder which is specific to Android OS.

Furthermore, the Android ecosystem definition is not re-
stricted to the Android OS; it basically consists of the whole
software stack running on top of the ARM processor, and
leveraging from its inherent capabilities.

More precisely, several extensions included in current ARM
processors allow the device maker to insert other layers to this
ecosystem:

• The virtualization extensions bring up the ability to exe-
cute a hypervisor at a higher privilege level than the Linux
kernel, and to benefit from virtualization capabilities.

• The security extensions, also known as TrustZone, split
the execution environment into two worlds. The secure
world, isolated from the normal world, is able to host
a secure environment where the device maker can run
applications and services 2.

These technologies are notably used by state-of-the art
solutions introduced later in this paper, as well as by existing
devices [4].

Figure 1. Android ecosystem - a global view

Figure 1 describes the different layers of this ecosystem.
This Android ecosystem overview is needed to better under-
stand the scope and the target of the existing isolation solutions
defined in the literature which are presented in the next section.

II. STATE OF THE ART

Many improvements to the Android ecosystem security
have been proposed. They address several imperfections in
protecting the end-user security and privacy. These solutions
can be classified into multiple types, which have distinctive
goals, and affect different parts of the ecosystem:

• Kernel hardening and kernel integrity enforcement tools:
Aim at providing mitigation techniques, or detecting any
malicious modification of the Linux kernel.

• Data flow analysis and information flow tracking tech-
niques: Enable the system to evaluate the evolution of
applications data and their sharing with other applica-
tions. They are notably useful to track privacy violations.

• Application behavior analysis solutions: Evaluate the
behavior of installed applications and compare them to an
established reference model. This model can be created
by using machine learning techniques.

2E.g. Fingerprint authentication services, or DRM management applications

• Sandboxing or containerization techniques: Can be im-
plemented at different levels of the Android ecosystem.
They isolate different entities of these levels from each
other. This isolation is controlled by a reference monitor
which implements an access control policy.

In this paper, we focus on containerization techniques. So,
in the following subsections, we present existing sandboxing
solutions found in the literature organized according to their
implementation origin in the Android ecosystem stack. De-
pending of this origin, the range of action and the manipulated
data of these solutions might be quite different.

A. System-level containerization

System-level containerization solutions aim at providing
multiple isolated environments by leveraging from the virtu-
alization and security extensions of recent ARM processors.
Their implementation is based on a hypervisor providing
virtual environments to several isolated Android OS. Their
execution is thus controlled by this hypervisor which acts as
the reference monitor.

The work of Lengyel et al. [5] uses a bare metal Xen
hypervisor to provide this virtualization layer, and employs
several Xen modules to enforce its security. Furthermore,
a TrustZone component checks the hypervisor integrity at
startup and runtime. It also uses Virtual Machine Introspection
(VMI) to control the runtime integrity of the underlying OS.

Another goal may also be the isolation of security critical
components from the rest of the Android OS. An obvious
solution is to implement these components in the secure world
provided by the security extensions. However this approach
enlarges the system Trusted Computing Base (TCB) by in-
creasing the trusted code size. This problem is for example
addressed by Cho et al. [6] and Sun et al. [7].

B. OS-level containerization

OS-level containerization techniques intend to propose the
execution of isolated groups of applications having different
access privileges to system resources. This isolation is either
provided by Android framework virtualization, or by applying
fine grained policy on framework services and user applica-
tions to restrict their access to system resources.

A prime example is Condroid [8] which leverages the
cgroup feature of the Linux kernel to define namespace based
isolation between several Android framework instances.

In comparison, the work of Fernandes et al. [9] focuses on
isolating a group of trusted applications from untrusted ones.
This isolation is achieved by deprivileging several parts of
Linux kernel and the Android framework.

Before the 4.3 version, Android only used the Discretionary
Access Control (DAC) isolation policy of Linux by assigning
an UID to each application. Since then, SeLinux implemen-
tation for Android [10] has been integrated into the Android
codebase; SeLinux being a Linux Security Module providing
a MAC policy to userland application, it has been customized
to integrate the peculiarities of Android OS 3.

3E.g. Multiple SeLinux hooks have been integrated to the binder



Inspired by SeLinux design but with a more important
integration in the Android framework, ASM [11] introduced
an API to implement user defined security modules: The MAC
policy is loaded from standard Android application.

C. Framework-level containerization

Framework-level containerization solutions have almost the
same goal as OS-level containerization techniques. But instead
of modifying the Linux kernel code, they rely on isolation
solutions implemented in the Android Framework.

For example, with Pinpoint [12], Ratazzi et Al. modified the
binder architecture to implement namespace support 4. With
this new concept, they are able to protect sensitive resources
(contacts, IMEI, location...): Applications are associated to
namespaces that dynamically assign them real resources or
user controlled stubs.

As stated in the work of Neuner et al. [13], an information
flow tracking framework, named Taintdroid [14], is used in
numerous sandboxing solutions. However, its implementation
relies on Dalvik VM which is no longer used in Android
(since Android 5.0) and was replaced by ART compiler. Its
successor, TaintART [15], provides taint tracking through the
modification of this new ART compiler as well as the binder.
New sandboxing solutions could leverage information flow
tracking from TaintART to implement their isolation policy.

D. Application-level containerization

Application-level containerization techniques are dedicated
to provide user controlled isolation solutions and do not re-
quire any modification of the Android OS. They always consist
of a monitoring application which mediates all resources
access from one or more isolated applications.

In Boxify [16], this goal is achieved by launching the
isolated applications in an unpriviledged process. All binder
IPC and other system calls are then trapped in the monitoring
application, which is able to apply a user defined policy.

A different solution is proposed by Bianchi et Al. [17].
This time, a stub application is generated for one or more
isolated applications. The latter are launched by a stub process
which catches their system calls using a syscall interposition
technique based on ptrace.

Through the study of all these containerization solutions, we
can observe that: The more privileged the solution, either the
less fine grained is the resulting policy, or the more effort
should be employed to fill the semantic gap between the
isolation target and the monitoring software. For example,
a hypervisor isolating Android applications with fine grained
policy should implement a complex VMI logic to gather the
required data; and this complex logic increases its attack
surface. However, being a high privileged software increases
the isolation effectiveness by preventing the target to bypass
the resulting isolation. Based on these statements, we propose
the design of a new solution in the next section.

4Which embodies the concept of Linux Namespace lightweight isolation

III. PROPOSED SOLUTION

In the previous section, we observed that implementing
an isolation solution at a higher or lower privilege level
has an impact on the type of data that can be accessed. In
this section, we introduce our proposed solution designed
to provide application isolation to Android end users. This
solution targets chipset makers because we need to modify
the most privileged layers of the Android ecosystem.

Our solution is designed to ensure a sufficient isolation level
to protect the end user against the following scenarios:

• A malevolent application attempting to exploit system
vulnerabilities to perform a system privilege escalation.

• A malevolent application trying to steal sensitive data.
• A non malevolent application used as an attack vector.
• A non malevolent application whose privacy policy is not

suitable for the end user.
Figure 2 describes our proposed solution architecture. It

embodies a multi-level design to cope with the weaknesses
of single-level solutions identified in section II.

Figure 2. Proposed solution architecture

The implementation of this solution is based on the Android
Framework. First, instrumenting the binder enables us to
intercept binder IPC communications. Likewise, other syscalls
are captured by inserting hooks in the libc. Finally, a dedicated
service ensures the enforcement of the policies defined by
the end user. This kind of IPC interception has already been
achieved in existing solutions in the literature [11] and is a
necessary step to apply user-defined policy to applications.

A second important part of our architecture is implemented
as a bare metal hypervisor controlling the execution of the
Linux kernel. Only a few functionalities are implemented in
this hypervisor to keep its footprint as light as possible: It
ensures the integrity of other parts of our solution, as well
as critical components in the Linux kernel; and it checks the
syscall sources to prevent any attempt to bypass the provided
isolation. Indeed, an application may emit syscalls by their
own without using our modified libc.

These checks could have been directly implemented in the
Linux kernel but we choose to implement the most privileged
part of our solution in a separate hypervisor instead for
multiple reasons. First Linux is quite heavy (∼18M+ loc) and
has inherently a non negligible attack surface. In addition,



the hypervisor enables us to check the integrity of the kernel.
Furthermore, thanks to the RISC concept of ARM architecture,
the overhead cost due to the hypervisor should be lower than
in x86 architecture. Finally, it is possible to use second level
page table in a hypervisor to tag trusted pages where syscalls
are allowed, in an efficient manner: This page table, that is
used to provide an additional translation between the OS and
the physical address space, contains a user-defined field which
can be used to store this kind of information.

The last part consists of a specific Android application
which allows the end user to define the isolation policy. Its
integrity is protected by a cryptographic signature which is
checked by the hypervisor at runtime. However, as real end
users are rarely security specialists, we propose to retrieve a
default security rules set for each installed application through
a crowd-sourcing website. To complement these default rules,
all newly installed applications go through a learning phase
where each of its new communication with other applications
should be approved by the user. These rules can then be
modified later via the application UI. All rules are stored in a
secure area only accessible by the policy handler service which
handles their modifications: the policy definition application
has no direct access to these rules.

To be more specific about the security rules, we want
to take advantage of the high level of details concerning
applications IPCs and system resources access retrieved by
our hooks implemented in the Android Framework to allow
the end user to define a fine grained security policy. User
should be able to restrict any kind of IPC sent or received
by an application, as well as restricting any access to system
resources. For example, user should be able to restrict Internet
access granted to an application to a subset of IP addresses
or url. However, some applications may stop working after
applying these restrictions on resources access. To address this
issue, we need to be able to provide empty or fake information
instead, like in [12].

IV. CONCLUSION, ONGOING WORK AND MILESTONES

In this paper, we presented the principles of a multi-level
isolation solution allowing Android end users to define fine
grained security policy for installed applications. This solution
leverages hardware virtualization extensions that are now
available in current mobile processors, and therefore targets
chipset manufacturers. Our approach is based on a multi-level
architecture in which the policy’s control logic is close to the
isolated resources to reduce the semantic gap, while we benefit
from a high privileged software to ensure the effectiveness and
integrity of our solution. We have already experimented the
feasibility of implementing a hypervisor on the 96Boards hikey
development board, and are now implementing our proposed
solution. Currently, the hypervisor implementation is already
underway, while the Android framework modifications are
planned for September. We aim to submit a full paper exposing
our research on this subject by the end of 2017, and my thesis
defence is expected for the end of 2018.

ACKNOWLEDGMENT

My thesis is carried out at the Dependable Computing and
Fault Tolerance research group at LAAS-CNRS, supervised
by Éric Alata, Vincent Nicomette and Mohamed Kaâniche.

REFERENCES

[1] M. Xu, C. Song, Y. Ji, M.-W. Shih, K. Lu, C. Zheng, R. Duan, Y. Jang,
B. Lee, C. Qian, S. Lee, and T. Kim, “Toward Engineering a Secure
Android Ecosystem: A Survey of Existing Techniques,” ACM Comput.
Surv., vol. 49, no. 2, 2016.

[2] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisger-
ber, “On Demystifying the Android Application Framework: Re-Visiting
Android Permission Specification Analysis,” in 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association, 2016.

[3] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. L. Traon, “Effective Inter-Component Communication Mapping in
Android: An Essential Step Towards Holistic Security Analysis,” in
Presented as Part of the 22nd USENIX Security Symposium (USENIX
Security 13). USENIX, 2013.

[4] U. Kanonov and A. Wool, “Secure Containers in Android: The Samsung
KNOX Case Study,” in Proceedings of the 6th Workshop on Security and
Privacy in Smartphones and Mobile Devices, ser. SPSM ’16. ACM,
2016.

[5] T. K. Lengyel, T. Kittel, J. Pfoh, and C. Eckert, “Multi-tiered Security
Architecture for ARM via the Virtualization and Security Extensions,”
in 2014 25th International Workshop on Database and Expert Systems
Applications, 2014.

[6] Y. Cho, J. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek, “Hardware-
Assisted On-Demand Hypervisor Activation for Efficient Security Crit-
ical Code Execution on Mobile Devices,” in 2016 USENIX Annual
Technical Conference (USENIX ATC 16). USENIX Association, 2016.

[7] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “TrustICE: Hardware-
Assisted Isolated Computing Environments on Mobile Devices,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2015.

[8] W. Xu and Y. Fu, “Own Your Android! Yet Another Universal Root,”
in 9th USENIX Workshop on Offensive Technologies (WOOT 15).
USENIX Association, 2015.

[9] E. Fernandes, A. Aluri, A. Crowell, and A. Prakash, “Decomposable
Trust for Android Applications,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2015.

[10] S. Smalley and R. Craig, “Security Enhanced (SE) Android: Bringing
Flexible MAC to Android.” in NDSS, vol. 310, 2013.

[11] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi, “ASM: A Pro-
grammable Interface for Extending Android Security,” in 23rd USENIX
Security Symposium (USENIX Security 14). USENIX Association,
2014.

[12] P. Ratazzi, A. Bommisetti, N. Ji, and W. Du, “PINPOINT: Efficient
and Effective Resource Isolation for Mobile Security and Privacy,” in
Proceedings of the SPW Workshop on Mobile Security Technologies
(MoST), 2015.

[13] S. Neuner, V. Van der Veen, M. Lindorfer, M. Huber, G. Merzdovnik,
M. Mulazzani, and E. Weippl, “Enter sandbox: Android sandbox com-
parison,” in Proceedings of the Third Workshop on Mobile Security
Technologies (MoST), 2014.

[14] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones,”
ACM Trans. Comput. Syst., vol. 32, no. 2, 2014.

[15] M. Sun, T. Wei, and J. C. Lui, “TaintART: A Practical Multi-level
Information-Flow Tracking System for Android RunTime,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. ACM, 2016.

[16] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-
Rekowsky, “Boxify: Full-fledged App Sandboxing for Stock Android,”
in 24th USENIX Security Symposium (USENIX Security 15). USENIX
Association, 2015.

[17] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna, “NJAS: Sand-
boxing Unmodified Applications in Non-rooted Devices Running Stock
Android,” in Proceedings of the 5th Annual ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Devices, ser. SPSM
’15. ACM, 2015.


