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Abstract—Internet of Things (IOT) business has raised a strong
interest in assets positioning. While outdoor positioning mostly
uses a Global Navigation Satellite System (GNNS) system, those
are inoperable in indoor situations. Indoor positioning has been
a very active field of study for the last decades and many
approaches have been proposed, however those solutions are very
often complex to deploy at industrial grade, due to complexity or
cost of the hardware or the algorithms. Moreover, deploying those
solution often requires a complex and expensive calibration setup
such as fingerprinting to establish a radio map of the room. In
this study, we focus on Bluetooth Low Energy (BLE) Received
Signal Strength Indication (RSSI) positioning using maximum
likelihood estimate and Cramer-Ro Lower Bound (CRLB) with
the widely used Log-Distance Path Loss (LDPL) model to
determine the impact of the calibration setup on the accuracy
and precision of the position. Results are then matched with real
BLE measurements made in an industrial-like environment.

I. INTRODUCTION

Asset positioning has raised a great interest in the late year,
especially with the IOT business.

Outdoor positioning is mainly achieved using GNNS solu-
tions for global positionning, however this is not applicable
for indoor position due to poor signal reception.

Indoor positioning has thus raise significant interest in the
last decades and many solutions have been proposed, mainly
based on RSSI, Time of Arrival (TOA) and Angle of Arrival
(AOA), see [1] for a review and explanation of those terms.
Their performances has been widely studied and the CRLB
calculated for all those methods [2]

Some solutions provide very good performances, such as
Ultra Wide Band (UWB), AOA, ultrasonic (US), or collabora-
tive positionning but require expensive or difficult to integrate
hardware, or have a high power consumption, limiting the
usage for industrial deployments.

On the other hand, emergent low-power radio-frequency
(RF) networks solutions can be really cheap, allowing to
deploy autonomous infrastructure at low cost, but are more
subject to interference and fading. The state-of-the-art solution
for this problem is either to construct a radio map of the room
(referred as fingerprinting) or using probabilistic methods such
as maximum likelihood estimates.

Thus aiming low cost and autonomous indoor positionning
solutions, we focus on RSSI solutions using low energy trans-
missions like BLE advertising or LORA. RSSI posistioning

precision is greatly affected by the fading effects due to dense
multipath environment, the APs placement and the calibration
of the propagation model.

Fingerprinting performance compete those of probabilistic
algorithms [3], a radio map could be inferred from the
measurements and positions estimates using semi-supervised
learning [4]. Each fingerprinting ask many transmissions and
lower the energy autonomy of the setup, as the channel may
vary in time these cost should be repeated periodically.

We chose to focus on probabilistic methods for several
reasons: fingerprinting is a complex and costly procedure for
large scale industrial facilities, its performance compete those
of probabilistic algorithms [3], a radio map could be inferred
from the measurements and positions estimates using semi-
supervised learning [4].

II. POSITION ESTIMATION WITH UNCERTAIN PATH LOSS
MODEL

We consider the position estimation problem to be an
estimation problem: knowing the RSSI channel model, our
uncertainties on the model, we want to find θ̂ the best estimate
of our position θ inside a given room from some measurements
r(θ) by maximizing the likelihood function:

θ̂ = argmax
θ

(L(θ|r(θ))) (1)

This section details the indoor RSSI channel model we have
chosen, section III presents an analytic CRLB formula to
lower-bound our estimate variance and finally we present a
numerical application in section IV to draw conclusions and
validate the analytic expression found in section III

A. Path loss model

The use of probabilistic algorithms require a propagation
model, the LDPL model is a common choice for indoor Non
Line of Sight (NLOS) propagation [5],

which defines the received power in relation with the
distance as it follows:

PR(d) = G− a0 − 10γ log10(d)−R+ V(σ) (2)

Where a0 is the loss at a distance of 1m, γ is commonly
known as path loss exponent, path loss factor or path loss



gradient [5], R is the loss due to receiver’s antenna and V(σ)
the measuring noise modeled as a random Gaussian variable.

Fast fading phenomenon is removed by the preprocessing
step, usually averaging and removing outliers using median or
sometimes Kalman filtering.

NLOS situation is taken into account by the log-normal
probalility of shadowing V(σ) and does not worth be modelled
seperatly as for time delay techniques.

Depending on setup constraints the Path Loss parameters
are known with relative precision depending on the calibration
setup when it exists.

B. Modelization of uncertainties

It is common for maximum likehood estimates to express
the measurements in the form of a gaussian noise:

y = N (f(x), σ) (3)

In the following section we’re developping the exact same
form with a matrix representation of σ and f(x) by consider-
ing the uncertainties as a sum of dependant gaussian noises.

Let’s consider we make I measures in a rectangular room
from N Access Points (APs) placed at coordinates ωn =[
xn yn

]
with i ∈ [0, N − 1]

If we note θ =
[
x y

]
our position, rn,i the ith RSSI

measurement from AP n at θ, rn the expected measured value
from AP n, r =

[
r0,0 . . . rN−1,0 r0,1 . . . rN−1,I−1

]T
the vector of measurements at position θ, and r(θ) =[
r0 . . . rN−1

]T
the mean expected value from all access

points.
Then, the following relation between r(θ) and r can be

deduced:

r = 1I,1 ⊗ (r(θ) +M(θ)VΓ) + VNI,1 (4)

With 1I,1 the I by 1 matrix full of ones, ⊗ the Kronecker
product, VNI,1 a centered gaussian vector of shape NI by 1
and variance σ (the measuring error) and:

VΓ =
[
Va0 VR VTG Vγ

]T
the model uncertainties

r(θ) =G+ 1N,1(a0 +R) + γ∆(θ)

M(θ) =
[
1N,1 1N,1 IN ∆(θ)

]
G = [G0 . . . GN−1]

T

∆(θ) =
[
5 log10(d0(θ)2) . . . 5 log10(dN−1(θ)2)

]T
If we do not calibrate G (resp. R, a0 and γ), then we can

consider it as a random variable normaly distributed around
an average G value:

G = G+ V(0, σG) = G+ VG
a0 = a0 + V(0, σa0) = a0 + Va0
R = R+ V(0, σR) = R+ VR
γ = γ + V(0, σγ) = γ + Vγ

If we consider we are calibrating one of those, we can set
σG (resp. σR, σa0 , σγ) to zero.

We can exprim r as a correlated random variable, which
simplifies (4) to:

r = 1I,1 ⊗ r(θ) +W where W ∼ G(0,Φ) (5)

With Φ the covariance matrix of r(θ):

Φ(θ) =1I,1 ⊗
(
(σ2
a0 + σ2

R)1N,N + σ2
GIN + ∆(θ)∆(θ)Tσ2

γ

)
+ σ2INI (6)

=1I,1 ⊗ ΦN (θ) + σ2INI (7)

Hense, Φ correspond to the matrix of uncertainties and noise
from which we can calculate the likelihood.

III. EXPRESSION OF CRLB

Althrough the CRLB for RSSI has already been calculated
in the past [2], this section aims to infer the CRLB as a
function of not only the channel model but also the model un-
certainties (Φ). In the next calculus we simplified the problem
to differentiate the likelihood, by assuming σγ = 0 so that Φ is
constant with respect to θ, simplifying the diferentiation of Φ,
which is equivalent to say we are calibrating γ. Calculations
without this simplification is a subject for future research.

A. Generic room and APs disposition

First, we will consider a generic AP disposition. From (5),
the Fisher information matrix is the following:

I(θ) = E
[
JTL (θ|r)JL(θ|r)

]
=
∂r(θ)

∂θ

T

Φ−1 ∂r(θ)

∂θ
(8)

With JTL (θ|r) the jacobian of the likelihood function. Us-
ing the Moore-Penrose [6] pseudo inverse of ∂r(θ)

∂θ (noted(
∂r(θ)
∂θ

)+

) and (7) comes the CRLB:

I(θ)
−1

=

(
σ2
G +

σ2

I

)(
∂r(θ)

∂θ

T
∂r(θ)

∂θ

)−1

+
(
σ2
a0 + σ2

R

)(∂r(θ)
∂θ

)+

1N,N

(
∂r(θ)

∂θ

)+T

As we are interested in ε the distance error, we will approach
it using the trace of the CRLB:
ε2 ≥ Tr

(
I(θ)

−1
)

. This can be calculated using the

expression of ∂r(θ)
∂θ :

ε2 ≥
(

ln(10)

10γ

)2 [(
σ2
G +

σ2

I

)
Tr(α)

det(α)
(9)

+ (σ2
a0 + σ2

R)
Tr(αβTβα)

det(α)2

]
With:



α =

(
∂r(θ)

∂θ

T
∂r(θ)

∂θ

)
=

N−1∑
n=0

1

d4
n(θ)

[
∆x2

n ∆xn∆yn
∆xn∆yn ∆y2

n

]

β =

N−1∑
n=0

[
∆xn ∆yn

]
d2
n(x, y)[

∆xn ∆yn
]

=
[
(x− xn) (y − yn)

]
Here, α and β only depend on our position in the room and
on the APs placement.

B. Application to an infinite grid

It may be useful to see how the CRLB is related to the
density of APs. Therefore, we will here introduce a ”density”
parameter to the previously calculated expression (9). Let’s
consider an infinite room with a grid of APs spaced of ∆
meters. As the problem becomes symetric and repeat every ∆,
we consider the receiver’s coordinates relative inside a square
formed by it’s closest access points: δx and δy ∈ [0, 1], Nx
and Ny are the indexes of the bottom left access-point of the
square.

Hense the distance to each access point ∆xn can be
rewritten in function of ∆:

∆xn =∆× (δx+Nx + n) (10)
∆yn =∆× (δy +Ny + n) (11)

Which makes the following changes in the previous equa-
tions:

α = 1
∆2α

′ β = 1
∆β
′ det(α) = 1

∆4 det(α
′) (12)

The final form of the CRLB becomes the following:

ε2 ≥∆2

γ2

ln(10)2

100

[(
σ2
G +

σ2

I

)
Tr(α′)

det(α′)
(13)

+ (σ2
a0 + σ2

R)
Tr(α′β′

T
β′α′)

det(α′)2

]
IV. NUMERICAL APPLICATION

A. Experimental setup

The measuring device we used are some fflyTrack [7]: BLE
beacons with 2.4GHz and an additional 868 MHz transceiver
(used to forward measured BLE RSSI values to a computer).

We made our experiments in three places: a mechanical
workshop (36 meters length squared building with industrial
grade machines lined every 7 meters, full of metal frames
which has been chosen because of its likeliness with industrial
warehouses, Fig. 2), a 40 by 20 meters empty gym (chosen to
limit the multipath and obstacles fading) and a meeting office
of 11 by 6 meters.

Eight APs were placed around the room and one in the
middle. A total of 100 measurements for each AP were made

Fig. 1: Photography
of the device we used

Fig. 2: Schematic of the workshop and
measuring points

approximately each 2 meters (depending on the floor marking)
(see Fig. 2) and the median value of those measurements was
retained to obtain a vector of 9 RSSI for each measuring point.

Using 16 devices, we made multiple measurements in 3
different rooms in various conditions: device mounted on a
gaz container, on a wooden stick on laying on a table.

We measured each time the distance to each AP and the
RSSI. We found the following results:

G = R ≈ N (0, 3.54) a0 ≈ N (51.76, 2.27)
γ ≈ N (1.39, 0.12) σ ≈ 4.04

A numerical application gives the results detailled in Table I

Delta Rel. Coord. I ε1 ε2 ε3

5 (0.5, 0.5) 1 2.13 0.48 0.48
5 (0.5, 0.5) 20 2.08 0.11 0.11
5 (0.1, 0.5) 1 3.14 1.95 1.16
5 (0.1, 0.5) 20 3.09 1.87 1.01

10 (0.5, 0.5) 1 4.26 0.96 0.96
10 (0.5, 0.5) 20 4.15 0.21 0.21
10 (0.1, 0.5) 1 6.27 3.89 2.31
10 (0.1, 0.5) 20 6.17 3.73 2.03
20 (0.5, 0.5) 1 8.51 1.92 1.92
20 (0.5, 0.5) 20 8.30 0.43 0.43
20 (0.1, 0.5) 1 12.54 7.79 4.62
20 (0.1, 0.5) 20 12.35 7.47 4.05

TABLE I: CRLB distance error where ε1 is without any
calibration, ε2 is calibrating APs (σG = 0) and ε2 is calibrating
APs and receiver (σG = σR = 0). Coordinates are δx and δy:
relatives to the meshing

We can see that if we do not calibrate the APs, the error is
of the same magnitude order than the meshing ∆, meaning the
positionning is only cellular. If we want a smaller precision
than a cellular setup, we necessarily have to calibrate APs.

On the other hand, calibrating the receiver has a moderated
impact on the error, depending on the position in the room
(impact is null at the center of the room, more generally when



distances to each AP are equal), thus depending on the cost
of this operation and the precision desired, it may be avoided
by industrials.

We verified our calculus using a simulation to get a hundred
likelihood estimates for different ∆ and I values, comparing
the simulated covariance matrix and the analytical values from
(9) in several points of the room.

The 2D covariance matrix was plotted using a 2-sigma
ellipsis, the result for ∆ = 10m is shown on figure Fig. 3.

Fig. 3: A map showing the CRLB on three points with the
equivalent numerically computed covariance matrix plotted in
2-sigma

We can see the CRLB is matching the numerically com-
puted covariance matrix as it is always smaller, but close to
the APs where the path loss model is less linear, it looses
meaning and coherence relatively to the simulates values.

V. CONCLUSION

In this paper we give an analytical expression (cf (9)) of
the CRLB in function of the uncertainties on a LDPL. We
verified numerically our expression using a simulation and real
RSSI measurements from three configurations in three rooms.
This shown several points:
• It is needed to calibrate APs gains to achieve a position-

ning more precise than a cellular (also called geofencing)
positionning.

• Calibration of the receiver gain has a moderated impact
on the global precision

• Increasing the number of measurements only minimizes
the error relative to measurements, thus the error won’t
converge to zero by measuring more RSSIs

Those results still need to be extended by adding the path
loss exponent uncertainty (σγ), but can already lead to more
applications such as an amelioration of existing APs optimal

position finding algorithms [8] to find the best configuration
minimizing the average CRLB.
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