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Abstract

Small cyclic peptides represent a promising class of therapeutic molecules with

unique chemical properties. However, the poor knowledge of their structural charac-

teristics makes their computational design and structure prediction a real challenge.

In order to better describe their conformational space, we developed a method, named

EGSCyP, for the exhaustive exploration of the energy landscape of small head-to-

tail cyclic peptides. The method can be summarized by (i) a global exploration of

the conformational space based on a mechanistic representation of the peptide and

the use of robotics-based algorithms to deal with the closure constraint, (ii) an all-

atom refinement of the obtained conformations. EGSCyP can handle D-form residues

and N-methylations. Two strategies for the side-chains placement were implemented

and compared. To validate our approach, we applied it to a set of three variants of

cyclic RGDFV pentapeptides, including the drug candidate Cilengitide. A comparative
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analysis was made with respect to replica exchange molecular dynamics simulations in

implicit solvent. It results that the EGSCyP method provides a very complete charac-

terization of the conformational space of small cyclic pentapeptides.

Introduction

After a relative decline for decades, peptides are turning back to the light as promising

therapeutics drugs.1 This is partially due to advances in chemistry to produce stable cyclic

peptides as well as to the development of biotechnologies avoiding most of the drawbacks

objected to peptides such as enzyme digestion or membrane penetration.2–6 Peptides com-

bine the advantages of proteins and small molecules: they have high selectivity as proteins,

and metabolic stability, oral availability and low immunogenicity, as small molecules.2,6–8

Compared to small ligands, peptides can occupy larger surfaces of interaction and reach

higher specificities.2,6,7,9,10 Thus, a particularly interesting application of peptides is the in-

hibition of protein-protein interactions involved in severe human diseases, including cancers

and neurodegenerative disorders.11–13 Therapeutic peptides are (re-)designed, aiming at im-

proving their stability as well as their resistance to degradation by proteases. This can be

achieved by cyclization and other chemical modifications, such as N-methylations or the use

of D-amino acids.3,14–18 Interestingly, combining cyclization and N-methylation has proven to

improve membrane permeability, which is critical in the development of therapeutics against

intracellular targets.7 It has recently been shown that cyclisation can result in a four orders

of magnitude increase in the binding affinity for their target.19 Finally, it has been shown

that the N-methylation can modulate both the affinity and the specificity of a peptide for its

target.20 Therefore, cyclic peptides and their chemical modifications present pharmaceutical

advantages that support the importance of their in silico design.

In spite of these promising properties in the field of pharmacology, we still are at the

dawn of a sound understanding of cyclic peptides, in particular for head-to-tail cyclization,

which would open the road to in silico predictions of their 3D structures. Indeed, there
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are only a few tens of structures annotated as “cyclic peptide” in the Protein Data Bank

(PDB) and in the Cambridge Structural Database, as far as the length is less than 50 amino

acids. Thus, template-based homology modeling methods are not adequate and only ab initio

modeling is feasible. Besides, most of the de novo methods for modeling proteins are not

adapted to cyclic peptides. Recent efforts have been made to develop or to adapt structure

prediction tools to cyclic peptides. However, few of them are able to treat small head-

to-tail cyclic peptides (with less than seven residues) involving chemical modifications. For

example, PEP-FOLD21,22 does not deal with head-to-tail cyclic peptides. PEPstrMOD23 and

I-TASSER24 do not deal with sequences shorter than seven residues. The method “Simple

Cyclic Peptide Prediction” of Rosetta8 can treat small peptides but cannot deal with N-

methylation, so far. To our knowledge, only Peplook25 can deal with mixed-chiral small

cyclic peptides and N-methylation. The difficulty to develop tools for predicting the structure

of small cyclic peptides is essentially due to their very constrained structure that cannot

contain any secondary structure nor hydrophobic core,15,26,27 therefore with φ and ψ dihedral

angles tending to fall outside the canonical allowed regions observed in the Ramachandran

diagram28 for proteins.29 In addition, the use of D-amino acids and N-methylations makes the

modeling even more difficult.30 To improve structure prediction, there is a real necessity of

better understanding the conformational landscape of small cyclic peptides, and the related

dihedral range needed to describe it. Our ambition was thus to explore the energy landscape

of short, modified head-to-tail cyclic peptides. Indeed, while structure prediction aims at

finding the most stable or probable conformations, global exploration methods are aimed to

provide an overall picture of the conformational space.

Although molecular dynamics simulations and Monte Carlo methods can be used to ex-

plore the conformational space of linear peptides,31,32 the application of these methods to

cyclic peptides is less straightforward. This is mainly due to the ring-closure constraint,

which leads to high energy barriers between the different meta-stable conformations.11,33,34

Thus, it makes the conformational sampling very challenging. Actually, even for small sys-
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tems, achieving a complete exploration of the energy landscape requires long simulation

times when using basic approaches. Advanced methods are required to overcome this diffi-

culty. For example, Replica Exchange Molecular Dynamics (REMD) simulations have been

applied to cyclic peptides.35 Metadynamics is a valuable alternative,11 but the parametriza-

tion of the simulation, i.e., the selection of the collective variables that are critical to capture

the degrees of freedom (DoF) of the system, is still a bottleneck. Very recently, the accel-

erated molecular dynamics methodology has been successfully applied to cyclic peptides.19

However, these simulations depend on system-specific boosting parameters, and are very

computationally expensive. Therefore, there is a need for alternative approaches, adapted to

cyclic peptides, for an unambiguous complete exploration of the conformational landscape,

getting rid of the difficult assessment of convergence necessary in the various methods based

on molecular dynamics.

Numerous methods have been proposed since the the seminal work of Go and Scheraga36

to efficiently sample cyclic molecules. We can mention for instance the work of Wu and

Deem,37 and of Coutsias et al.38 Inspired from these methods, we present a robotics-based

approach for exploring the conformational landscape of head-to-tail cyclic peptides possibly

involving mixed-chirality and N-methylated residues. Our method, called Exhaustive Grid

Search for Cyclic Peptides (EGSCyP), is based on a multi-level representation of the peptide,

and on the application of different algorithms at the various levels. Backbone conformations

are first exhaustively sampled considering dihedral angles as the main variables. An inverse

kinematics (IK) algorithm39 is used at this level to enforce loop closure. Then, for each

backbone conformation, side-chains are placed and local minimization is performed using

an all-atom representation. In this paper, we focused on pentapeptides, but our method

also applies to tetrapeptides and can be trivially adapted to hexapeptides provided a simple

parallelization of the algorithm.

In order to validate this approach, we sampled the conformational landscape of a set of

three cyclic pentapeptides described in the literature,40,41 containing the widely studied RGD
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motif. One of these peptides is Cilengitide,42 which is an example of promising N-methylated

RGD cyclic pentapeptide, developed by the Kessler group as inhibitor of protein-protein

interaction of the αVβ3 and the αVβ5 integrins. It has reached the phase III of clinical trial

for glioblastomas and is also under evaluation for other types of cancer.43 This pentapeptide

was chosen as a proof of concept since one structure is deposited and it is well studied

experimentally. To evaluate the completeness and the accuracy of the EGSCyP approach,

the results on these three cyclic peptides were compared with those obtained with REMD

simulations.

Methods

Overview

EGSCyP applies a kind of “divide and conquer” paradigm. The global conformational explo-

ration problem is divided into several sub-problems, each of which involves different variables.

The backbone dihedral angles are treated first, since they are the most important degrees

of freedom of a peptide. Among the backbone dihedral angles, the ω angles (corresponding

to peptide bonds) are particularly rigid. Therefore, and aiming to reduce the combinato-

rial complexity, their values are randomly sampled from a Gaussian distribution centered at

180◦, rather than systematically explored. The exhaustive exploration focuses on the φ and

ψ angles. The loop-closure constraint imposes a non-linear relationship between these angles.

More precisely, the value of 6 angles is determined from the value of the other n−6 angles (n

representing the total number of φ and ψ dihedral angles), using an inverse kinematics (IK)

solver. In our approach, we assign these 6 dependent variables to the φ and ψ angles of three

consecutive residues. Therefore, for a pentapeptide backbone, the remaining (independent)

variables to be sampled are the φ and ψ of only two residues. Thanks to the low dimension,

these four variables can be sampled with high resolution using an exhaustive grid search.

The conformation of the side-chains is then sampled for each backbone conformation satis-
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fying loop closure and without significant steric clashes. We have investigated two different

approaches for solving this second sub-problem. Finally, the whole conformation is locally

minimized at an all-atom level (i.e. considering all the degrees of freedom simultaneously).

The multi-level model and the different stages of the EGSCyP algorithm are explained with

more detail below.

Molecular model

The representation of molecules is generally based either on the Cartesian coordinates of all

their atoms, or on the set of internal coordinates corresponding to the relative positions of

their covalently bonded atoms. This second representation can be defined by three types

of DoF: bond lengths, bond angles and dihedral angles. It has been shown that the first

two present low variations at room temperature.44 Therefore, the model can be simplified

considering these parameters as constants, adopting the rigid geometry assumption,45 which

means that the only DoF are the dihedral angles. This representation of a peptide allows

modeling it as an articulated mechanism, similar to a robotic arm39 (see Figure 1). Thanks

to this choice of representation, algorithms from robotics can be applied to explore the

conformational space of molecules.46–48 The approach we present in this paper uses both

models: (1) the mechanistic one for the global exploration of the backbone conformation

and the side-chain placement, (2) the Cartesian all-atom model for the refinement with the

relaxation method.

Sampling algorithm

The EGSCyP algorithm is summarized in Figure 2 for a pentapeptide. The exploration

starts by the selection of two consecutive residues to be sampled, involving two pairs of φ -

ψ angles.

By default, the selected residues are the first and the last ones in the PDB file given

as input (see dataset paragraph). In the following, these two residues are named I and V ,
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Figure 1: Analogy between a tripeptide (a) and a robotic arm (b). The dihedral angles φ
(orange arrows) and ψ (purple arrows) of the tripeptide (in cyan) correspond to the revolute
joints of the kinematic chain in this analogy.

respectively. The effect of the choice of the two sampled residues has been evaluated by

testing all the possible positions (see results section). The sampling of all possible combina-

tions of the two pairs of φ - ψ dihedral angles is made with a constant step size of 10◦ over

the range from −180◦ to 180◦. Then, for every combination, the five ω angles are randomly

selected from a Gaussian distribution with a standard deviation of 10◦ centered around 180◦.

Then, the IK method is applied to close the cycle between the sampled residues (see below

for more details). In other words, the IK method finds feasible values for the φ - ψ angles

of residues II, III and IV . If there is no solution, the ω angles are sampled again until a

solution is found or until a maximum number of iterations is reached (100 iterations in our

implementation). If no solution is finally found, the next combination of torsion angles is

tested. Otherwise, for each solution of the IK method, possible collisions between the back-

bone atoms (and the methyl carbon of N-methylated residues, if there was one) are checked.

A collision is detected if the distance between two non-bonded atoms is less than 60% of the

sum of their van der Waals radii,49 thus accepting a small overlap. This geometric filtering
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Side chains addition
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sampling of ΦV, ΨV, ΦI, ΨI
(Grid search with ΔΦ,ΔΨ = 10°) 
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Figure 2: Flowchart of the EGSCyP algorithm. The backbone of a pentapeptide is rep-
resented to illustrate the sampled dihedral angles φ and ψ colored in orange and purple
respectively . The tripeptide on which the IK is applied is colored in cyan.
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was not chosen too restrictive, because the final relaxation could avoid small collisions not

filtered at this step. Then, in absence of collision, the side chains are positioned using one of

the following methods: (1) the SCWRL4 software,50 or (2) a variant of the Basin Hopping

(BH) method.51 Details about these methods are described below in the paragraph about side

chains placement. Finally, a few steps of structural relaxation (detailed below) are performed

using Sander from AmberTools 16.52 This last stage allows releasing constraints imposed by

the rigid geometry representation. The relaxation is made with the amberff96 force field53

with a Generalized Born implicit solvent (all default parameters were set on). The choice of

this force field and implicit solvent was made based on the reasonable performance of this

combination on peptides compared to other force fields.54 During relaxation, the φ and ψ

dihedral angles from the two sampled residues are restrained to their sampled values. For

the calculations presented below, the maximum number of cycles of minimization was set to

1000, with 500 steps of steepest descent followed by conjugate gradient. The convergence

energy criterion for the minimization was set to 0.1 kcal/mol-Å. At the end of each iteration,

for each solution, a conformation is built (i.e., atomic coordinates are extracted) and the

dihedral angles values are recorded for all the residues as well as the energy of the peptide,

calculated by Amber. A connectivity graph is created during the sampling process, with one

node for each conformation. In the sampling grid, neighbor nodes are linked in such a way

that each node is connected to all the nodes having the four sampled dihedral angles within

a window of ±10◦. As explained below, the connectivity graph is used within the side-chain

placement method.

Inverse Kinematics

As previously described, a molecule can be modeled as an articulated mechanism. Us-

ing standard conventions applied in robotics, such as the modified Denavit-Hartenberg con-

vention55 used in this work, a Cartesian coordinate system Fi is attached to each rigid

body, which corresponds to a small group of bonded atoms. Then, the relative location
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of two consecutive frames in the chain can be defined by a homogeneous transformation

matrix i−1Ti. Assuming constant bond lengths and bond angles, the only variable param-

eter in this matrix corresponds to a bond torsions, θi. In the case of a peptide backbone,

and if we assume that the ω angles are also fixed to a given (sampled) value, the vari-

ables are the φ and ψ angles. Thus, as illustrated in Figure 1, the backbone conforma-

tion for a tripeptide composed of residues II, III, IV is defined by the vector of six angles

{θ1, θ2, θ3, θ4, θ5, θ6} = {φII , ψII , φIII , ψIII , φIV , ψIV }.

The IK problem relies in finding values for this vector of angles such that they solve the

following matrix equation: 0T1
1T2

2T3
3T4

4T5
5T6 =0 T6, where 0T6 is the homogeneous trans-

formation matrix representing the relative pose of the first frame F0 and the last frame F6.

In our case, F0 and F6 are determined from the conformation of the other two residues in

the cyclic peptide, which were exhaustively sampled as explained in the previous section.

For solving the IK problem, we apply the method proposed by Renaud.56,57 This semi-

analytical solver, based on algebraic elimination theory, is rooted in the work of Lee and

Liang.58,59 Our implementation incorporates ideas proposed by Manocha and Canny60 to

improve numerical robustness. The solver is very computationally efficient, requiring about

0.1 milliseconds on a single processor. It was successfully applied in previous works on protein

and polymer modeling.61–63 Note however that our approach does not rely on a particular IK

solver. Other methods available in the literature could be applied (e.g.38,60,64). Nevertheless,

we recommend the application of (semi-)analytical methods, which, in the present application

case, have several important advantages with respect to purely numerical approaches such

as Cyclic Coordinate Descent (CCD).65 The main advantage is that they simultaneously

provide all the solutions to the IK problem: up to 16 for an articulated mechanism with six

revolute joints, as our tripeptide model. In addition, they provide the exact solution in a

single iteration, not suffering from slow convergence issues.
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Side-chain placement

Two methods were implemented and evaluated for the side-chain positioning. The first one

was SCWRL4,50 a widely-used and efficient tool for the prediction of side-chain conforma-

tions, based on a rotamer library. In our case, the applicability of this method is limited,

because it cannot deal with the N-methylated residues (it replaces them by glycines). D-

amino acids are not represented in the rotamer library either. Moreover, SCWRL4 does not

deal with cyclization: collisions usually happen between the side-chains of the first and the

last residues. Within our multi-stage exploration approach, the subsequent all-atom relax-

ation (performed with Amber) can solve some of these problems. However, wrong side-chain

conformations may remain. Finally, despite the fairly high speed of SCWRL4, its use as a

third-party program requiring system calls slows down the overall computing time.

The second approach used for the side-chain placement is much more general. It is based

on stochastic optimization methods. More precisely, we applied a variant of the Monte-

Carlo-minimization method,66 also known as Basin Hopping (BH),51 as explained in previous

work.67 This global optimization method consists of iteratively applying a random structural

perturbation (global search) followed by a local energy minimization. At each iteration, the

new local minimum is compared with the one generated in the previous iteration, and it

is accepted or rejected based on the classical Metropolis criterion. In our implementation,

the structural perturbation was applied to a randomly selected number of χ angles in a first

step. Then, the local minimization based on a simple Monte-Carlo (MC) method at very low

temperature (in order to remain in the local basin), applied small random perturbations to

all the χ angles. Although this type of local minimization is in general less computationally

efficient than gradient-based approaches usually applied within BH, it is also less sensitive to

small local traps. It requires about 10 seconds on a single processor (it is the most expansive

step of our algorithm).

In order to decrease the overall computational cost, the BH method was not systemat-

ically applied to place the side-chains for every sampled conformation of the peptide back-
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bone. When a neighboring conformation of the peptide (i.e., a neighbor in the connectivity

graph) has already been generated by the exhaustive exploration algorithm, the side-chains

conformation was then generated by local minimization from this neighbor, using the local

Monte-Carlo search. The computational time is reduced to 10 milliseconds and is equivalent

to the use of SCWRL4. Energy evaluation within the side-chain placement procedure was

performed using the same force field as in the subsequent relaxation process: the amberff96

force field with a Generalized Born implicit solvent.

REMD

For comparison, Replica Exchange Molecular Dynamics simulations were performed with

GROMACS 5.1.2.68 As in the EGSCyP method, the simulations were performed using the

OBC (Onufriev, Bashford, and Case)69 GBSA implicit solvent model and the Amber96 force

field.53 A short minimization was first done with an alternation of one step of steepest descent

step every 500 conjugate gradient steps. The maximum number of steps was set to 50,000

with a step size of 0.01 nm and an energy convergence criterion of 10 kJ/mol.nm. The

thermalizations and simulations were made with eight replica varying in temperature from

300K to 450K (at 300K, 313K, 329K, 347K, 367K, 391K, 418K, 450K). The temperatures

of the replica were chosen to keep constant the probability of accepting exchanges. Only

a short phase of thermalization was realized on 100 ps (50 000 steps). Then, the REMD

simulations were performed with parameters inspired from the work of Wakefield et al.35

The exchanges between neighboring replicas were made every 10 ps. Each replica ran for

2.4 µs, yielding a total simulation time of 19.2 µs per peptide. The atomic coordinates were

recorded every 10 ps. However, contrary to the work of Wakefield et al.,35 we did not change

the torsion scaling parameters to lower the ω angle torsional barriers and to accelerate the

cis/trans sampling of N-methylated residues. We kept it to the default value, because the

cis conformations were only populated at a few percent in the study of Wakefield et al.35
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Clustering

In order to rapidly and easily identify the main energy minima produced by EGSCyP and

REMD simulations, we developed a simple clustering method inspired from the one recently

proposed by Hosseinzadeh et al.26 It is based on the energy of conformations and the Root

Mean Square Deviation (RMSD) calculated upon the φ-ψ dihedral angles.70 For EGSCyP, the

energy taken into account is the final energy computed by Amber at the end of the relaxation.

For REMD simulations, the potential energy for each frame of the lower-temperature replica

is computed with Gromacs. The global energy minimum is selected as the center of the

first cluster. Then, the RMSD between this minimum and all the other conformations is

computed. All the conformations presenting a RMSD inferior to a threshold are put into

the first cluster. The choice of this threshold will be discussed below, together with the

results. Next, the same procedure is applied again: among the remaining conformations, the

structure with the lowest energy is selected as the center of the second cluster and the RMSD

is again computed for creating the second cluster. The procedure is repeated until all the

conformations were included into a cluster. This approach, unlike classical clustering based

only on distances, may be biased toward low-energy basins. However, its application in the

context of this study to find and compare the energy minima basins seems quite appropriate.

As a final stage, the representative structures of clusters from both methods are minimized

without any constraint with Amber in order to be comparable.

Dataset

In this study, we considered three RGD cyclic pentapeptides selected from the work of the

Kessler group.40,41 The sequences of these peptides are presented in Table 1.

For both the REMD simulations and EGSCyP method, all the cyclic structures were

generated using UCSF-Chimera.71 This tool allows modeling non-natural amino acids, such

as D-amino acids or N-methylated ones. The cyclization was made head-to-tail, i.e., a

peptidic bond was created between the N-terminus and the C-terminus amino acids. The
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Table 1: Dataset of cyclic pentapeptides. Lower case letters indicate D-amino acids and
single quote are for the N-methylated ones. RGDfV’ corresponds to Cilengitide (PDB ID:
1L5G).

Peptide sequence Type
RGDFV natural
RGDfV D residue
RGDfV’ D residue + N-methylated residue

exhaustive exploration process performed by EGSCyP is independent of the initial confor-

mation. The topology files were created with Tleap from AmberTools 16,52 using the Amber

ff96 force field.53 The Amber topologies and partial charges of the N-methylated residues

were computed with the RED-Server.72 For the REMD simulations, the Amber topology

files were converted into Gromacs topology files with Acpype73 and manually modified for

compatibility with recent versions of Gromacs.

Results and discussion

Exhaustive grid search

We used the EGSCyP method for the three peptides presented in Table 1. The level of

exploration of the conformational landscape resulting from the EGSCyP approach was com-

pared to the one produced by REMD simulations, over 2.4 µs for each replica of each peptide.

Due to the low number of DoF of a cyclic pentapeptide and the relatively long simulation

time, the REMD sampling is sufficiently exhaustive to be compared with the one obtained

with EGSCyP (the convergence of the simulations and the percentage of accepting exchange

between replica were verified; see supporting information Figures S1, S2 and S3).

Choice of the sampled residues: We did a systematic test to verify that the choice of the

two exhaustively sampled residues does not significantly affect the results of the EGSCyP

method. It consisted of repeatedly applying the EGSCyP method, selecting each time a

different combination of two consecutive residues to be exhaustively sampled. The test was
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applied to the RGDfV peptide (see Table 1 for nomenclature). The obtained landscapes

are fairly similar, independently from the residues chosen to be sampled (detailed results

are available in supporting information in Figure S4 and Table S4). The differences can be

explained by four reasons: (1) the more exhaustive sampling performed for two pairs of φ

and ψ angles (with respect to the angles solved by IK), which enforces the exploration of

high-energy areas in the corresponding projections; (2) the randomized sampling process of

the ω and χ angles; (3) the resolution of the discretization (i.e., 10◦ step size in the grid

search) for the exploration of the two pairs of φ and ψ angles; (4) the imposed restrain on

these four angles during the relaxation.

The first of these reasons explains why the percentage of coverage of the Ramachandran

diagrams (defined as the percentage of φ,ψ pairs, within the grid spacing of 10◦, for which

at least one conformation was found by EGSCyP) varies from 85% to 95% for the residues

solved by IK, while it grows from 97% to 98% for the two exhaustively sampled residues.

In spite of these variations, the low energy basins still remain in the same areas of the

Ramachandran plot. The main differences are localized in areas of high energy. Therefore,

we can make the simplification of sampling any two successive residues and still obtain a

very complete landscape.

Table 2 shows a summary of the results obtained with EGSCyP that are detailed on the

next paragraphs.

IK Solutions: The sampling of the four φ and ψ dihedral angles was realized with a step

size of 10◦, which means that (360/10)4 = 1.68 × 106 combinations were tested for each

peptide. For each φ, ψ combination, up to 100 combinations of the five ω dihedral angles

were tested. 20%-22% of the 1.68×106 φ, ψ combinations (i.e, about 350,000 combinations)

yielded at least one solution to the IK problem. This proportion is rather constant among

the different peptides, which is due to the fact that, at this step, the side chains are not

taken into account and the number of accepted conformations is thus independent from the

sequence. Indeed, the results among these various sequences differ only by (1) the geometry
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Table 2: Summary of the performances of the EGSCyP method on the three cyclic pen-
tapeptides. The RGDFV peptide is represented twice because of the two different methods
used for side chain placement: SCWRL4 and the alternation of Basin Hopping (BH) and
local minimization by Monte Carlo search (MC). The number of solutions of the IK problem
is represented as a percentage of the cases with at least one solution among all the combina-
tions of φ/ψ angles. The number of iterations for the ω angles sampling correspond to the
number of iterations before the IK solver found a solution (until 100 iterations, in which case
the φ/ψ combination is rejected). The percentage of collisions corresponds to the percentage
of conformations among all the IK solutions containing overlapping atoms.

Peptide sequence RGDFV RGDFV RGDfV RGDfV’

Solutions found to IK problem 21% 21% 22% 20%
Number of iterations for ω sampling :

- Median 6 6 5 3
- First and third quartiles 1 - 24 1 - 24 1 - 22 0 - 11

Collisions found 22% 22% 21% 43%
Number of final conformations 764,740 762,944 830,657 540,938
Side Chain Methods BH/MC SCWRL4 BH/MC BH/MC
Side-chain conformations sampled by BH 0.06% - 0.06% 0.09%

of the initial PDB structure, with the bond length and angles that can slightly vary between

the initial structures (remember that they are kept fixed during the φ - ψ - ω sampling

and the use of IK), and (2) a random factor which can be fixed by the use of a unique

random-seed for the sampling of the ω dihedral angles. The fact that less than 1/4 of the φ,

ψ combinations yielded IK solutions emphasizes the difficulty of ring closure for small cyclic

peptides.

ω sampling: The median and the third quartile of the number of iterations over the

combinations of the five ω angles sampling processed before a submission to the IK solver

vary from 3 to 6 and from 11 to 24 respectively. Because solutions were generally found

rapidly after a few iterations, the limit of 100 iterations is sufficient to find a solution, if any.

Number of collisions: The number of collisions between backbone atoms is rather constant

(around 20% of the solutions found by IK per peptide) except for Cilengitide (RGDfV’). For

this last peptide, the number of collisions increased up to 43%. This is the consequence of

the N-methylated valine residue which very easily enters in collision with the backbone due

to the small size of the cyclic pentapeptide. This illustrates the fact that N-methylations
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constraints the structure of peptides and reduces their conformational landscape.

Side-Chain placement: Among the three considered pentapeptides, RGDFV is the only

one involving no chemical modification. Therefore, we used this molecule to compare the

performance of SCWRL4 and the BH method (see below). The combination of BH and local

minimization from a neighbor conformation was applied for the two other peptides of Table 1

with side chains. Note that the percentage of conformations for which BH was applied was

very low. For a large majority of the conformations (around 99%), the side chains were

placed by local minimization from a neighbor conformation in the connectivity graph. This

shows that the graph is very dense, thanks to the exhaustiveness of the exploration.

Number of final conformations: The total number of conformations generated for each

peptide is around 800,000, at the exception of Cilengitide (RGDfV’) for which only 540,938

conformations were found (because of the collisions mentioned above). Note that the number

of conformations is significantly larger than the number of sampled combinations of φ - ψ

angles (around 350,000). The reason is that, in most of the cases, the IK solver finds several

conformations for the tripeptide. Indeed, two IK solutions were found for around 50% of

the combinations for which the closure constraint can be satisfied. Excepting one case, the

IK solver found at most up to eight conformations for the tripeptide. The exact numbers of

solutions found for each peptide are presented in supporting information (Table S3).

Time performance: An analysis of EGSCyP run time performance was made on Cilengi-

tide. The total run time as well as the time for each stage of the algorithm were evaluated.

This analysis was also made with larger step sizes (20◦ and 30◦) for the sampling of the

four φ and ψ dihedral angles, and also without the relaxation stage using Amber. Detailed

results of this analysis are available as supporting information (Tables S8a and S10). For

Cilengitide, with a grid search of 10◦, EGSCyP ran for 188 CPU-hours. This time is divided

by two without the Amber relaxation, which takes half of the exploration. The side chain

placement is the second most time-consuming step, with more than 20% of the computing

time. The backbone sampling (grid search + IK call) takes only less than 30% of the total

17



run time. We should also note that we used a preliminary implementation of EGSCyP, non

optimized, and running on one single core. The parallelization of of EGSCyP can be triv-

ially achieved and would significantly speed up this approach. In this work, we performed an

exhaustive exploration using a small step size of 10◦ for the grid search sampling. However,

a larger step size significantly decreases the simulation time (divided by 18 for 20◦ and by 68

for 30◦). This can be interesting for a more efficient exploration applying a multi-resolution

strategy (this point is discussed below in the next subsection).

Validation on Cilengitide

Comparison of Ramachandran diagrams

The energy landscapes obtained with EGSCyP and REMD simulations were first compared

using Ramachandran diagrams for each peptide and method. In Figure 3, the first two

columns correspond to the conformations obtained by EGSCyP for the peptides RGDFV

and RGDfV.

The last two columns correspond to the maps for Cilengitide (RGDfV’) with the results

obtained by the two methods: EGSCyP on the third column and REMD on the last column.

Each line corresponds to one of the five residues of the cyclic pentapeptide. The diagrams

corresponding to the comparison between EGSCyP and REMD for RGDFV and RGDfV

peptides are available as supporting information in Figure S5.

For the EGSCyP method, the potential energy of the whole peptide was projected on

the diagrams for each residue as a function of the φ and ψ dihedral angles. This energy

was computed in kcal/mol with amberff96 force field at the last step of the relaxation with

Sander. More precisely, a specific φ, ψ pair (within the grid spacing of 10 degrees), at a given

residue position, is shared by a large number of conformations of the whole peptide, having a

large distribution in energies. From each of these distributions, we only plotted the minimum

energy value for this φ, ψ pair. The maps show that the exploration is quite complete, even

including conformations of high energy (in blue). The white areas in Figure 3 correspond
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Figure 3: Ramachandran plots presenting the results obtained with the EGSCyP method
for the RGDFV, RGDfV and RGDfV’ peptides (three left columns) and the REMD simu-
lations for RGDfV’ (right column). The diagrams were created using the matplotlib python
library.74 For EGSCyP, the energy landscape was projected as a function of the dihedral
angles φ and ψ for each residue (on each line). The color code corresponds to the minimal
potential energy in kcal/mol of the whole peptide associated to each combination of φ -
ψ angles. Energy minima are represented in black/red, while areas with no conformation
are in white, and areas of high energy are in blue. For REMD, the normalized frequency
(nfreqi = 100− 100

maxfreq−freqi
maxfreq

) of the conformations found during the simulations at the

lowest temperature replica is projected as a function of φ and ψ. The color code corresponds
to this normalized frequency, with the maximal frequency in black and a null frequency
in white. The pink stars represent the values of the dihedral angles for the crystallized
Cilengitide (sequence: RGDfV’, PDB ID: 1L5G) in complex with integrin.
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either to (1) the absence of conformations because of the absence of solution at the IK solver

step or of atomic collisions in the proposed structures; (2) conformations of very high energy.

Although the global energy minimum is the same for all the five maps, the range of energies

significantly varies. So, for a better understanding of the diagrams, we considered an energy

threshold at -235kcal/mol. This threshold was intended to be common to the five positions

of the peptide, and calculated as follows: for each Ramachandran plot, the mean and the

standard deviation of the projected energy values were summed. Then, the global energy

threshold was defined as the maximum of these five sums. It provides an identical energy

scale for all positions that explains the major part of each energy distribution and neglects

out-layers.

Coverage percentage: We defined the coverage of the diagrams as the percentage of φ-

ψ pairs, within the grid spacing of 10◦, for which at least one conformation was found

by EGSCyP. Here the ARG and VAL residues have been chosen as exhaustively sampled

residues, with 97% and 98% of coverage level, while the other three are sampled by IK,

with coverage levels of 86% to 93%, confirming the fact that exhaustive sampling produces

a larger coverage of the diagrams.

One may note that the coverage in the diagrams of Figure 3 seems lower due to the

energy threshold and to the color gradient from blue to white. Details about the coverage

percentage are available as supporting information in Table S5. This result shows again

the completeness of the exploration. For REMD simulations, the normalized frequency of

the observed conformations during the simulation was projected on the φ and ψ axes for

each residue. The coverage percentages are this time much lower, varying from 14% of

coverage for the D-phenylalanine diagram up to 49% for the arginine diagram. This result

is not totally surprising because REMD simulations tend to favor low energy areas and can

have some difficulties to cross high energy barriers. In order to evaluate the performance of

EGSCyP, we compared the coverage of the Ramachandran plots of Cilengitide for the two

methods. For all residues, less than 1% of the areas in the diagrams are visited by REMD,
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but not by EGSCyP. In other words, 99% of the conformations in the Ramachandran plots

produced by REMD are also sampled by EGSCyP. On the contrary, EGSCyP samples more

conformations than REMD: the fraction of the map explored only by EGSCyP varies from

48% for glycine up to 79% for valine. This result supports again the good performance of

our approach to exhaustively describe the conformational landscape.

Map similarities: A visual comparison of the maps clearly indicates that the lowest-

energy basins for EGSCyP (in red and black, in the third column of Figure 3) correspond

quite well to the high-population areas of the REMD simulations (in red and black too, in

the fourth column of Figure 3). Areas with few (or no) conformations found during the

REMD simulations, in blue (or white, respectively), correspond essentially to high-energy

areas sampled by EGSCyP. Thoroughly analyzing the diagrams, some minor differences be-

tween the two methods can be observed. REMD simulations produced only one black region

per residue (corresponding to the maxima of frequency) and one or two other regions in

red/orange, while EGSCyP resulted in several black points (corresponding to several energy

minima). Note however that both maps display different quantities: while the EGSCyP

method is based on the potential energy, frequencies derived from the REMD trajectories

reflect the total free energy of the system, including the entropic contribution. The dif-

ference between the potential energy of the black and red/orange areas is very low with

EGSCyP, typically 2kcal/mol. This explains why the valine and phenylalanine diagrams

present three black dots in EGSCyP but only one in REMD. These three points in EGSCyP

maps correspond to the same energy basin in REMD maps.

Run time and completeness of the exploration: Some comparisons about the run time

and the completeness of the exploration were made for EGSCyP and REMD. For EGSCyP,

simulations were made with step sizes of 10◦ (with and without the relaxation using Amber),

20◦ and 30◦. For REMD, the 2.4 µs simulation was cut into smaller segments (600 ns, 240 ns,

24 ns). For both methods, percentages of coverage and projected landscapes on Ramachan-

dran diagrams are available as supporting information (see Figures S9 and S10; Tables S8
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to S10). An interesting point is that the two methods do not show the same variation of the

exploration as the run time decreases. On the one hand, REMD simulations, for any part of

the split trajectory, show quite similar high frequency areas of the projected landscapes on

the maps. Nevertheless, the percentage of coverage decreases with shorter simulation times.

On the other hand, EGSCyP shows landscapes with higher energy with a 10◦ step, but

without Amber or with a 20◦ step. In the case of a 30◦ step, the energy minima are located

in different areas, that may be due to the resolution of the simulation. The percentages of

coverage for the three residues sampled by IK still stay very high (at least 65% for 30◦). Nev-

ertheless, these percentages decrease significantly for the two exhaustively sampled residues.

This result was expected as the number of combination tested is drastically reduced (at 16%

at 30◦step) when increasing the step size. Despite the degraded quality, the main energy

basins can still be identified even when performing a very coarse exploration. Therefore,

to escape from this sampling effect, it would be possible to implement a multi-resolution

version of EGSCyP: first, a fast low-resolution exploration (with a step size of 20◦ or 30◦) is

performed to identify the energy basins, followed by a more accurate exploration inside these

areas. The overall procedure could easily be parallelized, which would allow a significant

speed up.

Comparison of energy minima conformations

Clustering: We applied our clustering approach to the results obtained by EGSCyP and

REMD simulations for Cilengitide (RGDfV’) in order to compare the energy minima confor-

mations. As a distance metric, we used RMSD based on the φ-ψ dihedral angles. In general,

this provides better results than Cα-RMSD for clustering conformations of peptides. In

particular, angular RMSD is very useful to identify peptide-plane flips:75 a large amplitude

rotation around the peptide plane affecting the values of the ψi and the φi+1 dihedral an-

gles. Indeed, the variations of these two angles mutually compensate, such that the RMSD

computed on the α carbons does not show any fluctuation.76 However, such a perturbation
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can affect the conformation of the peptide, in particular by restraining the side chains con-

formation. The distance threshold for clustering was set to 60◦, which allows distinguishing

important peptide-plane flips.

We obtained 120 clusters with EGSCyP against 12 clusters with REMD simulations

for Cilengitide. This huge difference is once again not surprising and is consistent with

the previous results (percentage coverage of Ramachandran diagrams), demonstrating the

exhaustiveness of the EGSCyP exploration. The diversity of the clusters are presented as

supporting information (Figures S6 and S7).

With REMD, the first and most populated cluster represents 57% of the conformations

found during the simulation. The second cluster represents 42%. This means that 99% of

the conformations are described by these two clusters. We extracted from the trajectory the

two structures representing the centers of these clusters and minimized them with Sander.

We will call the minimized conformations minREMD
1 and minREMD

2 in the following. Their

energies are very similar: -267.6 kcal/mol and -267.9 kcal/mol, respectively. Representative

conformations of the two first clusters obtained with EGSCyP were also locally minimized

without any restraint. The energies of these two minima, called minEGSCyP
1 and minEGSCyP

2 ,

are -267.3 kcal/mol and -267.4 kcal/mol, respectively. As for the two main minima obtained

from REMD, the energy values of the minima for EGSCyP are extremely similar. This is

in accordance with the fact that peptides, unlike the proteins, present several energetically

equivalent minima. Note that the energy values for the minima obtained by the two methods

are also very close. Figure 4 shows the superimposed structures of these four minima: in

Figure 4a, minREMD
1 (in green) and minEGSCyP

1 (in beige); in Figure 4b, minREMD
2 (in pink)

and minEGSCyP
2 (in blue).

The backbones show an important similarity between both methods: minREMD
1 and

minEGSCyP
1 have the same distribution of dihedral angles with an angular RMSD of 32◦

between them. The second clusters, minREMD
2 and minEGSCyP

2 , also correspond to each other

with a RMSD of 32◦. The values of the dihedral angles are presented as supporting infor-
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Figure 4: Lowest energy conformations obtained for Cilengitide (RGDfV’) with EGSCyP
and REMD. (a) Superimposition of the structures of minREMD

1 (in green) and minEGSCyP
1 (in

beige). RMSD on dihedral angles between both structures equals 32◦. (b) Superimposition
of the structures of minREMD

2 (in pink) and minEGSCyP
2 (in blue). RMSD between the two

structure equals 32◦. For (a) and (b) the side chains are represented in lines for better
visibility. (c) Superimposition of the structures of minREMD

1 (in green) and minREMD
2 (in

pink). The purple dashed lines represent the measurement of the distance between two
atoms. The major difference between the two clusters is a peptide flip between the arginine
and glycine surround in red. On the right part of the figure, a zoom was made on the flip
from the other side for a better visibility. The red sphere represents the van Der Waals
radius of the carbonyl oxygen atom from minREMD

2 .

24



mation (Table S6). The most significant difference between the two groups (Figure 4a and

Figure 4b) corresponds to a peptide-plane flip between ψI and φII angles. This difference

between the two main minima is illustrated in Figure 4c. The structures of minREMD
1 and

minREMD
2 are represented with carbon atoms in green and pink respectively. The flip explain-

ing the difference is surrounded in red. It impacts the position of the arginine side chain.

Indeed, in minREMD
1 , the side chain can fold and create a hydrogen bond with the side chain

(in green) of the aspartate. Considering minREMD
2 , the side chain (in pink) is oriented more

outwards and makes a hydrogen bond with the oxygen of the valine carbonyl group. The

comparison of the two conformations shows that the flip leads to a tilt of the carbonyl group

of the glycine visible on the onset of Figure 4c. This prevents the arginine side chain of

the second minimum to come closer to the cycle and interact with the aspartate side chain.

Indeed, the orientation of the oxygen atom would create a collision if the side chain would

attempt to get closer (see van Der Waals radius of the carbonyl oxygen atom in the zoom

of Figure 4c). Therefore, the tilt has an impact on the structure, constraining the arginine

side chain (even if it does not mean that all the structures from the cluster corresponding

to minREMD
1 have this side chain orientation).

Comparison with crystallographic structure: Results provided by the two conformational

exploration methods were compared to the X-Ray structure of Cilengitide bound to integrin

(PDB code: 1L5G). The dihedral angles values of this X-Ray structure were projected on

all the RGDfV’ Ramachandran diagrams. They are indicated with a pink star in the third

and forth columns of Figure 3. We can observe that this experimental structure is close

to energy minima (in black). The RMSD on dihedral angles was computed between this

structure and the clustered minima structures from the two methods (see section above).

The minEGSCyP
2 minimum is the closest one from the X-Ray structure, with RMSD equal to

14◦. The RMSD for minREMD
2 is 35◦. The first minima (minEGSCyP

1 and minREMD
1 ) are more

distant to the experimental structure, with RMSD around 75◦ for both methods. In Figure 5,

the experimental structure (in purple) is superimposed to minEGSCyP
2 (in blue) in order to
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show the good similarity of the two conformations. However, minEGSCyP
2 and minREMD

2 are

both very close to the crystallographic one. Three hypotheses can explain why the result of

EGSCyP better matches the bound state compared to REMD.

(1) EGSCyP explores a larger landscape than REMD, due the algorithm itself and as

measured by the percentage of coverage, so that it probably finds one conformation closer

to the crystallographic one with a lower energy.

(2) The clustering method induces a bias. It may be possible that among all the REMD

conformations of the cluster corresponding to this energy minimum, other conformations are

closer to the crystallographic structure but with an energy slightly higher, explaining that

these were not chosen as the center of the cluster.

(3) One can notice that the experimental peptide is bound to the protein (superimposi-

tions with the protein complex are available in Figure S13 as supporting information). This

bound conformation may not be the global energy minimum for the free peptide, but a close

conformation that is slightly rearranged when binding. We also compared the energy min-

ima with the free structure of Cilengitide obtained from NMR experiments77 (data kindly

provided by Pr Horst Kessler). The free and bound conformations are close to each other

with a backbone RMSD of 29◦ when superimposed (Figure S12). For the REMD method,

minREMD
2 is slightly closer to the free experimental conformation (RMSD = 23◦) than to

the bound one (RMSD = 35◦). The RMSD distance between minEGSCyP
2 and the free NMR

structure of Cilengitide is very similar: 24◦.

Side chain placement

Figure 6 represents the projections of the energy landscape of the RGDFV peptide as a

function of the χ1 and χ2 dihedral angles78 for the arginine, aspartate and phenylalanine

residues.

The first column corresponds to the conformations obtained with the EGSCyP using

SCRWL4 for the side chain positioning. The second column corresponds to the EGSCyP
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Figure 5: Structure of Cilengitide (RGDfV’). Comparison between the crystallographic
structure (PDB ID: 1L5G, in purple) and the closest energy minimum found by EGSCyP
(minEGSCyP

2 in blue). RMSD of the dihedral angles between them is 14◦.

with the alternation of BH and local minimization, referred to as BH/MC in the following.

The last column corresponds to the conformations from the REMD simulations. The color

code corresponds to the potential energy of the whole peptide for the EGSCyP and to

the normalized frequency of the conformations found during the simulations at the lowest

temperature replica for the REMD simulations.

The χ1 - χ2 maps show that there is a striking difference between the two methods

for the side chain placement. With SCWRL4, the covered space is very small compared

to the one obtained with BH/MC or the REMD simulation. Actually, SCWRL4 covered

8% to 16% of the diagrams while the BH/MC covered between 54% and 69%. Less than

1% of the space is covered only by SCWRL4 and not by BH/MC meaning that the space

explored by SCWRL4 is almost totally included in the one explored by BH/MC. Regarding

the quality of the obtained conformations, the energy minima obtained with SCRWL4 are

not localized at the same place as the frequency maxima obtained by REMD. For the arginine

residue, the minima are rather close to the frequency maxima for the arginine obtained by

REMD, but for the aspartate and phenylalanine, they are not localized on the areas of

27



-180.0 -90.0 0.0 90.0 180.0

χ1 (degrees)

180.0

90.0

0.0

-90.0

-180.0

χ
2
(d
eg
re
es
)

-180.0 -90.0 0.0 90.0 180.0

χ1 (degrees)

180.0

90.0

0.0

-90.0

-180.0

χ
2
(d
eg
re
es
)

-180.0 -90.0 0.0 90.0 180.0

χ1 (degrees)

180.0

90.0

0.0

-90.0

-180.0

χ
2
(d
eg
re
es
)

-180.0 -90.0 0.0 90.0 180.0

χ1 (degrees)

180.0

90.0

0.0

-90.0

-180.0

χ
2
(d
eg
re
es
)

-180.0 -90.0 0.0 90.0 180.0

χ1 (degrees)

180.0

90.0

0.0

-90.0

-180.0

χ
2
(d
eg
re
es
)

-180.0 -90.0 0.0 90.0 180.0

χ1 (degrees)

180.0

90.0

0.0

-90.0

-180.0

χ
2
(d
eg
re
es
)

-180.0 -90.0 0.0 90.0 180.0

χ1 (degrees)

180.0

90.0

0.0

-90.0

-180.0

χ
2
(d
eg
re
es
)

-180.0 -90.0 0.0 90.0 180.0

χ1 (degrees)

180.0

90.0

0.0

-90.0

-180.0

χ
2
(d
eg
re
es
)

-180.0 -90.0 0.0 90.0 180.0

χ1 (degrees)

180.0

90.0

0.0

-90.0

-180.0

χ
2
(d
eg
re
es
)

-246 -251 -256 -261 -266 -271 -276 -281 -286 -291 -296 -301 -306-246 -251 -256 -261 -266 -271 -276 -281 -286 -291 -296 -301 -306 0 20 40 60 80 100

EGSCyP - SCWRL4 EGSCyP - BH/MC REMD

ARGI

ASPIII

PHEIV

Figure 6: Comparison of the side chain conformational landscapes obtained for the RGDFV
cyclic peptide with EGSCyP using SCWRL450 (left column), with EGSCyP and the alter-
nation of BH and local minimization (middle column), and with the REMD simulations
(right column). The conformational landscape was projected as a function of the χ1-χ2

dihedral angles of the side chains for ARG (first line), ASP (second line) and PHE (last
line). The diagrams were created using the matplotlib python library.74 For EGSCyP, the
color codes correspond to the minimal potential energy of the whole peptide associated to
this combination of χ1-χ2. For the REMD simulations, the color code corresponds to the
normalized frequency (nfreqi = 100 − 100

maxfreq−freqi
maxfreq

) of the conformations found during

the simulations at the lowest temperature replica as a function of χ1 and χ2.

28



high frequency of the REMD simulations. On the contrary, the BH/MC sampling shows

a good correspondence between its energy minima basins and the frequency maxima from

the REMD simulations for the three residues of Figure 6. The percentage coverage for the

REMD side chain placement is rather constant among the different residues (around 58%)

and the part of the coverage in common between the BH/MC and REMD is about 50%

of the diagrams. Actually, less than 10% of the coverage in the REMD diagrams are not

covered by BH/MC. Therefore, this study confirms that the use of SCWRL4 is definitely

not adapted for the case of small cyclic peptides. Moreover, the method cannot deal with

chemical modifications. These results also validate the good performance of the alternation

BH/MC for side chain placement within EGSCyP. The χ1 - χ2 diagrams for the other three

peptides are available in supporting information (Figure S8). Similarly, they show a good

accordance between BH/MC and REMD coverage of the side chain maps (Table S7), in

particular with the experimental structure of Cilengitide.

Effects of the chemical modification on the energy landscape

The exploration of the conformational landscape of the three RGD peptides (RGDFV,

RGDfV and RGDfV’), was compared to analyze the influence of the chemical modifications,

as it can be observed in Figure 3.

D-residues

The conformational landscape of the D-residue (noted as a lower case letter) changes com-

pared to its L-enantiomer, as expected. The accepted conformations show some symmetry

relative to the centers of the Ramachandran plots of Figure 3. There are three energy minima

basins for the L-enantiomer, but only one for the D-enantiomer (black dots in the first and

second columns of Figure 3). Nevertheless, the major basin for phenylalanine (upper left

for the L-enantiomer) is conserved through symmetry in the D-enantiomer. Therefore, the

landscape of the D-residue seems more restrained than the one of the L-enantiomer, confirm-
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ing the properties of the D-residues to locally constrain the conformation of the molecule.2

Actually, the percentage of coverage is quite similar between the two diagrams (about 93%),

but the potential energy is globally higher with the D-residue (blue areas).

The replacement of the L by the D-enantiomer of the phenylalanine has an impact on the

landscapes of the whole peptide, extending to the second neighbors. This can be observed

both on the level of the covered surface and the number of basins. The smaller number of

basins within the peptide containing one L amino acid suggests a higher global constrained

conformation when a non natural amino acid is included. The two direct neighbors are

particularly impacted: for the downstream valine, one (around φ = 70 and ψ = −70) of the

two energy minima basins vanishes and the area φ > 0 has conformations of higher energies.

For the upstream aspartate, the basin goes from the lower part of the diagram (ψ < 0)

to the upper part (ψ > 0) and the area with ψ < 0 is of higher energies. For the second

neighbor, differences can still be shown: the glycine energy basin from the lower left part of

the diagram vanishes, the one from the lower right part is much less extensive, and the upper

part of the diagram (ψ > 0) presents higher energies when the L-phenylalanine is used. For

the arginine, the differences are the following: the energy basin from the lower part of the

diagram disappears and the one from the upper part shrinks; the right part of the diagram

also presents higher energies with the D-enantiomer. Therefore, these remarks confirm that

the D-enantiomer does not only constrain the conformational landscape of the peptide, but

also affects its direct and indirect neighbors.

N-methylation

The consequence of the addition of a N-methylation on valine can be evaluated by comparing

the RGDfV and RGDfV’ peptides (Figure 3, column 2 and 3). The coverage percentage of the

landscape is quite constant, even in spite of the increasing number of collisions. Inspecting

the diagram for each residue, one can make the following observations. 1) The presence of

the methyl on the backbone shifts the energy towards higher values at the location of the
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modification, so it is consistent with some kind of destabilizing effect of this modification. 2)

The central zone of the Ramachandran plot, highly unfavorable, is enlarged for the modified

residue; this does not significantly affect the other residues. 3) The number of basins goes

from one for the natural valine up to three for the modified one. 4) The diffusing effect

of the methylation occurs on the landscape of arginine, the first neighbour in the cycle.

One recovers the basins in the lower left of the ARG diagram that disappeared under the

presence of the D-phenylalanine. Therefore, there is a sort of balance between the constraints

introduced by the D-form and the methylation that increase the number of basins. Thus, one

may hypothesize that the addition of the N-methyl offsets a part of the constraints brought

by the D-enantiomer.

Conclusions

Small cyclic peptides present unique properties making them promising therapeutics drugs.

The current difficulty to predict the structure and to design cyclic peptides could be greatly

improved thanks to a better understanding of their whole conformational landscape. In

this paper, we propose a method, called EGSCyP, for the exhaustive exploration of the

energy landscape of cyclic pentapeptides possibly involving chemical modifications. We

have shown the good performance of the method, which is based on a robotics approach

and a multi-level representation of the peptide. The comparison of the results obtained for

three cyclic pentapeptides with REMD simulations reveals the completeness and consistence

of our approach. Also, the comparison with the experimentally-determined structure of

Cilengitide bound to the integrin complex demonstrates the predictive capabilities of the

method. Moreover, we have demonstrated the effectiveness of the alternation of BH/local

minimization for the sampling of the side chains conformations, whereas SCWRL4 fails to

correctly position the side chains of small cyclic peptides. Finally, this approach clearly shows

the effect on the conformational landscape of the D-residue that constrains the landscape
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and the N-methylation that also modulates it.

In the short future, we will apply EGSCyP to a larger dataset, including all the available

short head to tail cyclic peptide experimental structures, in order to more robustly evaluate

the efficiency and accuracy of our approach. Other force fields could be used within our

approach. Indeed, the accuracy of the energy computation for EGSCyP as well as REMD

simulations depend on the force field used. Thus, it would be interesting to test other force

fields, and in particular optimized force fields for cyclic peptides. For instance, the RSFF1

and RSFF2 force fields have shown good performance on cyclic peptides.79 However, progress

is still needed, since it has been shown that these force fields are for the moment not well

suited to the use of non natural residues like the N-methylated ones80 neither for implicit

solvent. We also plan to investigate conformational changes using the connectivity graph

built during the exploration. The better understanding of the conformational properties of

small cyclic peptides may be used to develop more suitable methods for structure prediction

and design. Finally mention that we intend to extend the approach to larger cyclic peptides.

Obviously, a systematic, grid-based exploration as described in this paper has limits in the

length of the peptide candidates due to the combinatorial explosion. However, the proposed

multi-level modeling approach can be exploited within stochastic exploration-optimization

methods, such as variants of BH, able to provide a global picture of the conformational

landscape.

Availability

We are developing a software package called MoMA (for Molecular Motion Algorithms)

including modeling tools and algorithms to sample conformations and transition paths of

biomolecules. The methods presented in this paper have been implemented in this software

package. The open-source code, in C++, is not available yet. Nevertheless, binaries can be

provided upon request. The IK solver used in this work can also be provided as a stand-alone
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C++ library.
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