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Abstract: This paper addresses the problem of tracking a constant BIS reference during
anesthesia taking into account control input saturation, multiple time scale dynamics and
inter-patient variability. LMIs conditions are proposed to compute a state feedback involving
an integral action to ensure a perfect output tracking. These conditions guarantee that the
trajectories of the closed-loop system remain in an invariant ellipsoidal set. The theoretical
conditions are numerically illustrated on a set of adult patients as a proof of principle.

Keywords: Anesthesia, saturated control, multiple time scale dynamics, robustness.

1. INTRODUCTION

General anesthesia generally involves three functional
components: hypnosis (unconsciousness), analgesia (ab-
sence of sensation) and areflexia (lack of movement, immo-
bility). A well balanced anesthesia consists in the control
of those three components by adjusting the perfusion of
drugs based on clinical indicators such as heart rate, blood
pressure, pupil response and BIS (Bispectral index, derived
from the spectral analysis of the electroencephalogram
signal (EEG)).

Roughly speaking, the control of anesthesia has to
take into account numerous phenomena such as patient
variability, multivariable characteristics, positivity con-
straints, dynamics dependent on the hypnotic agent, ... as
pointed out in Bailey and Haddad (2005) and Nascu et al.
(2015). Literature on control of anesthesia has often been
devoted to one component, hypnosis, with the objective to
adjust the amount of propofol administered ( Lemos et al.
(2014), Van Heusden et al. (2014), Absalom and Kenny
(2003), Haddad et al. (2003), Zhusubaliyev et al. (2014),
Zabi et al. (2015)). Note also that, thanks to a certain
maturity in PID or adaptive controller designs, clinical
tests have illustrated the interest of closed-loop anesthesia
control (Van Heusden et al. (2014), Le Guen et al. (2014),
Biswas et al. (2013), Rocha et al. (2014)).

This paper fits as a logical continuation of these works. The
backbone of the contribution resides in the reformulation
of the control problem of anesthesia in the robust and satu-
rated control framework (Tarbouriech et al. (2011)). More
specifically, the overall objective is to control the BIS and
track references in an interval fixed a priori, taking into
account directly the limitation of the rate of drug addition
(in the current case the Propofol) intravenously.Moreover,
the dynamics of the drug in the patient’s body is usually
described by a pharmacokinetic model with multiple time
scales. The problem is solved by separating fast and slow
dynamics in order to reduce the global control problem
to that one of the fast subsystem (BIS being directly

linked to the states of the fast subsystem) perturbed by
the slow dynamics. Taking into account the variability of
the patient thanks to the polytopic uncertainty frame-
work, the main contribution of the paper resides in the
robust control design for a BIS reference tracking proposed
through quasi-LMI (linear matrix inequalities) conditions.
Furthermore, to ensure the reference tracking for the BIS
(zero static error), an integral action is added. The design
of a dynamic output-feedback control law together with
the characterization of domains of stability and invariance
for both the slow and fast subsystems is thus provided
from these conditions.

Notation. The notation throughout the paper is stan-
dard. For a vector x or a matrix A, x′ and A′ denote
the transpose of x and A, respectively. For two symmetric
matrices of the same dimensions, A and B, A > B means
that A − B is symmetric positive definite. For a matrix
A, He(A) = A′ +A and trace(A) denotes its trace. I and
0 stand respectively for the identity and the null matrix
of appropriate dimensions. For a partitioned matrix, the
symbol ? stands for symmetric blocks. |.| stands for the
absolute value.

2. MODELING ASPECTS

2.1 The patient model

The model used to describe the circulation of drugs in
a patient body is based on a three-compartment model,
known as Pharmacokinetic/Pharmacodynamic (PK/PD)
model, to which is added the dynamics of drugs at the
effect site representating of the action of drugs on the brain
(Beck (2015)). Let us consider the state xbis(t) composed
with the effect site concentration xbis1 and the masses in
grams of the anesthesic drug in the different compartments
(xbis2, xbis3, xbis4). The dynamics of anesthesia can then
be expressed as follows:

ẋbis(t) = Axbis(t) + Bubis(t) (1)

with



A =

−ke0 ke0/V1 0 0
0 −(k10 + k12 + k13) k21 k31
0 k12 −k21 0
0 k13 0 −k31


B = [ 0 1 0 0 ]

′

where ubis(t) is the infusion rate of propofol (mg/min).

The depth of anesthesia indicator widely used by clinicians
is the BIS (the bispectral index), a signal derived from the
EEG analysis which quantifies the level of consciousness
of a patient from 0 (no cerebral activity) to ybis0 (fully
awake patient), this value being typically set to 100. The
relationship between the concentration at the effect site
(xbis1) and the BIS can be described empirically by a
decreasing sigmoid function (Bailey and Haddad (2005)):

ybis(xbis1(t)) = ybis0

(
1−

xγbis1(t)

xγbis1(t) + ECγ50

)
(2)

In (2), EC50 corresponds to the drug concentration associ-
ated with 50% of the maximum effect and γ is a parameter
modeling the degree of nonlinearity. Typical values for
these parameters are EC50 = 3.4µg/ml and γ = 3.

2.2 Model uncertainties

In the model above described, it is customary to dis-
tinguish between two different types of uncertainty: the
uncertainty caused by inter-patient variability (i.e., the
variability observed between different individuals), and
the uncertainty originating from intra-patient variability
(i.e., the variability observed within one particular indi-
vidual). This work focuses on the inter-patient variability
and, among various existing models which express the
model parameters as functions of the patient character-
istics (weight, age, height, ...), Schnider’s model (Schnider
et al. (1998)) is used to to define the patient dynamics in
presence of hypnotic drugs (see Table 1). The lean body
mass (LBM) is calculated using the James formula (James
(1976)) as follows:

Male: LBM = 1.1×weight−128×(weight/height)2

Female: LBM = 1.07×weight−148×(weight/height)2

Three of the model parameters used in matrix A are
dependent of the patient characteristics (k10, k12, k21).
Thus, for a given range of patients, the uncertainties of
matrix A (and further of sub-matrices issued from A) can
be included in a polytope with N = 23 = 8 vertices, that
is:

A =

N∑
i=1

λiA[i], with

N∑
i=1

λi = 1, λi ≥ 0 (3)

with A[i] corresponding to the vertices of the polytope in
which A is defined.

2.3 Central (nominal) equilibrium

During a surgery, the BIS is generally brought then main-
tained close to 50, or eventually in an interval between 40
and 60 according to the pain of the intervention. Thus,
as shown in Zabi et al. (2015), it follows that for yeq =
ybis(EC50), the effect site concentration is equal to EC50

and there exists a unique associated equilibrium defined
as follows:

xeq =

[
EC50 V1EC50

k12
k21

V1EC50
k13
k31

V1EC50

]′
ueq = k10V1EC50

(4)

Moreover, in the sequel, we consider the linearized BIS
function around this equilibrium given by Haddad et al.
(2003):

ybis(xbis1(t)) = yeq + C(xbis(t)− xeq)
= y0 + Cxbis(t)

(5)

with y0 = 125, 1
kbis

= −22.06 and C = [ 1
kbis

0 0 0].

Being concerned with the uncertainty on the patient
characteristics (k10, k12, k21), one has actually to deal with
a set of equilibrium points around the nominal equilibrium
point described in (4), corresponding to each value of the
parameters.

2.4 Both fast and slow dynamics

For any patient, the dynamics of the metabolism and of
the drug circulation in the central compartment and at
the site effect is ten times faster than in muscles, and
even a hundred times faster than in fat. Many studies
have addressed the synthesis of controllers for systems with
such slow and fast dynamics, named singularly perturbed
systems (Kokotovic et al. (1987)), often considering that
the control of the slow dynamics is the key problem. In
anesthesia, the control of the fast dynamics is the most
important one because the BIS is a direct function of
the concentration at the effect site, and thus of the fast
dynamics on which the administered drug directly acts.
Thus, in the following, an alternative route to separate
slow and fast dynamics is followed: a controller is designed
for the fast dynamics, considering the slow dynamics as a
bounded perturbation of the system.

3. PRELIMINARIES

3.1 Control structure

As previously mentioned, the control objective corre-
sponds to bring the BIS to a given reference, namely
50, then eventually to track step references yref in the
interval 40 - 60. A change of coordinate is then considered
to work around the central equilibrium xeq and the error
state vector is decomposed into a fast state xf = [xbis1 −
xeq1 xbis2−xeq2]′ and a slow state xs = [xbis3−xeq3 xbis4−
xeq4]′ around the nominal equilibrium.

The input and output of the error system are u = ubis−ueq
and yf = ybis−yeq, respectively, and the tracking reference
becomes r = yref − yeq. Moreover, it must be taken into
account that ueq is patient-dependent and therefore its
value is related to the uncertainty of the dynamics (as
pointed out in Section 2.3) and reference-dependent. Then,
one considers in the following that u = uf + wf , where
uf = ubis − u0 denotes the control input and wf = u0 −
ueq denotes a disturbance. Actually, u0 is defined as the
”worst” patient and reference case input, such as u0 ≤ ueq,
for any patient and reference in an a priori given interval.



Table 1. Schnider Model

Parameter Estimation male, 53yr, 77kg, 177cm

k10(min−1) 0.443 + 0.0107×(weight-77)-0.0159×(LBM-59)+0.0062×(height-177) 0.384
k12(min−1) 0.302 - 0.0056×(age-53) 0.375
k13(min−1) 0.196 0.196
k21(min−1) [1.29 - 0.024×(age-53)]/[18.9-0.391×(age-53)] 0.067
k31(min−1) 0.0035 0.0035
ke0(min−1) 0.456 0.456

With such a notation, considering any input uf ≥ −u0
guarantees, by construction, that ubis ≥ 0.

Then, the error system issued from (1)-(5) can be rewritten
as follows:

ẋf (t) = Afxf (t) +Afsxs(t) +Bfuf (t) +Bfwf (t)

ẋs(t) = Asfxf (t) +Asxs(t)

yf (t) = Cfxf (t)

e(t) = kbis(yf (t)− r) = [1 0]xf (t)− kbisr

(6)

with xf ∈ Rnf , uf ∈ R, yf ∈ R, xs ∈ Rns , r ∈ R and e ∈ R
(nf = ns = 2). Furthermore, matrices Af , As, Afs, Asf ,
Bf and Cf are directly issued from the decomposition of
matrices A, B and C defined in Section 2.

Let us augment the system with an integral term ξ in order
to guarantee that the output tracks a constant reference
in steady state without bias. It is defined by

ξ̇ = e (7)

One can then consider a state-feedback controller

yc = Kcuc (8)

where uc ∈ Rnf+1 and yc ∈ R are respectively the input
and the output of the controller. The control gain Kc is a
constant matrix of appropriate dimensions to be designed.
The interconnection between the anesthesia system (6)
and the controller (8) is done as follows:

uf = satu0
(yc)

uc =

 e

xf2
ξ

 , (9)

satu0
(.) being the classical saturation function with a sym-

metric level u0 defined by satu0
(z) = sign(z)min{u0, |z|}.

As in Flores et al. (2008), we first rewrite system (6)
and the integral term with a new state vector xfe(t) =

[e(t) xf2(t) ξ(t)]
′ ∈ Rn, n = nf + 1 as follows:

ẋfe(t) = Afexfe(t) +Bfeuf (t) +Afsexs(t)
+Brer +Bfewf (t)

ẋs(t) = Asfexfe(t) +Asxs(t)
(10)

with 1

Afe =

[
Af 0

[1 0] 0

]
, Bfe =

[
Bf
0

]
, Afse =

[
Afs

0

]

Bre =

Af [ kbis0

]
0

 , Asfe = [Asf 0 ]

1 Thanks to the definition of e including the paramater kbis, the
matrix M2 used in Flores et al. (2008) to express the change of
variable is equal to the identity matrix and may then be omitted.

Remark 1. The term Asf [kbis 0]′ which should appear
in the right-hand side of the second equation of (10) is
omitted as it is equal to zero by construction.

Then, considering the dead-zone nonlinearity

φ(yc) = satu0(yc)− yc,
the interconnection of systems (8)-(9)-(10) yields the fol-
lowing dynamics for the closed-loop system

ẋfe =(Afe +BfeKc)xfe(t) +Bfeφ(Kcxfe)

+Afsexs(t) +Brer +Bfewf (t) (11)

ẋs =Asfexfe(t) +Asxs(t) (12)

or, equivalently, in a more compact form, with x ∈ Rn,
n = nf + 1 + ns:

ẋ = (A+BK)x+Bφ(Kx) +Brr +Bwf (13)

with

A =

[
Afe Afse
Asfe As

]
, B =

[
Bfe

0

]
, Br =

[
Bre
0

]
K = [Kc 0 ]

3.2 Equilibrium point

In the region of linearity,

S(K,u0) , {x ∈ Rn; |Kx| ≤ u0}, (14)

system (13) admits the following linear model

ẋ(t) = (A+BK)x(t) +Brr +Bwf (15)

Hence, if (A + BK) is Hurwitz, there exists a unique
equilibrium in S(K,u0)

xe = −(A+BK)−1(Brr +Bwf ) (16)

where r and wf are constant signals. This equilibrium
actually belongs to S(K,u0) as soon as

| −K(A+BK)−1(Brr +Bwf )| ≤ u0
which corresponds to impose a condition on the admissible
signals r and wf .

Moreover, if one examines the structure of matrices A,
Br and B one can write, with Kc = [K1 K2 K3] and

k̃10 = k10 + k12 + k13:
−ke0

ke0
V1

0 0 0

K1 −k̃10 +K2 K3 k21 k31
1 0 0 0 0
0 k12 0 −k12 0
0 k13 0 0 −k13




e
xf2
ξ
xs1
xs2

 =


ke0kbis

0
0
0
0

 r +


0
1
0
0
0

wf
(17)



The nominal closed-loop equilibrium point is defined as
follows:

xe =



0

V1kbis

k10 −K2

K3
V1kbis

k12
k21

V1kbis

k13
k31

V1kbis


r +


0
0
1

K3
0
0

wf (18)

By noting the structure of K and Kc, from (18) it follows
that

Kxe = k10V1kbisr + wf
Hence, the nominal closed-loop equilibrium point belongs
to the region of linearity S(K,u0) as soon as[

r
wf

]′ [
k10V1kbis

1

]′
1

u20

[
k10V1kbis

1

] [
r
wf

]
≤ 1 (19)

As expected, the integral action induces a perfect reference
tracking since it is ensured that e(t) = 0, as soon as
xe ∈ S(K,u0), that is, if r and wf satisfy relation (19).

3.3 Problem formulation

Let X0 be the set of admissible initial conditions, R0 the
set of references and W0 the set of admissible perturba-
tions wf of system (13). The problem to be solved can be
summarized as follows:

Problem 1. Design the state-feedback gain Kc and charac-
terize the sets X0, R0 andW0, such that, ∀x(0) ∈ X0, ∀r ∈
R0 and wf ∈ W0, the equilibrium point xe ∈ S(Kc, u0) is
locally asymptotically stable, yf (t)→ r when t→∞, and
X0 is an invariant domain in which the trajectories of the
closed-loop saturated system (13) remain confined, despite
the saturation, perturbations and uncertainties.

4. CONTROLLER DESIGN

Now, we are in position to state the main result to address
Problem 1.

Proposition 1. If there exist four symmetric positive def-
inite matrices Wf ∈ R(nf+1)×(nf+1), Ws ∈ Rns×ns , Qr ∈
R, Qw ∈ R, a diagonal positive definite matrix S ∈ R, two
matrices Y ∈ R1×(nf+1) and Z ∈ R1×(nf+1), and positive
scalars τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, δf and δs such that 2
He(A

[i]
fe
Wf +BfeY ) + τ1Wf ? ? ? ?

SB′fe − Z −2S ? ? ?

WsA
[i]′

fse
0 −τ2Ws ? ?

B
[i]′
re 0 0 −τ3Qr ?
B′fe 0 0 0 −τ4Qw

 < 0

(20)[
He(A[i]

s Ws) + τ5Ws ?

WfA
[i]′
sfe −τ6Wf

]
< 0 (21)

[
Wf ?

Y − Z δfu
2
0

]
≥ 0 (22)

2 •[i] corresponds to each of the N vertices which describe the
polytopic uncertain matrices issued from matrix A defined in (3).

 −τ7Qr ? ?
0 −τ8Qw ?

k
[i]
10V1kbis 1 −u20

 ≤ 0 (23)

−τ1δs + (τ2 + τ3 + τ4)δf < 0 (24)

−τ5δf + τ6δs < 0 (25)

τ7 + τ8 − δs < 0 (26)

then the controller Kc = YW−1f is such that for any

reference r ∈ R0 = {r ∈ R; r′Qrr ≤ δ−1s }, disturbance
wf ∈ W0 = {wf ∈ Rm;w′fQwwf ≤ δ−1s }, xfe(0) ∈
X f0 = {xfe ∈ Rnf+1;x′feW

−1
f xfe ≤ δ−1f } and xs(0) ∈

X s0 = {xs ∈ Rns ;x′sW
−1
s xs ≤ δ−1s }, the trajectories of

the closed-loop saturated system (13) do not leave the

ellipsoidal domain X0 = X f0 ×X s0 .

Proof. The proof involves Lyapunov-based arguments,
considering quadratic Lyapunov functions V (xfe) =

x′feW
−1
f xfe and V (xs) = x′sW

−1
s xs, with symmetric pos-

itive definite matrices Wf ∈ R(nf+1)×(nf+1) and Ws ∈
Rns×ns . Also, to deal with the dead-zone nonlinearity
φ(Kx) = φ(Kcxfe), it takes advantage of the modified
sector condition (Tarbouriech et al. (2011))

φ(Kcxfe)
′T (φ(Kcxfe) +Gxfe) ≤ 0,

verified with a positive diagonal matrix T for any xfe
belonging to the polyhedron S(|Kc −G|, u0) defined by:

S(|Kc−G|, u0) = {xfe ∈ Rnf+1;−u0 ≤ (Kc−G)xfe ≤ u0}.

Then to prove that the trajectories of the closed-loop

system (11) remain confined in X0 = X f0 × X s0 for all
references r ∈ R0 and all disturbance wf ∈ W0, one
has to prove that, along the trajectories of the closed-loop
saturated system (13), one gets: V̇ (xfe) < −α(V (xfe)), α

being a K-function, for any xfe such that x′feW
−1
f xfe >

δ−1f , for any r ∈ R0, any wf ∈ W0 and any xs ∈ X s0 .

Thanks to the use of the S-procedure (Boyd et al. (1994))
and the modified sector condition, this condition on the
time derivative of V (xfe) is satisfied, with τi, i = 1, · · · , 4,
if

V̇ (xfe) + τ1(x′feW
−1
f xfe − δ−1f ) + τ2(δ−1s − x′sW−1s xs)

+τ3(δ−1s − r′Qrr) + τ4(δ−1s − w′fQwwf )
−2φ(Kcxfe)

′T (φ(Kcxfe) +Gxfe) < 0

(27)

which is satisfied as long as (20) and (24) are satisfied,

and X f0 ⊆ S(|Kc−G|, u0). This latter condition is ensured
with the inequality (22), by using the change of variables
KcWf = Y and GWf = Z. Then one can prove that
there exists a small enough positive scalar ε allowing to
select the K-function α(V (xfe)) as εx′fexfe. Therefore,

the satisfaction of (20), (22) and (24) guarantees that xfe
remains confined in X f0 for the uncertain closed-loop fast
system, for any r ∈ R0, wf ∈ W0 and any xs ∈ X s0 . Note
also that, thanks to the polytopic representation of the
uncertain matrix A (and subsystems Afe, Afse, Bre), the
inequality (20) holds at each vertex i. That concludes the
first part of the proof.

Similarly, the satisfaction of relations (21) et (25) ensures
the invariance of the ellipsoid X s0 for the uncertain slow

system, for any xfe ∈ X f0 .



Finally, the satisfaction of relations (23) and (26) ensures
that relation (19) holds for any r ∈ R0 and wf ∈ W0.
Therefore, the equilibrium point belongs to the region of
linearity (as discussed in Section 3.2). 2

The approach of splitting the system into fast and slow
subsystems and considering the slow subsystem as a dis-
turbance of the fast one is interesting in the sense that it
helps focusing the study on the subsystem of interest allow-
ing to satisfy some performances that we could not guar-
antee with the global system considering the multi-time
scale dynamics problem. However, this approach induces
some conservatism by the fact that xs is manipulated as
a disturbance, which can then evolve independently of
xf (or xfe), due to the manner to build the set X0 (i.e.

X f0 × X s0 ). Therefore the estimations of X0 and R0 are
conservative by construction. Then, once the controller has
been computed, one can consider the analysis of the full
system to get a better estimation of admissible X0 and
R0, considering the full closed-loop saturated system (13).
The following proposition gives conditions to address the
analysis problem.

Proposition 2. Given the controller gain K = [Kc 01×ns ],
if there exist three symmetric positive definite matrices
W ∈ Rn×n, Qr ∈ R, Qw ∈ R, a diagonal positive definite
matrix S ∈ R, a matrix Z ∈ R1×n, and positive scalars 3

τ1, τ3, τ4, τ7, τ8, δs and η such that relation (23) and the
following hold


He(A[i]W +BKW ) + τ1W ? ? ?

SB′ − Z −2S ? ?

B[i]
r 0 −τ3Qr ?
B 0 0 −τ4Qw

 < 0

(28)

[
W ?

KW − Z ηu20(j)

]
≥ 0 (29)

 −τ7Qr ? ?
0 −τ8Qw ?

k
[i]
10V1kbis 1 −u20

 ≤ 0 (30)

−τ1δs + (τ3 + τ4)η < 0 (31)

τ7 + τ8 − δs < 0 (32)

then for any reference r ∈ R0 = {r ∈ R; r′Qrr ≤
δ−1s }, disturbance wf ∈ W0 = {wf ∈ Rm;w′fQwwf ≤
δ−1s }, the trajectories of the closed-loop saturated sys-
tem (13) do not leave the ellipsoidal domain X0 ={
x ∈ Rn;x′W−1x ≤ η−1

}
.

Proof. The same arguments as in the proof of Proposition
1 can be invoked when manipulating the full system (13)
with given controller gain K. 2

3 To simplify the comparison with Proposition 1, we keep the same
notations for scalars τi.

5. NUMERICAL EXAMPLE

For a range of adult patients, male and female, with age
between 20 and 70 years old, weight between 50 and 100
kg and height between 140 and 200 cm, the uncertain
parameter intervals, computed with the Schnider’s model,
are given in Table 2 and used to define the eight vertices
of the polytope.

Param k10 k21 k12
interval [0.2497, 0.8982] [0.2066, 0.4876] [0.0655, 0.0720]

Table 2. Uncertain parameters intervals

The controller is designed with the objective of accelerat-
ing by twice the closed-loop dynamics, which is guaranteed
by setting τ1 = 1.8. A solution is computed by solving the
conditions of Proposition 1 with an optimization criterion
set as:

min Trace (Qr) + δs
under conditions (20)-(26)

With τ2 = 2, τ3 = τ4 = 0.001, τ5 = 0.0006, τ6 = 0.0005,
τ7 = τ8 = 0.01, one obtains the control gain:

Kc = [−169.4040 − 10.6163 − 136.0120 ]

To illustrate the performance of this controller, it is applied
on 7 adult patients chosen in the range considered above to
design the controller and whose characteristics are detailed
in Table 3.

Age (yr) size (cm) weight (kg) sex

1 20 140 38 F
2 43 155 55 F
3 52 160 65 M
4 35 170 73 F
4 56 185 84 M
6 32 200 85 M
7 70 177 77 M

Table 3. Patient dataset

For the simulations, the patients are initially awake (ybis =
100). First, before to close the loop, an initial bolus is
administered to mimic the medical practice. Typically, an
optimal control strategy could be applied for this induction
phase (Zabi et al. (2017)). Here, one simply considers a
bolus of 60 mg (120 mg/min during 30 seconds). Then the
loop is closed after 1 minute. Figures 1 and 2 report the
output and input responses for all these 7 patients. It may
be checked that the output closed-loop behavior is almost
the same. On the other hand, the influence of the patient
is visible on the input behavior allowing to track the BIS,
exhibiting a good robustness of the designed controller
with respect to the considered uncertain parameters.

6. CONCLUSION

The tracking problem of a constant BIS reference during
anesthesia has been addressed in this paper taking into
account 1) control input saturation, 2) patient uncertainty
and 3) combination of fast and slow dynamics inherent to
such a system. LMI conditions have been established to
compute a state feedback involving an integral action in
order to ensure a perfect output tracking. These conditions
guarantee that the trajectories of the closed-loop system
remain confined in an invariant ellipsoidal set, provided



Fig. 1. BIS reference tracking for 7 adult patients.

Fig. 2. Infusion rate of propofol during BIS reference
tracking for 7 adult patients.

that the reference signal belongs to a certain set. The
theoretical conditions have been numerically tested on a
set of patients as a proof of principle.

Several directions of research could be investigated, in par-
ticular to take into account the fact that the concentration
of drug in the central compartment (xf2) is not easily
accessible. It would then be pertinent to add an observer
to the controller scheme, or to extend the results to the
dynamic output-feedback control design. Moreover, more
realistic uncertainty descriptions should be considered in
the future, in particular on the pharmacodynamic model.
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zot, T., Dardelle, D., Laloë, P.A., Bonnet, F., Sessler,
D., et al. (2014). Dexmedetomidine reduces propofol
and remifentanil requirements during bispectral index-
guided closed-loop anesthesia: a double-blind, placebo-
controlled trial. Anesthesia & Analgesia, 118(5), 946–
955.

Lemos, J., Caiado, D., Costa, B., Paz, L., Mendonca, T.,
Esteves, S., and M.Seabra (2014). Robust control of
maintenance-phase anesthesia. IEEE Control Systems
Magazine, 34(6), 24–38.

Nascu, I., Krieger, A., Ionescu, C.M., and Pistikopoulos,
E.N. (2015). Advanced model based control studies for
the induction and maintenance of intravenous anaes-
thesia. IEEE Transactions on Biomedical Engineering,
62(3), 832–841.

Rocha, C., Mendonça, T., and Silva, M. (2014). Indi-
vidualizing propofol dosage: a multivariate linear model
approach. Journal of clinical monitoring and computing,
28(6), 525–536.

Schnider, T.W., Minto, C.F., Gambus, P.L., Andresen, C.,
Goodale, D.B., Shafer, S.L., and Youngs, E.J. (1998).
The influence of method of administration and covari-
ates on the pharmacokinetics of propofol in adult vol-
unteers. Anesthesiology, 88(5), 1170–1182.

Tarbouriech, S., Garcia, G., J. M. Gomes da Silva Jr., and
Queinnec, I. (2011). Stability and Stabilization of Linear
Systems with Saturating Actuators. Springer.

Van Heusden, K., Dumont, G., Soltesz, K., Petersen,
C., Umedaly, A., West, N., and Ansermino, J. (2014).
Design and clinical evaluation of robust PID control of
propofol anesthesia in children. IEEE Transactions on
Control Systems Technology, 22(2), 491–501.

Zabi, S., Queinnec, I., Garcia, G., and Mazerolles, M.
(2017). Time-optimal control for the induction phase
of anesthesia. In 20th IFAC World Congress. Toulouse,
France.

Zabi, S., Queinnec, I., Tarbouriech, S., Garcia, G., and
Mazerolles, M. (2015). New approach for the control of
anesthesia based on dynamics decoupling. In 9th IFAC
Symposium on Biological and Medical Systems (BMS).
Berlin, Germany.

Zhusubaliyev, Z., Medvedev, A., and Silva, M. (2014).
Nonlinear dynamics in closed-loop anesthesia: Pharma-
cokinetic/pharmacodynamic model under pid-feedback.
In American Control Conference, 5496–5501. Portland,
USA.


