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Practical Equivalent Control in 2-Sliding Controls

Applied to an Anthropomorphic Robot Arm

Karim Braikia, Pascal Acco, Bertrand Tondu and Mourad Chettouh

Abstract— Driving an anthropomorphic robot arm driven by
pneumatic artificial rubber muscles (PARMs) with a direct
transmission is quite delicate. PARMs present complex nonlin-
earities and robust control tools are unevitable. Among them,
those applied are the twisting and super twisting algorithms,
which belong to the 2-higher order sliding mode control set. In
this paper it is studied the effect of the equivalent control in
sliding mode controller based on variable structure systems
(VSS) theory. It will be shown when to use the equivalent
control, and the effects of a noisy sensor signal on control
performance. Experimental results are presented and discussed.

I. INTRODUCTION

Driving a robot manipulator with direct transmission is

a difficult task, mainly because of coupling effect, gravity,

payload variation and actuator characteristics. The PARMs

have some good properties [4] such as lightweight and

low price. They also present compliance and bio mimetic

properties. This compliance is of great interest when such

an arm is used in human shared environments. There is

renewed interest for flexible manipulators driven by PARMs

in several applications [5]. Nevertheless, a PARM present

complex nonlinearities. Its force generation is nonlinear

and it is subject to hysteresis [6] [7] and [8]. Artificial

muscle characteristics vary with an increasing duty cycle

[9], airflow properties and servo valves add to nonlinearities,

see [10] for more details. A PARM is thus a naturally high

nonlinear actuator and is difficult to model. The applied

conrol technique must fulfil two necessities:

• Avoid both a complex model and a complex controller,

which are not practical

• Robustness of the manipulator control against unknown

parameters variations and modelling approximation

Control under heavy uncertainty conditions remains one of

the main subjects of modern control theory. The sliding

mode control (SMC) approach requirement is robustness

against modelling errors. The idea is to introduce a new

dynamic by imposing a switching surface. When sliding is

reached, the system will become insensitive to parameter

variations, modelling error and matched disturbances. These

properties are very powerful tool in realizing a practical

controller for either Single Input Single Output (SISO) or

Multi Input Multi Output (MIMO) systems. The SMC allows

the consideration of the mutual interaction of the joints
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of robot as a disturbance and the definition of each joint

of the manipulator as a SISO system. However the main

drawback of standard SMC is mainly related to the chattering

effect caused by the high-frequency control switching [11].

Chattering effect can deteriorate physical components and

excite high frequency dynamics [12].

To overcome the above difficulties, the first idea is to add

an equivalent control of a classical form of the SMC [13]

and [14]. The other approach is to introduce higher order

sliding mode in order to reduce chattering [15] and [16]

while increasing accuracy in sliding [17]. Although control

can be satisfied without the use of the equivalent control

[18]. The usual control based on sliding mode is the sum

of both controls: equivalent and sliding discontinous control

[13] and [14].

In the following, two well known 2-sliding control laws

are studied: the twisting and super twisting algorithms [19],

[20], [21], and [17]. The effect of equivalent control on reg-

ulation performance under heavy uncertainty will be shown.

Its use in some cases is beneficial and can in others lead to

performance degradation. It will also be shown when to use

this equivalent control. Furthermore, the effect of a noised

sensor signal on control performance is also addressed.

The paper is organized as follows: first the experimental

set up is presented together with the actuator, the model iden-

tification is presented in section II. Then, the two 2-sliding

algorithms previously indicated are established. Analysis of

the use of the equivalent control and the effect of a noisy

sensor signal on 2-sliding algorithms then follow. Finally,

results are discussed and conclusions drawn.

II. ROBOT AND ACTUATOR

The control approach described in this paper has been

tested on the anthropomorphic robot arm (Fig.1). Located

at the Departement of Electrical Engineering of INSA de

Toulouse. It consist of 7 degrees of freedom (d.o.f), each

joint is driven by a pair of PARMs [7] [8], assembled in an

antagonistic posture, through the application of a pressure

variation △P upon an initial pressure P0 (Fig.2). The torque

generated by a pair of PARMs may be written as:

Γ = A(k1∆P− k2θ) (1)

A, k1 and k2 are constant parameters depending on muscle

geometry [8]. The first term of (1) is the driving component

proportional to pressure variation △P, while the second

one is the restoring torque of a spring like stiffness Ak2,

which actually is the compliance term where θ represents
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Fig. 1. The 7 d.o.f flexible robot arm

Fig. 2. Two PARMs in antagonistic posture

the angular displacement. It is worth noting that the system

is open loop stable.

There are, on each joint, analog resistive sensors but

no pressure sensors to monitor internal muscle pressure.

The Intensity/Pressure (I/P) converter is supposed to be

linear, which is not always true [22]. The PARMs used are

developed within the LATTIS robotics laboratory at INSA

Toulouse.

A. Model synthesis

In this application, two regional joints are controlled in

regulation: Joint 1 (shoulder) and Joint 2 (elbow). The

dynamic description based on generalized forces is:

J
..
θ +h(θ ,

.
θ)+g(θ) = Γ(u,θ ,

.
θ) (2)

Where θ and
.
θ are respectively the angular position and

velocity vectors, J is the inertia related matrix, h(θ ,
.
θ ) is the

vector of centrifugal, coriolis, and friction terms. g(θ) is the

vector of gravity terms and Γ(u,θ ,
.
θ) is the torque input

Fig. 3. Robot control architecture

vector, u is the control vector such that △Pi = fp(ui), where

fp represents the transfer function of I/P.

Identification is carried out in open loop without payload,

control step variations are applied to both joints in order

to bring out the existing coupling effect. Joint dynamics is

based on the estimation of coefficients of a supposed linear

model. Sliding mode enables the assumption of decoupled

manipuator joint (SISO). The joints interaction may be

regarded as an external perturbation. The best linear curve

to a presumed SISO input/output data (u/θ ) is obtained by

using Idproc of Matlab. The two joints coefficients average

values as well as their percentage variations are indicated in

table I. The transfer function for a delayed joint is:

θi

ui

=
ki

1+2ζiτis+ τ2
i s2

.e−t
i
s, i = {1,2} (3)

TABLE I

AVERAGE MODEL PARAMETERS VALUES

parametres joint 1 joint 2

k̃i (rad/bar) 0.31 ± 7% 0.48 ± 40%

τ̃i (s−1) 0.16 ± 10% 0.10 ± 39%

ζ̃i 0.85 ± 11% 0.31 ± 21%
t̃i (s) 0.18 ± 26% 0.06 ± 31%

The resulting model coefficients variations estimations

show that joint 2 is significantly influenced by the joint 1

dynamics, the opposite is not true. Model parameters varia-

tions separating a 0Kg from a 0.5Kg payload are indicated

in table II. As it may be noted joint 2 is a lot more sensitive

to payload variation (approximately 60 %) than joint 1. This

strengthens the need to resort to robust control. Also, in the

following, hysteresis is not considered, as only increasing

pressure/response data was used and delay is also considered

as included in the overall model uncertainties.

TABLE II

PARAMETERS VARIATIONS SEPARATING 0KG FROM 0.5KG PAYLOADS

parametres joint 1 joint 2

k̃i (rad/bar) -4.83% -9.14%

τ̃i (s−1) 8.23% -23.80%

ζ̃i 15.18% 233.91%
t̃i (s) 8.53% 9.01 %

|average variation| 9% 68%

III. SECOND ORDER SLIDING MODES

The principle of sliding mode control is to get the state

to reach and remain on a predefined function named sliding

surface (σ ) or manifold through discontinuous feedback [14]

and [13]. Given a nonlinear system:
{

.
x = f (x, t)+g(x, t)u

y = σ(x, t)

{x, f (x, t)} ∈ R
n,g(x, t) ∈ R

n×m,u ∈ R
m

(4)
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Where x is the state variable, t is time and u the control.

f (x, t) and g(x, t) are smooth uncertain functions and σ(x, t)
the smooth output is the sliding function. The discontinuous

control is:

u =

{

u+ if σ(x, t)< 0

u− if σ(x, t)> 0
(5)

This control law has proven its robustness versus system

parameters variations, modelling uncertainties and matched

perturbations. It, however, engenders chattering that can

degrade performance and may even deteriorate physical

components [14] and [12]. In order to attenuate chattering,

High Order Sliding Modes (HOSM) controls have shown

their capabilities by driving the chatter back onto the higher

time derivatives of the sliding manifold [16], [17] and [14].

The actual control is the output of cascading integrators. This

enables to keep the main advantages of classical 1-sliding

and at the same time reduce chatter and increase sliding

precision [17]. Given a constraint function σ(x, t) = 0, the

r-sliding set is defined as:

σr = {x ∈ R
n|σ(x, t) =

.
σ(x, t) = ...= σ (r-1)(x, t) = 0} (6)

Moreover, in real sliding with a finite sampling time λ ,

sliding precision is up to the rth order with respect to λ ,

i.e.|σ | =O(λ r). Given, without loss of generality, a SISO

nonlinear system:
{

.
x = f (x,u, t)

y = σ(x, t)
u =U(x, t) ∈ R (7)

f (x,u, t) is a smooth uncertain function with
∂

∂u
f (x,u, t) �= 0 and the smooth output is the sliding

variable. If the sliding variable is chosen, as often, to be a

first order dynamics:

σi(x, t) = ciei +
.
ei, i = {1,2} (8)

Where ci > 0 and ei = θi −θdi
is the error, the dynamics

of system equation (7) satisfies a 2-sliding set equation (6).

With respect to σ(x, t) if the Filippov set of state tra-

jectories lie in the space tangential to the intersection of

σ(x, t) = 0 and
.

σ(x, t) = 0 [23]. The relative degree of the

considered system equation (3) with respect to σ(x, t) is 1,

as
∂

∂u
σ(x, t) �= 0. Time derivation of σ(x, t) yield:

..
σ = ζ (x, t)+ψ(x, t)

.
u(t),

ζ (x, t) =
∂

∂ t

.
σ(x, t,u)+

∂

∂x

.
σ(x, t,u) f (x,u, t)

ψ(x, t) =
∂

∂u

.
σ(x, t,u)

(9)

The new discontinuous control is ν(t) =
.
u(t). Assuming

the new control ν(t) is bounded by νm ∈R
+, that ζ (x, t) and

ψ(x, t) are bounded uncertain functions with ψ(x, t) ∈ R
+,

then there exist positive constants Km, KM and C0 such that:

0 < Km ≤ ψ(x, t)≤ KM and |ζ (x, t)| ≤C0 (10)

If local coordinates (z1,z2)
T = (σ ,

.
σ)T are considered,

then the 2-sliding problem is actually a finite time stabili-

sation of the second order auxiliary system described by:
{

.
z1 = z2
.
z2 = ζ (x, t)+ψ(x, t)ν(t)

(11)

Two control laws able to stabilise system equation (11)

in finite time are the twisting [21] and super twisting [19]

algorithms.

A. Twisting law

The twisting algorithm is given by:

ν(t) =

⎧

⎪

⎨

⎪

⎩

−u if |u|>UM

−Amsign(z1) if z1z2 ≤ 0, and |u| ≤UM

−AMsign(z1) if z1z2 > 0, and |u| ≤UM

(12)

Where UM is the bound of the effective control applied

to the system and the sufficient conditions for finite time

convergence are:

0 < Am < AM, Am >
C0

Km

, KmAM −C0 > KMAm +C0

The applied control is thus: utw =
∫

ν(t)dt

B. Super twisting law

The super twisting algorithm is a superposition of two

components:

ustw =
∫ .

u1(t)dt +u2(t)

.
u1 =

{

−u if |u|>UM

−wsign(z1) if |u| ≤UM

u2 =

{

−αε
ρ
0 sign(z1) if |z1|> ε0

−α|z1|
ρ sign(z1) if |z1| ≤ ε0

(13)

Where UM is the bound of the effective control applied to

the system and ε0 > 0 is the linearity bandwidth around the

sliding surface σ . The sufficient conditions for finite time

convergence are:

w >
C0

Km

, α2 ≥
4C0KM(w+C0)

K2
mKm(w−C0)

, 0 < ρ ≤ 0.5 (14)

C. Equivalent control in sliding mode

The control [14] and [13] is of the form:

u = ueq +△u (15)

Where ueq is a equivalent control, △u is either twisting

utw as defined in (12), super twisting ustw as defined in (13).

The equivalent control, when ideal sliding is realised, will

take the state trajectory to the equilibrium position. The

effect of ueq depends of the good estimation of the model

parameters. However, it is unable to overcome in the system

errors of modelisation and as it depends on the presumed

model; if the latter is too far from the real model, it will

induce undesirable performance.

The equivalent control can be written as:

ueq = ũeq +△ueq (16)
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Where ũeq is the estimated equivalent control and △ueq

represents the uncertainty in the equivalent control. Both

quantities are linked to a presumed model and parameters

uncertainties estimation. In order to compensate these un-

certainties, the real control takes the form:

u = ũeq +△u (17)

Where ũeq represents a continuous low frequency com-

ponent supposedly able to keep the state trajectory on the

switching surface once it is reached, whereas △u is a

high frequency component able to ensure surface attraction

despite uncertainties △ueq. In (17) △u takes the forms of

either the twisting or super twisting controls. If the uncer-

tainties cannot be compensated by △u, i.e.−△ueq+△u �= 0,

convergence conditions (10) may not be satisfied.

twisting control (12) results in an integration of a dis-

continuous control. If twisting does not compensate model

uncertainties in equation (17), the action △u term looses

its efficiency and convergence conditions (10) may not be

satisfied.

Now, super twisting control (13) appears to be more

interesting than twisting as it does not need to use
.

σ(e,
.
e);

moreover, its control comprises a continuous term added to a

discontinuous one. Again, if △u does not compensate model

uncertainties in equation (17), the action of the discontinuous

term looses its efficiency and convergence conditions may

not be satisfied. As shown in the next section.

IV. EFFECT OF NOISE ON CONTROL

Let us now consider a noised position sensor:

θηi
= θi +η (18)

Where η is a white noise. Then sliding manifold σi may

be rewritten as:

σi = ciei +
.
ei +(ciη +

.
η), ei = θi −θdi

(19)

The twisting control (12) is less sensitive to noise than the

super twisting control as the integration attenuates chatter

due to noise as well as smoothing the control. In the super

twisting control (13), it is the discontinuous component u2(t)
that may degrade performance.

u2 =

{

−αε
ρ
0 sign(z1) if |z1|> ε0

−α|z1|
ρ sign(z1) if |z1| ≤ ε0

(20)

The presence of
.
η in the expression of z1 = σ(e,

.
e)

may deteriorate performance, so the linearity bandwidth ε0

has to be chosen small in order to avoid using u2(t) =
−α|z1|

ρ sign(z1). In which case, when outside ε0, the con-

stant amplitude discontinuous action u2(t) = −αε
ρ
0 sign(z1)

is of a classical form leading to chatter, unless α is small.

Then, the action of the discontinuous part of the super

twisting control, which was seen as an advantage over the

twisting control will be attenuated. The remaining control

(13) is then dominated by the continuous action
∫ .

u1dt

leading to slow convergence and difficulty in compensating

model uncertainties. Action of a noised sensor signal is

depicted in the results section (section V).

V. EXPERIMENTAL RESULTS

A. Action of equivalent control

Combined shoulder and elbow are controlled in regulation

with the reference vector Θ = (θ1,θ2) = (0.87,1.04)T rad.

With a 0.5Kg load attached to the end point which represents

approximately 1/12 of the total mass of the robot arm. Each

joint displacement is recorded to show the effect of ũeq using

the twisting and super twisting laws. The switching surfaces

are set as: σ1 = 12e1 +
.

e1 and σ2 = 8e2 +
.

e2. Parameters

used in the regulation problem for the twisting law are found

table III. Those used in the regulation problem for the super

twisting law are stated in table IV.

Control laws used in this section are the following:

u = ϕ ũeq +△u (21)

with ϕ = {0,25%,50%,75%,100%} and △u is twisting or

super twisting. As stated in section II-A, model coefficients

variations of joint 1 are smaller than those of joint 2, the

action of ũeq on joint 1 proves to increase performance,

decreasing then rising and settling times, as depicted in

Figs.4(a) and 5(a). However, it appears to destabilise joint

2 in both control laws as seen in Figs.4(b) and 5(b).

In Figs.4(a) and 5(a), joint 1 performance increases with

increasing ϕ ũeq while joint 2 becomes over-oscillating as

seen in Figs 4(b) and 5(b). For joint 2, the attenuation factor

ϕ is limited to 50% in order to preserve hardware integrity.

So, as model uncertainties of joint 2 are not be compen-

sated by the control laws, convergence is not satisfied and

the appropriate step in to avoid using ũeq. The equivalent

control is only used for joint 1, totally, i.e. ϕ = 1.

B. regulation results

Control of joint 1 is of the form of (17). While joint 2,

as the use of the equivalent control is rejected, control is

established as:

u =△u (22)

Where △u is either twisting or super twisting controls.

Combined movements of both joints are controlled in reg-

ulation with two reference vectors to cover an operat-

ing range [Θ1,Θ2] with Θ1 = (0.69,0.69)T rad and Θ2 =

TABLE III

REGULATION PARAMETERS OF twisting LAW

Joint shoulder (joint1) elbow (joint2)

AM 1.6 1.0
Am 0.65 0.5
UM 5 5

TABLE IV

REGULATION PARAMETERS OF super twisting LAW

Joint shoulder (joint1) elbow (joint2)

α 0.2 0.25
ε0 0.2 0.2
W 1.5 0.95
UM 5 5
ρ 0.5 0.5
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(a) joint 1 (shoulder)

(b) joint 2 (elbow)

Fig. 4. Influence of ũeq with the twisting law and 0.5Kg load

(0.87,1.04)T rad with payload variation. As it can be seen

in Figs.6 and 7, both controllers can stabilize the system.

Especially when equivalent control is not used on joint 2.

The reponse delay between twisting and super twisting is

insignificant on joint 1. It should be noted that a delay of

0.75 s constant for almost all results presented, it is mainly

due to: natural delay of the actuator as shown in section 2,

and the I/P + airflow pipes. Without equivalent control on

joint2 twisting reponse delay is more important compared

super twisting controller (Figs.6 and 13). In all case it can

be noted that settling time of twisting is better than super

twisting on both joints of robot. in particularly with a payload

of 0.5Kg.

Indeed, the sensor noise has limited the use of u2 term in

super twisting law. This performance has deteriorated, The

remaining control (13) is then dominated by the continuous

action
∫ .

u1dt leading to slow convergence and difficulty in

compensating model uncertainties. This can be noted noted

in Figs.8 and 9, for the super twisting law presented nearby

sliding surface discontinuity.

The joint 2 is considered for the action of a perturbation

which represents about 22% of the reference done under

the controls of both twisting and super twisting laws. The

reference (0.87,0.87)T rad with a payload of 0.5 Kg is

considered as one of the worst cases. The advantage of

twisting over super twisting can again be noted before the

(a) joint 1 (shoulder)

(b) joint 2 (elbow)

Fig. 5. Influence of ũeq with the super twisting law and 0.5kg load

(a) Θ1 = (0.69,0.69)T rad

(b) Θ2 = (0.87,1.04)T rad

Fig. 6. regulation joint 1 and 2, twisting and super twisting laws (no
payload)
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(a) Θ1 = (0.69,0.69)T rad

(b) Θ2 = (0.87,1.04)T rad

Fig. 7. regulation joint 1 and 2, twisting and super twisting laws (0.5Kg
payload)

Fig. 8. sliding surface of Joint 2 twisting and super twisting laws (0.5Kg
payload), Θ2 = (0.87,1.04)T rad

action of the perturbation. Both laws succeed in restabilising

the joints responses after the perturbation is applied. In

the case of the twisting controller the first overshoot (after

perturbation) is limited to 24 % of the reference whereas the

overshoot of super twisting represents 58% of the reference,

as you can seen in Fig.10. It is noted that parameters of both

controllers are kept the same as for the regulation problem

(table III and IV).

C. Tracking a sinusoid

Let us now see the ability of the laws to make joint

2 track a sinusoid. Input trajectory is considered to be:

0.3491 sin(2πft) + 0.6981 rad, with 0.1 Hz frequency and

a payload variation. The parameters of twisting and super

Fig. 9. twisting and super twisting laws (0.5Kg payload) joint 2, Θ2 =
(0.87,1.04)T rad

Fig. 10. Joint 2 twisting and super twisting laws (0.5Kg payload) with a
perturbation for reference ( 0.87, 1.39)T rad

twisting law are respectively indicate in table V and VI.

twisting and super twisting controls manage to track the

sinusoid, though a more important initial delay exists for

the super twisting (Figs.11). Moreover the tracking error

when using a super twisting is more important than that of

a twisting law, particularly when a payload is carried.

TABLE V

TRACKING PARAMETERS OF

twisting LAW

Joint elbow (joint2)

AM 2.41
Am 2.1
UM 5

%ueq 0%.ueq

TABLE VI

TRACKING PARAMETERS OF

super twisting LAW

Joint elbow (joint2)

α 0.1
ε0 0.1
w 3

UM 5
ρ 0.5

%ueq 0%.ueq

VI. DISCUSSION AND CONCLUSIONS

The introduction of the equivalent control in the effective

control proves to be useful if model uncertainty or parameter

variations are not too far from the physical system. However,

if this is not the case, the equivalent control will destabilize

the system. As the joint 2 is a lot more sensitive to dynamics

effects than the joint 1, the use of the equivalent control on

this joint leads to instability of robot. On the contrary its use

6



(a) 0.1 hz without payload

(b) 0.1 hz with 0,5Kg payload

Fig. 11. twisting and super twisting in tracking a sinusoid

on the shoulder is beneficial. A payload of 0.5Kg is used to

stress inertia and gravity effects.

The two controls of interest (twisting and super twisting)

as practical controls are tested in regulation, versus a pertur-

bation and in tracking a sinusoid. The super twisting law is

too slow to present a pratical interest. It is worth noting that

a payload of 0.5Kg is used to stress the inertia and gravity

effects. Both laws succeed in restabilising the system with,

however the overshoot after perturbation represents 58% of

the reference with the super twisting law, whereas it is only

24% with twisting law. Input sinusoid frequency is used 0.1

Hz with a payload variation of 0.5 Kg. both twisting and

super twisting laws despite an initial delay manage to track

the input signal. It is worth noting that a more important

initial delay for the super twisting law.

As a first conculsion, the equivalent control shall not be

used when the system model is not finely approximated,

and only a discontinous control is applied. In which case

the response to 2-sliding controls becomes slow. This results

confirm in part the outcome published [18]. It is thus neces-

sary, in the future, to study the introduction of an additional

term in order to reduce rising time and increase convergence

speed toward the sliding surface. Also, it will be considered

the relevance of the model improvements towards stability

with the use of the equivalent control in the SMC.
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